1
|
Solarte-Murillo LV, Salgado S, Gatica T, Cárcamo JG, Tsoulia T, Dahle MK, Loncoman C. Comparative Analysis of PRV-1 in Atlantic Salmon and PRV-3 in Coho Salmon: Host-Specific Immune Responses and Apoptosis in Red Blood Cells. Microorganisms 2025; 13:1167. [PMID: 40431338 PMCID: PMC12113769 DOI: 10.3390/microorganisms13051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Fish red blood cells (RBCs) are nucleated, transcriptionally active, and key players in both gas transport and immune responses. They are the primary targets of Orthoreovirus piscis (PRV), the etiological agent of heart and skeletal muscle inflammation (HSMI), which includes three genotypes (PRV-1, PRV-2, and PRV-3), linked to circulatory disorders in farmed salmon. In Chile, PRV-3 affects the coho salmon (Oncorhynchus kisutch), but host-pathogen interactions remain poorly characterized. This study compared the interactions of PRV-3 in coho salmon and PRV-1 in Atlantic salmon (Salmo salar) using RBC infection models. RBCs were isolated from healthy juvenile salmon (n = 3) inoculated with either PRV-1 (Ct = 18.87) or PRV-3 (Ct = 21.86). Poly I:C (50 µg/mL) was used as a positive control for the antiviral response. Cells were monitored for up to 14 days post-infection (dpi). PRV-3 infection in coho salmon RBCs caused significant metabolic disruption, apoptosis from 7 dpi, and correlated with increasing viral loads. In contrast, PRV-1 infection in Atlantic salmon RBCs showed limited apoptosis and maintained cell viability. Coho salmon RBCs upregulated rig-i, mx, and pkr transcripts, indicating activation of the type I interferon pathway, whereas Atlantic salmon RBCs exhibited a more attenuated response. PRV-3 induced notable morphological changes in coho salmon RBCs, although neither PRV-3 nor PRV-1 caused hemolysis. These findings highlight species-specific differences in RBC responses to PRV infection and provide new insights into the pathogenesis of PRV-3 and PRV-1.
Collapse
Affiliation(s)
- Laura V. Solarte-Murillo
- Laboratorio de Virología Molecular VIRIONLAB, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Región de Los Ríos, Chile
| | - Sebastián Salgado
- Laboratorio de Virología Molecular VIRIONLAB, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Región de Los Ríos, Chile
| | - Tomás Gatica
- Laboratorio de Virología Molecular VIRIONLAB, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Región de Los Ríos, Chile
| | - Juan Guillermo Cárcamo
- Laboratorio de Bioquímica Farmacológica, Virología y Biotecnología, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Región de Los Ríos, Chile
- Interdisciplinary Center for Aquaculture Research, INCAR, Valdivia 5091000, Región de Los Ríos, Chile
| | - Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway (M.K.D.)
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, 9019 Tromsø, Norway
| | - Maria K. Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway (M.K.D.)
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, 9019 Tromsø, Norway
| | - Carlos Loncoman
- Laboratorio de Virología Molecular VIRIONLAB, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Región de Los Ríos, Chile
| |
Collapse
|
2
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Hellmann J, Wessel Ø, Rimstad E, Surachetpong W, Steinhagen D, Jung‐Schroers V, Adamek M. Beating Cardiac Cell Cultures From Different Developmental Stages of Rainbow Trout as a Novel Approach for Replication of Cardiac Fish Viruses. JOURNAL OF FISH DISEASES 2025; 48:e14080. [PMID: 39821901 PMCID: PMC11976189 DOI: 10.1111/jfd.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3. Furthermore, we compared the replication pattern of the different viruses with those in the newly developed heart fibroblast cell line (RTH-F) and the traditional established rainbow trout gonad cell line (RTG-2). Neither RTCs nor RTH-F cell lines supported replication of PRV-1 and PRV-3. Comparative experiments showed varying susceptibility of the novel cultures to viral haemorrhagic septicaemia virus (VHSV), chum salmon reovirus (CSV), infectious pancreatic necrosis virus (IPNV), piscine myocarditis virus (PMCV), salmonid alphavirus 3 (SAV-3) and tilapia lake virus (TiLV), indicating their usability for work with multiple fish viruses. While confirming the difficulty of replicating PRV-1 and PRV-3, the results demonstrate the potential of novel heart-derived cell cultures as in vitro tools for studying fish viruses.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sarah Graff
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Marina Gebert
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Henrike Seibel
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Bettina Seeger
- Institute for Food Quality and Food SafetyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - John Hellmann
- Environment and Consumer Protection, Fisheries Ecology and AquacultureNorth Rhine Westphalian State Agency for NatureGermany
| | - Øystein Wessel
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Espen Rimstad
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary MedicineKasetsart UniversityBangkokThailand
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Verena Jung‐Schroers
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
3
|
Li L, Liu W, Zhang Z, Zhao J, Lu T, Shao Y, Xu L. IPNV inactive vaccine supplemented with GEL 02 PR adjuvant: Protective efficacy, cross-protection, and stability. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110167. [PMID: 39890040 DOI: 10.1016/j.fsi.2025.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Recently, outbreaks of infectious pancreatic necrosis (IPN) in worldwide rainbow trout farms caused by IPN virus (IPNV) strains belonging to genogroup 1 and genogroup 5 are reported. In this study, formaldehyde-inactivated vaccines supplemented with or without GEL 02 PR adjuvant were developed by using both genogroups IPNV strains and were intraperitoneally injected into rainbow trout. At 30 days post-vaccination, the viral loads of IPNV challenged rainbow trout (Oncorhynchus mykiss) in the vaccine groups were significantly decreased compared with those in the PBS group (P < 0.05), about 2.4 log and 2.5 log in the genogroup 1 and 5 IPNV inactivated vaccine with or without GEL 02 PR adjuvant groups, and the protective effect was not weakened after storage of the adjuvant vaccines at 4 °C for 12 months. Each vaccine could stimulate the expression of CD4, CD8, and IgM, and the adjuvant vaccines induced higher neutralizing antibody titers. In the long-term protection test, both the adjuvant vaccines could still effectively reduce IPNV viral loads in fish at 120 days post-vaccination, and the genogroup 5 IPNV inactivated vaccine showed cross-protection against the genogroup 1 IPNV strain. In the study of cell lines and virus seeds, CHSE-214 was successively passaged to 30 generations, and its growth characteristics and sensitivity to IPNV remained stable. When IPNV was passaged to 10 generations, the viral titers were not affected, but mutations were found in the VP2 protein of both genogroup 1 and 5 IPNV strains. The study is conducive to the improvement of IPNV vaccine development for rainbow trout.
Collapse
Affiliation(s)
- Linfang Li
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Weitong Liu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Zhen Zhang
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Jingzhuang Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Tongyan Lu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Yizhi Shao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Liming Xu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China.
| |
Collapse
|
4
|
Ahmad A, Aslam ML, Evensen Ø, Gamil AAA, Berge A, Solberg T, Schmitt AO, Gjerde B. The genetics of resistance to infectious pancreatic necrosis virus in rainbow trout unveiled through survival and virus load data. Front Genet 2024; 15:1484287. [PMID: 39628812 PMCID: PMC11611855 DOI: 10.3389/fgene.2024.1484287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Infectious Pancreatic Necrosis virus (IPNV) is one of the major threats to the animal welfare and economy of the rainbow trout farming industry. Previous research has demonstrated significant genetic variation for resistance against IPNV. The main objective of the study was to investigate the genetic architecture of resistance against IPNV in rainbow trout fry. To achieve this, 610 rainbow trout fry, from a full factorial mating between 5 sires and 5 dams, were bath challenged with the IPNV isolate (IPNV-AS) from Atlantic salmon reared at a commercial farm. The resistance against IPNV was accessed using three different phenotypes; binary survival (BS), total days survived (TDS) and virus load (VL) recorded on the fish throughout the 40-day challenge test. All fish were genotyped using a 57K Affymetrix SNP array. The IPNV-AS isolate resulted in an overall mortality of 62.1%. The heritability estimates for survival (BS h2 = 0.21 ± 0.06, TDS h2 = 0.25 ± 0.07) and VL traits (h2 = 0.23 ± 0.08) were moderate and indicative of potential use of selection for increased resistance to IPNV in rainbow trout selective breeding programs. The unity estimated genetic correlation between the two survival traits (BS and TDS) indicates that the traits can be considered the same trait. In contrast, a moderate favourable negative genetic correlation was found between VL and the two survival traits (-0.61 ± 0.22 to -0.70 ± 0.19). The GWAS of the traits with many QTLs crossing the chromosome-wide Bonferroni corrected threshold indicates the polygenic nature of the studied traits. Most of the 10 possible identified genes were found to be linked with immunity or viral pathogenesis, which could be potentially responsible for the significant genetic variation in survival against the IPNV-AS. The QTL validation analysis revealed no significant difference in the mortalities and VL among the three genotypes of the detected QTL. The VL trait showed larger variation among the dead fry and with a concordant pattern with the two survival phenotypes, but with no significant difference in the proportion of IPNV VL positive samples in the dead and the survived fry. Overall, the results indicate the polygenic nature of the studied traits and support the use of genomic selection to improve resistance against IPNV in rainbow trout breeding companies.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Breeding and Genetics, Nofima, Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Amr A. A. Gamil
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Armin Otto Schmitt
- Department of Animal Sciences and Center for Integrated Breeding Research, Georg August University, Göttingen, Germany
| | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima, Ås, Norway
| |
Collapse
|
5
|
Espinoza D, Laporte D, Martínez F, Sandino AM, Valdés N, Moenne A, Imarai M. Lambda carrageenan displays antiviral activity against the infectious pancreatic necrosis virus (IPNV) by inhibiting viral replication and enhancing innate immunity in salmonid cells. Int J Biol Macromol 2024; 282:136875. [PMID: 39454921 DOI: 10.1016/j.ijbiomac.2024.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Sulfated polysaccharide lambda carrageenan (λ-CGN) was evaluated for its antiviral effect against IPNV using the in vitro infection model of CHSE-214 salmonid cells. A plaque reduction lysis assay revealed that λ-CGN has an IC50 of 0.9 μg⋅mL-1, CC50 > 128 μg⋅mL-1 and a Selectivity Index (SI) > 142. In comparison, iota, kappa carrageenans and lambda oligo-carrageenan (λ-OC) were less effective than λ-CGN against IPNV. λ-CGN showed no virucidal activity when applied directly to viral particles. Time of addition experiments showed that pre-treatment, co-treatment, and post-treatment with λ-CGN significantly reduced viral RNA copies in the cell supernatant. Additionally, a decrease in intracellular viral RNA was observed with pre-treatment and post-treatment, indicating an impact on different stages of viral replication. Polyacrylamide gel electrophoresis of IPNV genomic RNA in presence of λ-CGN showed a reduction in the level of viral genomic RNA. Confocal microscopy confirmed the intracellular localization of λ-CGN, suggesting that λ-CGN may inhibit the synthesis of IPNV genomic RNA. Moreover, cells pre-treated with λ-CGN showed an increased expression of innate immunity genes CXCL11, IL1β, IFNa, and IRF3. These findings highlight the need for further research to confirm the in vivo pharmacological potential of λ-CGN as a new antiviral agent in salmonids.
Collapse
Affiliation(s)
- Daniela Espinoza
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile., Alameda, 3363 Santiago, Chile; Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago de Chile, Biology, Alameda, 3363 Santiago, Chile
| | - Daniel Laporte
- Laboratory of Plant Physiology and Molecular Biology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Fabián Martínez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago de Chile, Biology, Alameda, 3363 Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile., Alameda, 3363 Santiago, Chile
| | - Natalia Valdés
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile., Alameda, 3363 Santiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago de Chile, Biology, Alameda, 3363 Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile., Alameda, 3363 Santiago, Chile.
| |
Collapse
|
6
|
Tapia S, Orellana J, Duran Y, Rodriguez J, Angulo D, Dominguez-Mendoza L, Grabiel S, Silva J, Caballero R, Zapata K, Gómez M, Tataje-Lavanda L, Velazco R. Nanopore sequencing of IPNV vp2 gene in Peruvian Andean trout ( Oncorhynchus mykiss) cultures. Microbiol Resour Announc 2024; 13:e0019024. [PMID: 39162459 PMCID: PMC11392497 DOI: 10.1128/mra.00190-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Nanopore sequencing of the infectious pancreatic necrosis virus (IPNV) vp2 gene from Andean trout cultures in Peru reveals genogroups 1 and 5. This insight aids in understanding strain diversity and pathogenicity, vital for effective disease surveillance, and control measures in aquaculture.
Collapse
Affiliation(s)
- Stephanie Tapia
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Joseph Orellana
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Yerson Duran
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Jose Rodriguez
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Derly Angulo
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Luz Dominguez-Mendoza
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Sandra Grabiel
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Jose Silva
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Romina Caballero
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Katherine Zapata
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Muriel Gómez
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| | - Luis Tataje-Lavanda
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Rodolfo Velazco
- Laboratorio de Sanidad Acuícola-Sede Callao. Organismo Nacional de Sanidad Acuícola (SANIPES), Lima, Peru
| |
Collapse
|
7
|
Li L, Zhao J, Shao Y, Ma J, Lu T, Xu L. MK-0608 inhibits in vitro and in vivo RNA replication of infectious pancreatic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109732. [PMID: 38944252 DOI: 10.1016/j.fsi.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Infectious pancreatic necrosis virus (IPNV) is an important pathogen that is threatening the worldwide salmon and trout industry. But there is no therapeutic drug available for now. In this study, we demonstrate that MK-0608 is highly efficient against IPNV and low cytotoxic, with a 50 % effective concentration (EC50) of 0.20 μM and selectivity index (SI) of about 268. Time of addition assay illustrated that MK-0608 targeted the early stage of IPNV life cycle. Furthermore, we found that MK-0608 blocked IPNV attachment on the premise of sufficient pre-incubation time but MK-0608 did not influence viral internalization and release. MK-0608 could inhibit IPNV genome synthesis, and combination with ribavirin enhanced the inhibition effect, which might be functional via binding to IPNV RNA dependent RNA polymerase (RdRp), which was predicted by using molecular docking methods. In vivo test showed that IPNV was extremely suppressed in the rainbow trout (Oncorhynchus mykiss) with one single dose of MK-0608, and the higher dosage of 50 mg/kg could cause 3 log decrease of IPNV loads in fish tissues.
Collapse
Affiliation(s)
- Linfang Li
- University of Shanghai Ocean University, College of Fisheries and Life Sciences, Shanghai, China; Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Jingzhuang Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Yizhi Shao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Jie Ma
- Department of Fish and Wildlife Sciences, University of Idaho, USA
| | - Tongyan Lu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China.
| | - Liming Xu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China.
| |
Collapse
|
8
|
Perdiguero P, Jiménez-Barrios P, Morel E, Abós B, Tafalla C. Single-cell atlas of rainbow trout peripheral blood leukocytes and profiling of their early response to infectious pancreatic necrosis virus. Front Immunol 2024; 15:1404209. [PMID: 39035000 PMCID: PMC11258392 DOI: 10.3389/fimmu.2024.1404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The recent development of single cell sequencing technologies has revolutionized the state-of-art of cell biology, allowing the simultaneous measurement of thousands of genes in single cells. This technology has been applied to study the transcriptome of single cells in homeostasis and also in response to pathogenic exposure, greatly increasing our knowledge of the immune response to infectious agents. Yet the number of these studies performed in aquacultured fish species is still very limited. Thus, in the current study, we have used the 10x Genomics single cell RNA sequencing technology to study the response of rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes (PBLs) to infectious pancreatic necrosis virus (IPNV), an important trout pathogen. The study allowed us to obtain a transcriptomic profile of 12 transcriptionally distinct leukocyte cell subpopulations that included four different subsets of B cells, T cells, monocytes, two populations of dendritic-like cells (DCs), hematopoietic progenitor cells, non-specific cytotoxic cells (NCC), neutrophils and thrombocytes. The transcriptional pattern of these leukocyte subpopulations was compared in PBL cultures that had been exposed in vitro to IPNV for 24 h and mock-infected cultures. Our results revealed that monocytes and neutrophils showed the highest number of upregulated protein-coding genes in response to IPNV. Interestingly, IgM+IgD+ and IgT+ B cells also upregulated an important number of genes to the virus, but a much fainter response was observed in ccl4 + or plasma-like cells (irf4 + cells). A substantial number of protein-coding genes and genes coding for ribosomal proteins were also transcriptionally upregulated in response to IPNV in T cells and thrombocytes. Interestingly, although genes coding for ribosomal proteins were regulated in all affected PBL subpopulations, the number of such genes transcriptionally regulated was higher in IgM+IgD+ and IgT+ B cells. A further analysis dissected which of the regulated genes were common and which were specific to the different cell clusters, identifying eight genes that were transcriptionally upregulated in all the affected groups. The data provided constitutes a comprehensive transcriptional perspective of how the different leukocyte populations present in blood respond to an early viral encounter in fish.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pablo Jiménez-Barrios
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
9
|
Tamer C, Ulrich K, Di Paola N, Kurucay HN, Albayrak H, Weidmann M. Evolution of an Extended Pathogenicity Motif in VP2 of Infectious Pancreatic Necrosis Virus Isolates from Farmed Rainbow Trout in Turkey. Viruses 2024; 16:994. [PMID: 38932285 PMCID: PMC11209135 DOI: 10.3390/v16060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey were determined and subjected to phylogenetic analysis, identifying all as genotype 5 (serotype Sp). A time-dependent change in the extended pathogenicity motif of VP2 from P217T221A247 (PTA) to PTE P217T221E247 over a period of 10 years was identified. A wider analysis of 99 IPNV sequences from Turkey and Iran revealed the emergence of the motif PTE from 2007 to 2017, inducing significant morbidity in fry by 2013. In fact, displacement of the PTA motif, by the PTE motif in IPNV isolates appeared to be connected to a production peak of rainbow trout in 2013. An additional CAI analysis provided more evidence, indicating that rainbow trout culture in Turkey has an influence on the evolution of IPNV.
Collapse
Affiliation(s)
- Cuneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Kristina Ulrich
- Institute of Aquaculture, University of Stirling, Scotland FK9 4LA, UK;
| | - Nicholas Di Paola
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA;
| | - Hanne Nur Kurucay
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Harun Albayrak
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Manfred Weidmann
- Medizinische Hochschule Brandenburg Theodor Fontane, 01968 Senftenberg, Germany
| |
Collapse
|
10
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Rice MC, Janik AJ, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. PLoS Biol 2024; 22:e3002606. [PMID: 38814944 PMCID: PMC11139271 DOI: 10.1371/journal.pbio.3002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew J. Janik
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
12
|
Waller SJ, Egan E, Crow S, Charsley A, Lokman PM, Williams EK, Holmes EC, Geoghegan JL. Host and geography impact virus diversity in New Zealand's longfin and shortfin eels. Arch Virol 2024; 169:85. [PMID: 38546898 PMCID: PMC10978610 DOI: 10.1007/s00705-024-06019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
The fishing and aquaculture industry is vital for global food security, yet viral diseases can result in mass fish die-off events. Determining the viromes of traditionally understudied species, such as fish, enhances our understanding of the global virosphere and the factors that influence virome composition and disease emergence. Very little is known about the viruses present in New Zealand's native fish species, including the shortfin eel (Anguilla australis) and the longfin eel (Anguilla dieffenbachii), both of which are fished culturally by Māori (the indigenous population of New Zealand) and commercially. Through a total RNA metatranscriptomic analysis of longfin and shortfin eels across three different geographic locations in the South Island of New Zealand, we aimed to determine whether viruses had jumped between the two eel species and whether eel virome composition was impacted by life stage, species, and geographic location. We identified nine viral species spanning eight different families, thereby enhancing our understanding of eel virus diversity in New Zealand and the host range of these viral families. Viruses of the family Flaviviridae (genus Hepacivirus) were widespread and found in both longfin and shortfin eels, indicative of cross-species transmission or virus-host co-divergence. Notably, both host specificity and geographic location appeared to influence eel virome composition, highlighting the complex interaction between viruses, hosts, and their ecosystems. This study broadens our understanding of viromes in aquatic hosts and highlights the importance of gaining baseline knowledge of fish viral abundance and diversity, particularly in aquatic species that are facing population declines.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Eimear Egan
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Shannan Crow
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Anthony Charsley
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Erica K Williams
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, New Zealand.
| |
Collapse
|
13
|
Ford CE, Dunn CD, Leis EM, Thiel WA, Goldberg TL. Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens 2024; 13:150. [PMID: 38392888 PMCID: PMC10891596 DOI: 10.3390/pathogens13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Studies of marine fish have revealed distant relatives of viruses important to global fish and animal health, but few such studies exist for freshwater fish. To investigate whether freshwater fish also host such viruses, we characterized the viromes of five wild species of freshwater fish in Wisconsin, USA: bluegill (Lepomis macrochirus), brown trout (Salmo trutta), lake sturgeon (Acipenser fulvescens), northern pike (Esox lucius), and walleye (Sander vitreus). We analyzed 103 blood serum samples collected during a state-wide survey from 2016 to 2020 and used a metagenomic approach for virus detection to identify known and previously uncharacterized virus sequences. We then characterized viruses phylogenetically and quantified prevalence, richness, and relative abundance for each virus. Within these viromes, we identified 19 viruses from 11 viral families: Amnoonviridae, Circoviridae, Coronaviridae, Hepadnaviridae, Peribunyaviridae, Picobirnaviridae, Picornaviridae, Matonaviridae, Narnaviridae, Nudnaviridae, and Spinareoviridae, 17 of which were previously undescribed. Among these viruses was the first fish-associated coronavirus from the Gammacoronavirus genus, which was present in 11/15 (73%) of S. vitreus. These results demonstrate that, similar to marine fish, freshwater fish also harbor diverse relatives of viruses important to the health of fish and other animals, although it currently remains unknown what effect, if any, the viruses we identified may have on fish health.
Collapse
Affiliation(s)
- Charlotte E. Ford
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Eric M. Leis
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center—Midwest Fisheries Center, Onalaska, WI 54650, USA;
| | - Whitney A. Thiel
- Robert P. Hanson Laboratories, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| |
Collapse
|
14
|
Shao Y, Li L, Zhao J, Ren G, Liu Q, Lu T, Xu L. Characterization of the activity of 2'-C- methylcytidine against infectious pancreatic necrosis virus replication. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109116. [PMID: 37758098 DOI: 10.1016/j.fsi.2023.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is the pathogen of infectious pancreatic necrosis (IPN), which can cause high mortality in salmonids, harm the healthy development of salmon-trout aquaculture, and lead to huge economic losses. However, in China, there is currently neither a commercially available vaccine to prevent IPNV infection nor antiviral drugs to treat IPNV infection. The genome of IPNV consists of two segments of dsRNA named A and B. Segment B encodes the RNA-dependent RNA-polymerase (RdRp) VP1 which is essential for viral RNA replication and is therefore considered an important target for the development of antiviral drugs. In this study, we investigate whether 2'-C-methylcytidine (2CMC), a nucleoside analog which target viral polymerases, has an inhibitory effect on IPNV both in vitro and in vivo. The results show that 2CMC inhibits IPNV infection by inhibiting viral RNA replication rather than viral internalization or attachment. In vivo experiment results showed that 2CMC could inhibit viral RNA replication and reduce viral load in rainbow trout (Oncorhynchus mykiss). In our study, we have revealed that 2CMC has a potent inhibitory effect against IPNV infection. Our data suggest that 2CMC is an attractive anti-IPNV drug candidate which will be highly valuable for the development of potential therapeutics for IPNV.
Collapse
Affiliation(s)
- Yizhi Shao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Linfang Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Guangming Ren
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Qi Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Liming Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
15
|
Rice MC, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555169. [PMID: 37693489 PMCID: PMC10491165 DOI: 10.1101/2023.08.28.555169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current Address: Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
16
|
Clark TC, Naseer S, Gundappa MK, Laurent A, Perquis A, Collet B, Macqueen DJ, Martin SAM, Boudinot P. Conserved and divergent arms of the antiviral response in the duplicated genomes of salmonid fishes. Genomics 2023; 115:110663. [PMID: 37286012 DOI: 10.1016/j.ygeno.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.
Collapse
Affiliation(s)
- Thomas C Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France; Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Shahmir Naseer
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France.
| |
Collapse
|
17
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Rojas JLG, Gortázar C, Herskin MS, Michel V, Miranda MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou S, Kohnle L, Papanikolaou A, Karagianni A, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infectious pancreatic necrosis (IPN). EFSA J 2023; 21:e08028. [PMID: 37313317 PMCID: PMC10258726 DOI: 10.2903/j.efsa.2023.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Infectious pancreatic necrosis (IPN) was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to IPN. The assessment was performed following a methodology previously published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether IPN can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that IPN does not meet the criteria in Section 1 (Category A; 0-1% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 33-66%, 50-90% and 50-99% probability of meeting the criteria, respectively). The animal species to be listed for IPN according to Article 8 criteria are provided.
Collapse
|
18
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
19
|
Simón R, Martínez P, González L, Ordás MC, Tafalla C. Differential response of RTGUTGC and RTGILL-W1 rainbow trout epithelial cell lines to viral stimulation. JOURNAL OF FISH DISEASES 2023; 46:433-443. [PMID: 36633210 DOI: 10.1111/jfd.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Mucosal surfaces constitute the main route of entry of pathogens into the host. In fish, these mucosal tissues include, among others, the gastrointestinal tract, the gills and the skin. However, knowledge about the mechanisms of regulation of immunity in these tissues is still scarce, being essential to generate a solid base that allows the development of prevention strategies against these infectious agents. In this work, we have used the RTgutGC and RTgill-W1 epithelial-like cell lines, derived from the gastrointestinal tract and the gill of rainbow trout (Oncorhynchus mykiss), respectively, to investigate the transcriptional response of mucosal epithelial cells to a viral mimic, the dsRNA poly I:C, as well as to two important viral rainbow trout pathogens, namely viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Additionally, we have established how the exposure to poly I:C affected the susceptibility of RTgutGC and RTgill-W1 cells to both viruses. Our results reveal important differences in the way these two cell lines respond to viral stimuli, providing interesting information on these cell lines that have emerged in the past years as useful tools to study mucosal responses in fish.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | | | - Lucía González
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | - M Camino Ordás
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | | |
Collapse
|
20
|
Characterization of a Novel Infectious Pancreatic Necrosis Virus (IPNV) from Genogroup 6 Identified in Sea Trout ( Salmo trutta) from Lake Vänern, Sweden. Vet Sci 2023; 10:vetsci10010058. [PMID: 36669059 PMCID: PMC9861164 DOI: 10.3390/vetsci10010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In November 2016, infectious pancreatic necrosis virus (IPNV) was isolated from a broodstock female of landlocked sea trout (Salmo trutta) in Lake Vänern in Sweden. VP2 gene sequencing placed the IPNV isolate in genogroup 6, for which pathogenicity is largely unknown. Lake Vänern hosts landlocked sea trout and salmon populations that are endangered, and thus the introduction of new pathogens poses a major threat. In this study we characterized the novel isolate by conducting an infection trial on three salmonid species present in Lake Vänern, whole genome sequencing of the isolate, and prevalence studies in the wild sea trout and salmon in Lake Vänern. During the infection trial, the pathogenicity of the Swedish isolate was compared to that of a pathogenic genogroup 5 isolate. Dead or moribund fish were collected, pooled, and analyzed by cell culture to identify infected individuals. In the trial, the Swedish isolate was detected in fewer sample pools in all three species compared to the genogroup 5 isolate. In addition, the prevalence studies showed a low prevalence (0.2-0.5%) of the virus in the feral salmonids in Lake Vänern. Together the data suggest that the novel Swedish IPNV genogroup 6 isolate is only mildly pathogenic to salmonids.
Collapse
|
21
|
Shao Y, Ren G, Zhao J, Lu T, Liu Q, Xu L. Dynamic Distribution of Infectious Pancreatic Necrosis Virus (IPNV) Strains of Genogroups 1, 5, and 7 after Intraperitoneal Administration in Rainbow Trout ( Oncorhynchus mykiss). Viruses 2022; 14:2634. [PMID: 36560638 PMCID: PMC9784894 DOI: 10.3390/v14122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) is the causative agent of rainbow trout (Oncorhynchus mykiss) IPN and causes significant loss of fingerlings. The currently prevalent IPNV genogroups in China are genogroups 1 and 5. However, in this study, we isolated and identified a novel IPNV, IPNV-P202019, which belonged to genogroup 7. Here, a total of 200 specific-pathogen-free rainbow trout (10 g average weight) were divided randomly into four groups to investigate the distribution of different IPNV strains (genogroups 1, 5, and 7) in 9 tissues of rainbow trout by means of intraperitoneal (ip) injection. Fish in each group were monitored after 3-, 7-, 14-, 21- and 28- days post-infection (dpi). The study showed no mortality in all groups. The distribution of IPNV genogroups 1 and 5 was similar in different tissues and had a higher number of viral loads after 3, 7, or 14 dpi. However, the distribution of IPNV genogroup 7 was detected particularly in the spleen, head kidney, and feces and had a lower number of viral loads. The results of this study provide valid data for the distribution of IPNV in rainbow trout tissues and showed that IPNV genogroups 1 and 5 were still the prevalent genogroups of IPNV in China. Although rainbow trout carried IPNV genogroup 7, the viral load was too low to be pathogenic.
Collapse
Affiliation(s)
| | | | | | | | | | - Liming Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| |
Collapse
|
22
|
Rout SS, de Grahl I, Yu X, Reumann S. Production of a viral surface protein in Nannochloropsis oceanica for fish vaccination against infectious pancreatic necrosis virus. Appl Microbiol Biotechnol 2022; 106:6535-6549. [PMID: 36069927 PMCID: PMC9449291 DOI: 10.1007/s00253-022-12106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Nannochloropsis oceanica is a unicellular oleaginous microalga of emerging biotechnological interest with a sequenced, annotated genome, available transcriptomic and proteomic data, and well-established basic molecular tools for genetic engineering. To establish N. oceanica as a eukaryotic host for recombinant protein synthesis and develop molecular technology for vaccine production, we chose the viral surface protein 2 (VP2) of a pathogenic fish virus that causes infectious pancreatic necrosis as a model vaccine. Upon stable nuclear transformation of N. oceanica strain CCMP1779 with the codon-optimized VP2 gene, a Venus reporter fusion served to evaluate the strength of different endogenous promoters in transformant populations by qPCR and flow cytometry. The highest VP2 yields were achieved for the elongation factor promoter, with enhancer effects by its N-terminal leader sequence. Individual transformants differed in their production capability of reporter-free VP2 by orders of magnitude. When subjecting the best candidates to kinetic analyses of growth and VP2 production in photobioreactors, recombinant protein integrity was maintained until the early stationary growth phase, and a high yield of 4.4% VP2 of total soluble protein was achieved. The maximum yield correlated with multiple integrations of the expression vector into the nuclear genome. The results demonstrate that N. oceanica was successfully engineered to constitute a robust platform for high-level production of a model subunit vaccine. The molecular methodology established here can likely be adapted in a straightforward manner to the production of further vaccines in the same host, allowing their distribution to fish, vertebrates, or humans via a microalgae-containing diet. KEY POINTS: • We engineered N. oceanica for recombinant protein production. • The antigenic surface protein 2 of IPN virus could indeed be expressed in the host. • A high yield of 4.4% VP2 of total soluble protein was achieved in N. oceanica.
Collapse
Affiliation(s)
- Sweta Suman Rout
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Xiaohong Yu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
- Zybio Inc, Chongqing Municipality, 400084, China
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| |
Collapse
|
23
|
Early or Simultaneous Infection with Infectious Pancreatic Necrosis Virus Inhibits Infectious Hematopoietic Necrosis Virus Replication and Induces a Stronger Antiviral Response during Co-infection in Rainbow Trout ( Oncorhynchus mykiss). Viruses 2022; 14:v14081732. [PMID: 36016354 PMCID: PMC9414607 DOI: 10.3390/v14081732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious hematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) are the most common viral diseases of salmon in aquaculture worldwide. The co-infection of rainbow trout (Oncorhynchus mykiss) with IHN virus (IHNV) and IPN virus (IPNV) is known to occur. To determine the influence of IPNV on IHNV in co-infection, rainbow trout were intraperitoneally (i.p.) injected with IPNV at different time intervals prior to, simultaneously to, or after IHNV infection. The replication of IHNV in the brain, gill, heart, liver, spleen, and head kidney was detected by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that when rainbow trout were i.p. injected with IPNV prior to, simultaneously to, or after IHNV on 2 day (d), IHNV replication was inhibited (p < 0.05) in all collected tissues. Nevertheless, when rainbow trout were i.p. injected with IPNV after IHNV on 7 d (H7P), IHNV replication was only inhibited (p < 0.05) in the liver 14 d post-IHNV infection. Moreover, stronger antiviral responses occurred in all challenge groups. Our results suggest that IPNV can inhibit IHNV replication before or simultaneously with IHNV infection, and induce a stronger antiviral response, and that this inhibition is most sensitive in the liver. Early i.p. injection of IPNV can significantly reduce the mortality of rainbow trout, compared with the group only injected with IHNV.
Collapse
|
24
|
Docando F, Nuñez-Ortiz N, Gonçalves G, Serra CR, Gomez-Casado E, Martín D, Abós B, Oliva-Teles A, Tafalla C, Díaz-Rosales P. Bacillus subtilis Expressing the Infectious Pancreatic Necrosis Virus VP2 Protein Retains Its Immunostimulatory Properties and Induces a Specific Antibody Response. Front Immunol 2022; 13:888311. [PMID: 35720351 PMCID: PMC9198257 DOI: 10.3389/fimmu.2022.888311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis has been documented in the past years as an effective probiotic for different aquacultured species, with recognized beneficial effects on water quality, fish growth and immune status. Furthermore, its potential as a vaccine adjuvant has also been explored in different species. In the current work, we have used B. subtilis spores as delivery vehicles for the presentation of the VP2 protein from infectious pancreatic necrosis virus (IPNV). For this, the VP2 gene was amplified and translationally fused to the crust protein CotY. The successful expression of VP2 on the spores was confirmed by Western blot. We then compared the immunostimulatory potential of this VP2-expressing strain (CRS208) to that of the original B. subtilis strain (168) on rainbow trout (Oncorhynchus mykiss) leukocytes obtained from spleen, head kidney and the peritoneal cavity. Our results demonstrated that both strains significantly increased the percentage of IgM+ B cells and the number of IgM-secreting cells in all leukocyte cultures. Both strains also induced the transcription of a wide range of immune genes in these cultures, with small differences between them. Importantly, specific anti-IPNV antibodies were detected in fish intraperitoneally or orally vaccinated with the CRS208 strain. Altogether, our results demonstrate B. subtilis spores expressing foreign viral proteins retain their immunomodulatory potential while inducing a significant antibody response, thus constituting a promising vaccination strategy.
Collapse
Affiliation(s)
- Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Gabriela Gonçalves
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Cláudia R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Eduardo Gomez-Casado
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Diana Martín
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
25
|
Angulo C, Sanchez V, Delgado K, Monreal-Escalante E, Hernández-Adame L, Angulo M, Tello-Olea M, Reyes-Becerril M. Oral organic nanovaccines against bacterial and viral diseases. Microb Pathog 2022; 169:105648. [PMID: 35728750 DOI: 10.1016/j.micpath.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Vaccines have saved millions of humans and animals from deadly diseases. Many vaccines are still under development to fight against lethal diseases. Indeed, subunit vaccines are a versatile approach with several advantageous attributes, but they lack strong immunogenicity. Nanotechnology is an avenue to vaccine development because nanoparticles may serve as nanocarriers and adjuvants, which are critical aspects for oral vaccines. This review provides an update of oral organic nanovaccines, describing suitable nanomaterials for oral vaccine design and recent (last five-year view) oral nanovaccine developments to fight against those principal pathogens causing human and animal diseases.
Collapse
Affiliation(s)
- Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Veronica Sanchez
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Karen Delgado
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Luis Hernández-Adame
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Marlene Tello-Olea
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| |
Collapse
|
26
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
27
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
28
|
Mota VC, Striberny A, Verstege GC, Difford GF, Lazado CC. Evaluation of a Recirculating Aquaculture System Research Facility Designed to Address Current Knowledge Needs in Atlantic Salmon Production. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.876504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of recirculating aquaculture system (RAS) biosecurity is crucial for the sustainable and ethical production of Atlantic salmon smolt and post-smolt in these systems. This study described and evaluated the performance of a RAS facility for fish infection research with Atlantic salmon as the main animal model. Fish body weight, length, water quality, and system metrics from five independent experimental trials conducted between September 2020 and July 2021 were used to analyze the variation within and between treatments. Statistical power analysis was performed to determine the minimum number of fish required. The fish parameters variability showed that the inter-class correlation coefficient was on average low (0.1) and that the variation within tanks was larger than the variation between the tanks. The power analysis showed that 15 fish were required to be sampled per tank under these study conditions. Variation of water quality and system management metrics among the five experimental trials was higher compared to the variation within the five experimental trials. Moreover, the variation of the water quality parameters controlled by sensors was relatively low, whereas the parameters depending on biofilter maturation level and performance presented a very high variation. Water exchange rate-dependent quality parameters showed a similar variation value, i.e., nitrate and water turbidity. The established baseline for variability and performance presents an important reference for the design and realization of future experiments in RAS facilities. It is foreseen that the current research facility will develop new knowledge to improve the RAS biosecurity in the Atlantic salmon aquaculture industry.
Collapse
|
29
|
Tapia D, Kuznar J, Farlora R, Yáñez JM. Differential Transcriptomic Response of Rainbow Trout to Infection with Two Strains of IPNV. Viruses 2021; 14:v14010021. [PMID: 35062225 PMCID: PMC8780770 DOI: 10.3390/v14010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The IPN virus (IPNV) causes a highly contagious disease that affects farmed salmonids. IPNV isolates have been phylogenetically classified into seven genogroups, of which two are present in Chile, genogroups 1 and 5. This study aimed to compare the transcriptomic response of rainbow trout fry challenged with two Chilean isolates of IPNV, RTTX (genogroup 1), and ALKA (genogroup 5). Tissue samples from challenged individuals and controls were taken at 1, 7, and 20 days post-challenge and analyzed by RNA-Seq. The results revealed that infection with RTTX elicited a greater modulation of the trout transcriptome compared to ALKA infection, generating a greater number of highly differentially expressed genes in relation to the control fish. Gene Ontology enrichment indicated that functions related to the inflammatory and immune responses were modulated in fish challenged with both isolates throughout the trial, but with different regulation patterns. On day 1 post challenge, these functions were activated in those challenged with ALKA, but suppressed in RTTX-challenged fish. These results suggest that rainbow trout exhibit a differential transcriptomic response to infection with the two genetically distinct IPNV isolates, especially at early times post-infection.
Collapse
Affiliation(s)
- David Tapia
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820000, Chile;
- Doctorado en Acuicultura, Pontificia Universidad Católica de Valparaíso, Universidad Católica del Norte, Universidad de Chile, Valparaiso 2340000, Chile
| | - Juan Kuznar
- Laboratorio de Virología, Facultad de Ciencias, Instituto de Química y Bioquímica, Universidad de Valparaíso, Valparaiso 2340000, Chile;
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso 2340000, Chile;
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de Valparaíso, Valparaiso 2340000, Chile
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820000, Chile;
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820000, Chile
- Correspondence:
| |
Collapse
|
30
|
Evaluation of the Antiviral Activity against Infectious Pancreatic Necrosis Virus (IPNV) of a Copper (I) Homoleptic Complex with a Coumarin as Ligand. Molecules 2021; 27:molecules27010032. [PMID: 35011264 PMCID: PMC8746282 DOI: 10.3390/molecules27010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The aquatic infectious pancreatic necrosis virus (IPNV) causes a severe disease in farmed salmonid fish that generates great economic losses in the aquaculture industry. In the search for new tools to control the disease, in this paper we show the results obtained from the evaluation of the antiviral effect of [Cu(NN1)2](ClO4) Cu(I) complex, synthesized in our laboratory, where the NN1 ligand is a synthetic derivate of the natural compound coumarin. This complex demonstrated antiviral activity against IPNV at 5.0 and 15.0 µg/mL causing a decrease viral load 99.0% and 99.5%, respectively. The Molecular Docking studies carried out showed that the copper complex would interact with the VP2 protein, specifically in the S domain, altering the process of entry of the virus into the host cell.
Collapse
|
31
|
Hillestad B, Johannessen S, Melingen GO, Moghadam HK. Identification of a New Infectious Pancreatic Necrosis Virus (IPNV) Variant in Atlantic Salmon ( Salmo salar L.) that can Cause High Mortality Even in Genetically Resistant Fish. Front Genet 2021; 12:635185. [PMID: 34899819 PMCID: PMC8663487 DOI: 10.3389/fgene.2021.635185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Infectious pancreatic necrosis (IPN) is an important viral disease of salmonids that can affect fish during various life cycles. In Atlantic salmon, selecting for genetically resistant fish against IPN has been one of the most highly praised success stories in the history of fish breeding. During the late 2000s, the findings that resistance against this disease has a significant genetic component, which is mainly controlled by variations in a single gene, have helped to reduce the IPN outbreaks to a great extent. In this paper, we present the identification of a new variant of the IPN virus from a field outbreak in Western Norway that had caused mortality, even in genetically resistant salmon. We recovered and assembled the full-length genome of this virus, following the deep-sequencing of the head-kidney transcriptome. The comparative sequence analysis revealed that for the critical amino acid motifs, previously found to be associated with the degree of virulence, the newly identified variant is similar to the virus’s avirulent form. However, we detected a set of deduced amino acid residues, particularly in the hypervariable domain of the VP2, that collectively are unique to this variant compared to all other reference sequences assessed in this study. We suggest that these mutations have likely equipped the virus with the capacity to escape the host defence mechanism more efficiently, even in the genetically deemed IPN resistant fish.
Collapse
|
32
|
Yang Z, He B, Lu Z, Mi S, Jiang J, Liu Z, Tu C, Gong W. Mammalian birnaviruses identified in pigs infected by classical swine fever virus. Virus Evol 2021; 7:veab084. [PMID: 34659797 PMCID: PMC8516818 DOI: 10.1093/ve/veab084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023] Open
Abstract
Currently, the Birnaviridae family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998–2019), and the viral loads of PBRV in clinical samples were 105.08–107.95 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the Birnaviridae family with 45.8–61.6 per cent and 46.2–63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as Mambirnavirus genus is proposed.
Collapse
Affiliation(s)
- Zhe Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shijiang Mi
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jianfeng Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Zhongdi Liu
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Wenjie Gong
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
33
|
Pajdak-Czaus J, Schulz P, Terech-Majewska E, Szweda W, Siwicki AK, Platt-Samoraj A. Influence of Infectious Pancreatic Necrosis Virus and Yersinia ruckeri Co-Infection on a Non-Specific Immune System in Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2021; 11:ani11071974. [PMID: 34359116 PMCID: PMC8300417 DOI: 10.3390/ani11071974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although the intensification of fish production allows for better economic results, it also increases the risk of infections depending on fish density. Frequently occurring co-infections are difficult to diagnose because the isolated microorganisms are opportunistic, and their role in the development of disease is uncertain. The infectious pancreatic necrosis virus (IPNV) and bacteria Yersinia ruckeri are widespread pathogens of rainbow trout, causing economic losses in fish culture. The influence of the studied pathogens on non-specific immunity in both single and co-infections was determined. Results imply that IPNV infection may contribute to secondary bacterial infections. Abstract Background: The IPNV is one of the most common viral pathogens of rainbow trout (Oncorhynchus mykiss), while Y. ruckeri infections are widespread among bacterial agents. The current study aimed to determine the influence of IPNV and Y. ruckeri co-infection on a non-specific immune response. Methods: Two experiments were conducted. The first experiment determined the changes in non-specific immunity parameters upon the simultaneous occurrence of IPNV and Y. ruckeri infection. In the second experiment, infection with the IPNV was performed two weeks before Y. ruckeri infection. The level of total protein, gamma globulins, the activity of lysozyme and ceruloplasmin, as well as the metabolic activity and potential killing activity of phagocytes were measured: 0, 24 h, 72 h, 7 days, 14 days, and 21 days after co-infection. Results: A differentiated effect on the parameters of the non-specific immune response was shown between single infections with the IPNV and Y. ruckeri as well as co-infection with these pathogens. Conclusions: The immune response in the course of a co-infection depended on the time between infections. IPNV infection causes lysozyme activity suppression, which may lead to secondary bacterial infections.
Collapse
Affiliation(s)
- Joanna Pajdak-Czaus
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
- Correspondence:
| | - Patrycja Schulz
- Department of Ichthyopathology and Fish Health Prevention, S. Sakowicz Inland Fisheries Institute, Główna 48, 05-500 Żabieniec, Poland;
| | - Elżbieta Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| | - Aleksandra Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| |
Collapse
|
34
|
Duan K, Zhao J, Ren G, Shao Y, Lu T, Xu L, Tang X, Zhao W, Xu L. Molecular Evolution of Infectious Pancreatic Necrosis Virus in China. Viruses 2021; 13:v13030488. [PMID: 33809489 PMCID: PMC7998647 DOI: 10.3390/v13030488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
Passive virus surveillance was performed in twenty-nine salmon and trout farms from seven provinces and districts in China during the period 2017–2020. A total of 25 infectious pancreatic necrosis virus (IPNV) isolates were obtained, mainly from rainbow trout (Oncorhynchus mykiss). The molecular evolution of these Chinese IPNV isolates and the previously reported Chinese IPNV strains ChRtm213 and WZ2016 was analyzed, based on their VP2 gene coding region sequences (CDS). All 27 Chinese IPNV isolates clustered within genogroups I and V, with 24 of the IPNV isolates belonging to genogroup I (including ChRtm213 and WZ2016), and only three isolates clustering in genogroup V. The Chinese genogroup I IPNV isolates lacked diversity, composing six haplotypes with 41 polymorphic sites, and the identity of nucleotide and amino acid sequences among the entire VP2 gene CDS from these isolates was 97.44%–100% and 98.19%–100%, respectively. Divergence time analyses revealed that the Chinese genogroup I IPNV isolates likely diverged from Japanese IPNV isolates in 1985 (95% highest posterior density (HPD), 1965–1997), and diverged again in 2006 (95% HPD, 1996–2013) in China. Each of the three Chinese genogroup V IPNV isolates has a unique VP2 gene CDS, with a total of 21 polymorphic sites; the identity of nucleotide and amino acid sequences among all VP2 gene CDS from these isolates was 98.5%–99.5% and 98.6%–99.0%, respectively. The data demonstrate that genogroups I and V are more likely the currently prevalent Chinese IPNV genotypes.
Collapse
Affiliation(s)
- Kaiyue Duan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Jingzhuang Zhao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Guangming Ren
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Yizhi Shao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Lipu Xu
- Fish Disease Department of Beijing Fisheries Technical Extension Station, Beijing 100176, China;
| | - Xin Tang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Wenwen Zhao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
| | - Liming Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (K.D.); (J.Z.); (G.R.); (Y.S.); (T.L.); (X.T.); (W.Z.)
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
- Correspondence: ; Tel.: +86-0451-87930965
| |
Collapse
|
35
|
Benkaroun J, Muir KF, Allshire R, Tamer C, Weidmann M. Isolation of a New Infectious Pancreatic Necrosis Virus (IPNV) Variant from a Fish Farm in Scotland. Viruses 2021; 13:v13030385. [PMID: 33670941 PMCID: PMC7997178 DOI: 10.3390/v13030385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The aquatic virus, infectious pancreatic necrosis virus (IPNV), is known to infect various farmed fish, in particular salmonids, and is responsible for large economic losses in the aquaculture industry. Common practices to detect the virus include qPCR tests based on specific primers and serum neutralization tests for virus serotyping. Following the potential presence of IPNV viruses in a fish farm in Scotland containing vaccinated and IPNV-resistant fish, the common serotyping of the IPNV isolates was not made possible. This led us to determine the complete genome of the new IPNV isolates in order to investigate the cause of the serotyping discrepancy. Next-generation sequencing using the Illumina technology along with the sequence-independent single primer amplification (SISPA) approach was conducted to fully characterize the new Scottish isolates. With this approach, the full genome of two isolates, V1810-4 and V1810-6, was determined and analyzed. The potential origin of the virus isolates was investigated by phylogenetic analyses along with tridimensional and secondary protein structure analyses. These revealed the emergence of a new variant from one of the main virus serotypes, probably caused by the presence of selective pressure exerted by the vaccinated IPNV-resistant farmed fish.
Collapse
Affiliation(s)
- Jessica Benkaroun
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Katherine Fiona Muir
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Rosa Allshire
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Cüneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey;
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
- Medizinische Hochschule Brandenburg Theodor Fontane, 01968 Senftenberg, Germany
- Correspondence: ; Tel.: +49-17649588432
| |
Collapse
|
36
|
Ahmadivand S, Weidmann M, El-Matbouli M, Rahmati-Holasoo H. Low Pathogenic Strain of Infectious Pancreatic Necrosis Virus (IPNV) Associated with Recent Outbreaks in Iranian Trout Farms. Pathogens 2020; 9:pathogens9100782. [PMID: 32987803 PMCID: PMC7650613 DOI: 10.3390/pathogens9100782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Infectious pancreatic necrosis (IPN), first described as acute viral catarrhal enteritis, is a highly contagious disease with variable pathogenicity that has been linked to genetic variation in the viral VP2 gene encoding the capsid protein. In this study, the IPN virus (IPNV) is isolated from the moribund fish from five of fourteen Iranian trout farms from 2015 to 2017. The affected fish showed mortality rates ranging from 20% to 60%, with the main clinical signs of exophthalmia, darkened skin, and mild abdominal distension, as well as yellow mucoid fluid in the intestine. Histopathological examination of intestinal sections confirmed acute catarrhal enteritis in all samples. RT-PCR assay of the kidney tissue and cell culture (CHSE-214) samples consistently confirmed the presence of the virus. The phylogenetic analysis of the partial VP2 sequence revealed that the detected isolates belong to genogroup 5, and are closely related to the Sp serotype strains of European origin. Characterization of VP2 of all isolates revealed the P217T221 motif that previously was associated with avirulence or low virulence, while all IPNV-positive fish in this study were clinically affected with moderate mortality. The IPNV isolates from Iran are associated with two lineages that appear to have originated from Europe, possibly via imported eggs.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran P.O. Box 14155-6453, Iran;
- Correspondence: ; Tel.: +98-91-9991-2385
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK;
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran P.O. Box 14155-6453, Iran;
| |
Collapse
|
37
|
Synthetic Peptides as a Promising Alternative to Control Viral Infections in Atlantic Salmon. Pathogens 2020; 9:pathogens9080600. [PMID: 32717804 PMCID: PMC7459813 DOI: 10.3390/pathogens9080600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
Viral infections in salmonids represent an ongoing challenge for the aquaculture industry. Two RNA viruses, the infectious pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV), have become a latent risk without healing therapies available for either. In this context, antiviral peptides emerge as effective and relatively safe therapeutic molecules. Based on in silico analysis of VP2 protein from IPNV and the RNA-dependent RNA polymerase from ISAV, a set of peptides was designed and were chemically synthesized to block selected key events in their corresponding infectivity processes. The peptides were tested in fish cell lines in vitro, and four were selected for decreasing the viral load: peptide GIM182 for IPNV, and peptides GIM535, GIM538 and GIM539 for ISAV. In vivo tests with the IPNV GIM 182 peptide were carried out using Salmo salar fish, showing a significant decrease of viral load, and proving the safety of the peptide for fish. The results indicate that the use of peptides as antiviral agents in disease control might be a viable alternative to explore in aquaculture.
Collapse
|