1
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
2
|
Al Musaimi O. FDA's stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and beyond. J Pept Sci 2024; 30:e3627. [PMID: 38885943 DOI: 10.1002/psc.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Peptides exhibit significant specificity and effective interaction with therapeutic targets, positioning themselves as key players in the global pharmaceutical market. They offer potential treatments for a wide range of diseases, including those that pose significant challenges. Notably, the peptide trofinetide (Daybue) marked a groundbreaking achievement by providing the first-ever cure for Rett syndrome, and several peptides have secured FDA approval as first-in-class medications. Furthermore, peptides are expanding their presence in areas traditionally dominated by either small or large molecules. A noteworthy example is the FDA approval of motixafortide (Aphexda) as the first peptide-based chemokine antagonist. Here, the focus will be on the analysis of FDA-approved peptides, particularly those targeting cardiovascular diseases, human immunodeficiency, central nervous system diseases, and various other intriguing classes addressing conditions such as osteoporosis, thrombocytopenia, Cushing's disease, and hypoglycemia, among others. The review will explore the chemical structures of the peptides, their indications and modes of action, the developmental trajectory, and potential adverse effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle upon Tyne, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Al Musaimi O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH Realms. Biomolecules 2024; 14:264. [PMID: 38540684 PMCID: PMC10968328 DOI: 10.3390/biom14030264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 12/21/2024] Open
Abstract
Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
5
|
Wang Z, Zhao C, Ding J, Chen Y, Liu J, Hou X, Kong X, Dong B, Yang Z, Zhu H. Screening, Construction, and Preliminary Evaluation of CLDN18.2-Specific Peptides for Noninvasive Molecular Imaging. ACS Pharmacol Transl Sci 2023; 6:1829-1840. [PMID: 38093841 PMCID: PMC10714438 DOI: 10.1021/acsptsci.3c00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 04/23/2025]
Abstract
Recent global clinical trials have shown that CLDN18.2 is an ideal target for the treatment of gastric cancer and that patients with high CLDN18.2 expression can benefit from targeted therapy. Therefore, accurate and comprehensive detection of CLDN18.2 expression is important for patient screening and guidance in anti-CLDN18.2 therapy. Phage display technology was used to screen CLDN18.2-specific peptides from 100 billion libraries. 293TCLDN18.1 cells were used to exclude nonspecific binding and CLDN18.1 binding sequences, while 293TCLDN18.2 cells were used to screen CLDN18.2-specific binding peptides. The monoclonal clones obtained from phage screening were sequenced, and peptides were synthesized based on the sequencing results. Binding specificity and affinity were assessed with a fluorescein isothiocyanate (FITC)-conjugated peptide. A 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated peptide was also synthesized for 68Ga radiolabeling. The in vitro and in vivo stability, partition coefficients, in vivo molecular imaging, and biodistribution were also characterized. Overall, 54 monoclonal clones were selected after phage display screening. Subsequently, based on the cell ELISA results, CLDN18.2 preference monoclonal clones were selected for deoxyribonucleic acid (DNA) sequencing, and four 7-peptide sequences were obtained after sequence comparison; among them, a peptide named T37 was further validated in vitro and in vivo. The T37 peptide specifically recognized CLDN18.2 but not CLDN18.1 and bound strongly to CLDN18.2-positive cell membranes. The 68Ga-DOTA-T37 probe exhibits good in vitro properties and high stability as a hydrophilic probe; it has high biological safety, and positron emission tomography/computed tomography (PET/CT) studies have shown that it can specifically target CLDN18.2 protein and CLDN18.2-positive tumors in mice. 68Ga-DOTA-T37 demonstrated the superiority and feasibility of using a CLDN18.2-specific probe in PCT/CT imaging, which deserves further development and exploitation.
Collapse
Affiliation(s)
- Zilei Wang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Chuanke Zhao
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Yan Chen
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Jiayue Liu
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Xingguo Hou
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - XiangXing Kong
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Bin Dong
- Central
Laboratory, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Zhi Yang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Hua Zhu
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| |
Collapse
|
6
|
Weng Y, Zhan X, Zhang Y, Lin W. Palladium-Catalyzed C(sp 2)-H Arylation of Peptides Directed by Aspartic Acid. J Org Chem 2023; 88:2334-2343. [PMID: 36709459 DOI: 10.1021/acs.joc.2c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, we report a palladium-catalyzed C(sp2)-H di- or monoarylation of short peptides containing N-terminal benzamide groups using aspartic acid (Asp) as an endogenous directing group. This strategy has the following merits: a broad substrate scope, selective diarylation of peptides, and gram-scale synthesis. Furthermore, this strategy can be successfully utilized to synthesize peptide-peptide conjugates.
Collapse
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xuecheng Zhan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Al Musaimi O, Morse SV, Lombardi L, Serban S, Basso A, Williams DR. Successful synthesis of a glial-specific blood-brain barrier shuttle peptide following a fragment condensation approach on a solid-phase resin. J Pept Sci 2023; 29:e3448. [PMID: 35997639 PMCID: PMC10078400 DOI: 10.1002/psc.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
Successful manual synthesis of the TD2.2 peptide acting as a blood-brain barrier shuttle was achieved. TD2.2 was successfully synthesised by sequential condensation of four protected peptide fragments on solid-phase settings, after several unsuccessful attempts using the stepwise approach. These fragments were chosen to minimise the number of demanding amino acids (in terms of coupling, Fmoc removal) in each fragment that are expected to hamper the overall synthetic process. Thus, the hydrophobic amino acids as well as Arg(Pbf) were strategically spread over multiple fragments rather than having them congested in one fragment. This study shows how a peptide that shows big challenges in the synthesis using the common stepwise elongation methodology can be synthesised with an acceptable purity. It also emphasises that choosing the right fragment with certain amino acid constituents is key for a successful synthesis. It is worth highlighting that lower amounts of reagents were required to synthesise the final peptide with an identical purity to that obtained by the automatic synthesiser.
Collapse
Affiliation(s)
- Othman Al Musaimi
- Department of Chemical Engineering, Imperial College London, London, UK.,The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
| | - Sophie V Morse
- Department of Bioengineering, Imperial College London, London, UK
| | - Lucia Lombardi
- Department of Chemical Engineering, Imperial College London, London, UK.,The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
| | | | | | - Daryl R Williams
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
8
|
Al Musaimi O, Gavva V, Williams DR. Greener Cleavage of Protected Peptide Fragments from Sieber Amide Resin. ChemistryOpen 2022; 11:e202200236. [PMID: 36564351 PMCID: PMC9789020 DOI: 10.1002/open.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Following the successful introduction of two benign solvents for cleaving protected acid peptide fragments from 2-chlorotrityl chloride (2-CTC) resin, there is a need to green the cleavage process for obtaining protected peptide amide fragments. In this work, p-xylene and toluene are introduced as greener alternates to dichloromethane (DCM) for preparing protected peptide amide fragments from a Sieber amide resin. The N-dealkylation is a demanding chemical reaction, requiring that the cleavage protocol be optimised to ensure complete cleavage from the resin. After a 30 min reaction time, only 66 % of the final peptide product was retrieved even with the conventional dichloromethane solvent. Therefore, 120 min was considered sufficient to fully cleave the peptide from the Sieber amide resin. This work reaffirms the fact that greening strategies are far from detrimental, with green alternatives often outperforming their replaced counterparts.
Collapse
Affiliation(s)
- Othman Al Musaimi
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Varshitha Gavva
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Daryl R. Williams
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
9
|
Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals (Basel) 2022; 15:ph15101283. [PMID: 36297395 PMCID: PMC9610364 DOI: 10.3390/ph15101283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Peptides play an important role in many fields, including immunology, medical diagnostics, and drug discovery, due to their high specificity and positive safety profile. However, for their delivery as active pharmaceutical ingredients, delivery vectors, or diagnostic imaging molecules, they suffer from two serious shortcomings: their poor metabolic stability and short half-life. Major research efforts are being invested to tackle those drawbacks, where structural modifications and novel delivery tactics have been developed to boost their ability to reach their targets as fully functional species. The benefit of selected technologies for enhancing the resistance of peptides against enzymatic degradation pathways and maximizing their therapeutic impact are also reviewed. Special note of cell-penetrating peptides as delivery vectors, as well as stapled modified peptides, which have demonstrated superior stability from their parent peptides, are reported.
Collapse
|
10
|
Zhang X, Zhao Q, Yang F, Lan Z, Li Y, Xiao M, Yu H, Li Z, Zhou Y, Wu Y, Cao Z, Yin S. Mechanisms Underlying the Inhibition of KV1.3 Channel by Scorpion Toxin ImKTX58. Mol Pharmacol 2022; 102:150-160. [PMID: 35764383 DOI: 10.1124/molpharm.121.000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated KV1.3 channel has been reported to be a drug target for the treatment of autoimmune diseases, and specific inhibitors of Kv1.3 are potential therapeutic drugs for multiple diseases. The scorpions could produce various bioactive peptides that could inhibit KV1.3 channel. Here, we identified a new scorpion toxin polypeptide gene ImKTX58 from the venom gland cDNA library of the Chinese scorpion Isometrus maculatus Sequence alignment revealed high similarities between ImKTX58 mature peptide and previously reported KV1.3 channel blockers-LmKTX10 and ImKTX88-suggesting that ImKTX58 peptide might also be a KV1.3 channel blocker. By using electrophysiological recordings, we showed that recombinant ImKTX58 prepared by genetic engineering technologies had a highly selective inhibiting effect on KV1.3 channel. Further alanine scanning mutagenesis and computer simulation identified four amino acid residues in ImKTX58 peptide as key binding sites to KV1.3 channel by forming hydrogen bonds, salt bonds, and hydrophobic interactions. Among these four residues, 28th lysine of the ImKTX58 mature peptide was found to be the most critical amino acid residue for blocking KV1.3 channel. SIGNIFICANCE STATEMENT: In this study, we discovered a scorpion toxin gene ImKTX58 that has not been reported before in Hainan Isometrus maculatus and successfully used the prokaryotic expression system to express and purify the polypeptides encoded by this gene. Electrophysiological experiments on ImKTX58 showed that ImKTX58 has a highly selective blocking effect on KV1.3 channel over Kv1.1, Kv1.2, Kv1.5, SK2, SK3, and BK channels. These findings provide a theoretical basis for designing highly effective KV1.3 blockers to treat autoimmune and other diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Fan Yang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Zhen Lan
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Min Xiao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Ziyi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Yingliang Wu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Zhijian Cao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China (X.Z., Q.Z., Z.La., Y.L., M.X., H.Y., Z.Li., Y.Z., S.Y.) and Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China (F.Y., Y.W., Z.C.)
| |
Collapse
|
11
|
Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022; 12:2150-2170. [PMID: 35646527 PMCID: PMC9136615 DOI: 10.1016/j.apsb.2022.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.
Collapse
|
12
|
Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG. 2021 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2022; 15:ph15020222. [PMID: 35215334 PMCID: PMC8876803 DOI: 10.3390/ph15020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
From the medical, pharmaceutical, and social perspectives, 2021 has been a year dominated by the COVID-19 pandemic. However, despite this global health crisis, the pharmaceutical industry has continued its endeavors, and 2021 could be considered an excellent year in terms of the drugs accepted by the US Food and Drug Administration (FDA). Thus, during this year, the FDA has approved 50 novel drugs, of which 36 are new chemical entities and 14 biologics. It has also authorized 10 TIDES (8 peptides, 2 oligonucleotides), in addition to 2 antibody-drug conjugates (ADCs) whose structures contain peptides. Thus, TIDES have accounted for about 24% of the approvals in the various drug categories. Importantly, this percentage has surpassed the figure in 2020 (10%), thus reflecting the remarkable success of TIDES. In this review, the approved TIDE-based drugs are analyzed on the basis of their chemical structure, medical target, mode of action, administration route, and adverse effects.
Collapse
Affiliation(s)
- Danah Al Shaer
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| | - Othman Al Musaimi
- Surfaces and Particle Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Correspondence: ; Tel.: +27-614-009-144
| | - Beatriz G. de la Torre
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| |
Collapse
|
13
|
Avdeev DV, Ovchinnikov MV, Dudkina YS, Molokoedov AS, Azmuko AA, Palkeeva ME, Sidorova MV. Optimal Method for Disulfide Bond Closure in the Synthesis of Atosiban—Antagonist of Oxytocin Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021060042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
This work is devoted to the large-scale solid-phase synthesis (SPS) of Atosiban, Mpa1-D-Tyr(OEt)-Ile-Thr-Asn-Cys6-Pro-Orn-Gly-NH2 cyclic 1,6 disulfide, the only clinically used oxytocin receptor antagonist. The conditions have been selected for the closure of the disulfide bond (S–S) in the Atosiban molecule both in the solution and solid phase with the minimal formation of by-products. A comparative assessment of the formation of the S–S bond was carried out under various conditions. The formation of by-products during the closure of the disulfide bond has been studied both in solution and on the polymer support. The developed technique allows for the synthesis of Atosiban on an enlarged scale (10–20 mmol) involving the cyclization of a protected intermediate with the formation of the S–S bond during solid-phase synthesis with the minimal formation of by-products.
Collapse
|
14
|
Mazzoccanti G, Manetto S, Bassan M, Macis M, Iazzetti A, Cabri W, Ricci A, Gasparrini F. Expanding the Use of Dynamic Electrostatic Repulsion Reversed-Phase Chromatography: An Effective Elution Mode for Peptides Control and Analysis. Molecules 2021; 26:4348. [PMID: 34299626 PMCID: PMC8303375 DOI: 10.3390/molecules26144348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bioactive peptides are increasingly used in clinical practice. Reversed-phase chromatography using formic or trifluoroacetic acid in the mobile phase is the most widely used technique for their analytical control. However, sometimes it does not prove sufficient to solve challenging chromatographic problems. In the search for alternative elution modes, the dynamic electrostatic repulsion reversed-phase was evaluated to separate eight probe peptides characterised by different molecular weights and isoelectric points. This technique, which involves TBAHSO4 in the mobile phase, provided the lowest asymmetry and peak width at half height values and the highest in peak capacity (about 200 for a gradient of 30 min) and resolution concerning the classic reversed-phase. All analyses were performed using cutting-edge columns developed for peptide separation, and the comparison of the chromatograms obtained shows how the dynamic electrostatic repulsion reversed-phase is an attractive alternative to the classic reversed-phase.
Collapse
Affiliation(s)
- Giulia Mazzoccanti
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, 00185 Rome, Italy; (S.M.); (F.G.)
| | - Simone Manetto
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, 00185 Rome, Italy; (S.M.); (F.G.)
| | - Michele Bassan
- Fresenius Kabi iPSUM, Piazza Maestri del Lavoro 7, 20063 Cernusco sul Naviglio, Italy; (M.B.); (M.M.)
| | - Marco Macis
- Fresenius Kabi iPSUM, Piazza Maestri del Lavoro 7, 20063 Cernusco sul Naviglio, Italy; (M.B.); (M.M.)
| | - Antonia Iazzetti
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Walter Cabri
- Department of Chemistry, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| | - Antonio Ricci
- Fresenius Kabi iPSUM, Piazza Maestri del Lavoro 7, 20063 Cernusco sul Naviglio, Italy; (M.B.); (M.M.)
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, 00185 Rome, Italy; (S.M.); (F.G.)
| |
Collapse
|
15
|
Abstract
Cancer is the second leading cause of death worldwide, and the search for specialised therapy options has been a challenge for decades. The emergence of active targeted therapies provides the opportunity to treat cancerous tissues without harming healthy ones due to peculiar physiological changes. Herein, peptides and peptide analogs have been gaining a lot of attention over the last decade, especially for the on-site delivery of therapeutics to target tissues in order to achieve efficient and reliable cancer treatment. Combining peptides with highly efficient drug delivery platforms could potentially eliminate off-target adverse effects encountered during active targeting of conventional chemotherapeutics. Small size, ease of production and characterisation, low immunogenicity and satisfactory binding affinity of peptides offer some advantages over other complex targeting moiety, no wonder the market of peptide-based drugs continues to expand expeditiously. It is estimated that the global peptide drug market will be worth around USD 48.04 billion by 2025, with a compound annual growth rate of 9.4%. In this review, the current state of art of peptide-based therapeutics with special interest on tumour targeting peptides has been discussed. Moreover, various active targeting strategies such as the use functionalised peptides or peptide analogs are also elaborated.
Collapse
Affiliation(s)
- Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Al Musaimi O, Wisdom R, Talbiersky P, De La Torre BG, Albericio F. Propylphosphonic Anhydride (T3P®) as Coupling Reagent for Solid‐Phase Peptide Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Othman Al Musaimi
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4000 South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4000 South Africa
| | - Richard Wisdom
- Euticals GmbH Industriepark Höchst D569 65926 Frankfurt am Main Germany
| | - Peter Talbiersky
- Euticals GmbH Industriepark Höchst D569 65926 Frankfurt am Main Germany
| | - Beatriz G. De La Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4000 South Africa
| | - Fernando Albericio
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4000 South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) 08034 Barcelona Spain
- CIBER-BBN Networking Centre on Bioengineering Biomaterials and Nanomedicine and Department of Organic Chemistry University of Barcelona 08028 Barcelona Spain
| |
Collapse
|
17
|
Sun J, Song C, Ma D, Shen S, Huo S. Expanding the Toolbox for Peptide Disulfide Bond Formation via l-Methionine Selenoxide Oxidation. J Org Chem 2021; 86:4035-4044. [PMID: 33620221 DOI: 10.1021/acs.joc.0c02877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, l-methionine selenoxide (MetSeO) was used as an oxidant for the construction of peptide disulfide bonds. Excellent yields for various disulfide-containing peptides were achieved via the MetSeO oxidation method in different solvents and on a resin. Most importantly, the construction of disulfide bonds can be performed in the trifluoroacetic acid cocktail used for the cleavage of peptides from the resin, which obviates the steps of peptide purification and lyophilization. This facilitates and simplifies the synthesis of disulfide-containing peptides. Kinetic and mechanistic studies of the reaction between MetSeO and dithiothreitol (DTT, a model compound of dicysteine-containing peptide) show that the reaction is first order in both [MetSeO] and [DTT], and a reaction mechanism is proposed that can help us gain insights into the reaction of the oxidative synthesis of disulfide bonds via MetSeO oxidation.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China
| | - Changying Song
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China
| | - Dongying Ma
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China
| | - Shigang Shen
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China
| | - Shuying Huo
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China
| |
Collapse
|
18
|
2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2021; 14:ph14020145. [PMID: 33670364 PMCID: PMC7918236 DOI: 10.3390/ph14020145] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved 53 new drug entities, six of which fall in the peptides and oligonucleotides (TIDES) category. The number of authorizations for these kinds of drugs has been similar to that of previous years, thereby reflecting the consolidation of the TIDES market. Here, the TIDES approved in 2020 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects.
Collapse
|
19
|
Chakraborty A, Sharma A, Albericio F, de la Torre BG. Disulfide-Based Protecting Groups for the Cysteine Side Chain. Org Lett 2020; 22:9644-9647. [PMID: 33232171 DOI: 10.1021/acs.orglett.0c03705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new disulfide-based protecting groups (SIT and MOT) are proposed for Cys thiol in the substitution of StBu, which is often difficult to remove. Both groups are based on a secondary thiol with a branched point in the β-position for an efficient modulation of its lability and/or stability. This unique structure allows them to be fully compatible with Fmoc/tBu SPPS. At the end of the synthesis, these groups are removed in a straightforward manner with dithiothreitol with some H2O.
Collapse
Affiliation(s)
- Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Anamika Sharma
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa.,Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
20
|
Gong H, Liao M, Hu X, Fa K, Phanphak S, Ciumac D, Hollowell P, Shen K, Clifton LA, Campana M, Webster JRP, Fragneto G, Waigh TA, McBain AJ, Lu JR. Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44420-44432. [PMID: 32909733 DOI: 10.1021/acsami.0c09931] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular dynamics (MD) simulations, stochastic optical reconstruction microscopy (STORM), and neutron reflection (NR) were combined to explore how antimicrobial peptides (AMPs) can be designed to promote the formation of nanoaggregates in bacterial membranes and impose effective bactericidal actions. Changes in the hydrophobicity of the designed AMPs were found to have a strong influence on their bactericidal potency and cytotoxicity. G(IIKK)3I-NH2 (G3) achieved low minimum inhibition concentrations (MICs) and effective dynamic kills against both antibiotic-resistant and -susceptible bacteria. However, a G3 derivative with weaker hydrophobicity, KI(KKII)2I-NH2 (KI), exhibited considerably lower membrane-lytic activity. In contrast, the more hydrophobic G(ILKK)3L-NH2 (GL) peptide achieved MICs similar to those observed for G3 but with worsened hemolysis. Both the model membranes studied by Brewster angle microscopy, zeta potential measurements, and NR and the real bacterial membranes examined with direct STORM contained membrane-inserted peptide aggregates upon AMP exposure. These structural features were well supported by MD simulations. By revealing how AMPs self-assemble in microbial membranes, this work provides important insights into AMP mechanistic actions and allows further fine-tuning of antimicrobial potency and cytotoxicity.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sorasak Phanphak
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Daniela Ciumac
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Luke A Clifton
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Mario Campana
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - John R P Webster
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Giovanna Fragneto
- Institute of Laue Langevin, 71 Avenue des Martyrs, CS-20156, Grenoble 38042, France
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
21
|
Revisiting NO 2 as Protecting Group of Arginine in Solid-Phase Peptide Synthesis. Int J Mol Sci 2020; 21:ijms21124464. [PMID: 32586051 PMCID: PMC7352207 DOI: 10.3390/ijms21124464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
The protection of side-chain arginine in solid-phase peptide synthesis requires attention since current protecting groups have several drawbacks. Herein, the NO2 group, which is scarcely used, has been revisited. This work shows that it prevents the formation of δ-lactam, the most severe side-reaction during the incorporation of Arg. Moreover, it is stable in solution for long periods and can be removed in an easy-to-understand manner. Thus, this protecting group can be removed while the protected peptide is still anchored to the resin, with SnCl2 as reducing agent in mild acid conditions using 2-MeTHF as solvent at 55 °C. Furthermore, we demonstrate that sonochemistry can facilitate the removal of NO2 from multiple Arg-containing peptides.
Collapse
|
22
|
Přibylka A, Krchňák V, Schütznerová E. Environmentally Friendly SPPS II: Scope of Green Fmoc Removal Protocol Using NaOH and Its Application for Synthesis of Commercial Drug Triptorelin. J Org Chem 2020; 85:8798-8811. [DOI: 10.1021/acs.joc.0c00599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adam Přibylka
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eva Schütznerová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
23
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020; 4:90-101. [PMID: 37128052 DOI: 10.1038/s41570-019-0159-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Drug discovery has traditionally focused on using libraries of small molecules to identify therapeutic drugs, but new modalities, especially libraries of genetically encoded cyclic peptides, are increasingly used for this purpose. Several technologies now exist for the production of libraries of cyclic peptides, including phage display, mRNA display and split-intein circular ligation of peptides and proteins. These different approaches are each compatible with particular methods of screening libraries, such as functional or affinity-based screening, and screening in vitro or in cells. These techniques allow the rapid preparation of libraries of hundreds of millions of molecules without the need for chemical synthesis, and have therefore lowered the entry barrier to generating and screening for inhibitors of a given target. This ease of use combined with the inherent advantages of the cyclic-peptide scaffold has yielded inhibitors of targets that have proved difficult to drug with small molecules. Multiple reports demonstrate that cyclic peptides act as privileged scaffolds in drug discovery, particularly against 'undruggable' targets such as protein-protein interactions. Although substantial challenges remain in the clinical translation of hits from screens of cyclic-peptide libraries, progress continues to be made in this area, with an increasing number of cyclic peptides entering clinical trials. Here, we detail the various platforms for producing and screening libraries of genetically encoded cyclic peptides and discuss and evaluate the advantages and disadvantages of each approach when deployed for drug discovery.
Collapse
|
25
|
Taguchi A, Kobayashi K, Cui Y, Takayama K, Taniguchi A, Hayashi Y. Disulfide-Driven Cyclic Peptide Synthesis of Human Endothelin-2 with a Solid-Supported Npys-Cl. J Org Chem 2019; 85:1495-1503. [PMID: 31793782 DOI: 10.1021/acs.joc.9b02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report here the synthesis of human endothelin-2, a peptide of 21 amino acid residues with two disulfide bonds, based on the novel idea of a disulfide-driven cyclic peptide synthesis (DdCPS). This synthesis has two steps: (1) a one-pot solid-phase disulfide ligation of two different sulfur-containing peptide fragments using an Npys-Cl resin and (2) intramolecular cyclization of the disulfide peptide via amide bond formation using a thioester ligation. Human endothelin-2 was obtained in a total yield of 2.2% with two such DdCPS procedures and subsequent deprotection and HPLC purification. This strategy is the basis of a new solid-phase assisted practical synthesis of cyclic disulfide peptides.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Kiyotaka Kobayashi
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Yan Cui
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| |
Collapse
|
26
|
Al Musaimi O, Basso A, de la Torre BG, Albericio F. Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination. ACS COMBINATORIAL SCIENCE 2019; 21:717-721. [PMID: 31610120 DOI: 10.1021/acscombsci.9b00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Solid-phase synthesis is the method of choice for peptide preparation in both research and industrial settings. The whole synthetic process is governed by the initial functionalization of the resin. Although the literature provides several methods to determine such functionalization, the addition of an Fmoc-amino acid and the posterior spectrophotometric measurement of the dibenzofulvene adduct formed after Fmoc removal is the most widely used for this purpose. However, a range of molar extinction coefficient (ε) values and even wavelengths are currently used in the field, with no standardization of the method. Here, we propose a single-point standardization method that involves a standard solution of the corresponding amino acid to be checked that is prepared freshly at the time of the analysis.
Collapse
Affiliation(s)
- Othman Al Musaimi
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Alessandra Basso
- Purolite, Llantrisant Business Park, Llantrisant, CF72 8LF, United Kingdom
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Ramkisson S, Jad YE, Sharma A, de la Torre BG, Albericio F. OctaGel Resin - A New PEG-PS-based Solid Support for Solid-Phase Peptide Synthesis. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190913153605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
:
OctaGel resin is a unique, highly uniformed surface-active resin. Here, we compared the
performance of OctaGel with that of known resins on the market, namely polystyrene and ChemMatrix,
in Solid-Phase Peptide Synthesis. The synthesis of the ‘difficult’ Aib-ACP (65-74) decapeptide
showed that OctaGel has the potential to yield molecules with satisfactory purity. Given its high swelling
capacity and large bead size, OctaGel also shows efficient interaction with various solvents, including
those mainly used for SPPS (DMF and DCM).
Collapse
Affiliation(s)
- Shaveer Ramkisson
- School of Chemistry and Physics, University of KwaZulu Natal, Private bag X54001, Westville Campus, Durban, 4000, South Africa
| | - Yahaya E. Jad
- School of Chemistry and Physics, University of KwaZulu Natal, Private bag X54001, Westville Campus, Durban, 4000, South Africa
| | - Anamika Sharma
- School of Chemistry and Physics, University of KwaZulu Natal, Private bag X54001, Westville Campus, Durban, 4000, South Africa
| | - Beatriz G. de la Torre
- KRISP, College of Health Sciences, University of KwaZulu Natal, Durban, 4001, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu Natal, Private bag X54001, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
28
|
Dolle A, Nagati VB, Hunashal Y, Krishnamurthy K, Pasupulati AK, Raghothama S, Gowd KH. Disulfide engineering on temporin-SHf: Stabilizing the bioactive conformation of an ultra-short antimicrobial peptide. Chem Biol Drug Des 2019; 94:1634-1646. [PMID: 30924306 DOI: 10.1111/cbdd.13525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
In Silico searching for short antimicrobial peptides has revealed temporin-SHf as the short (8AA), hydrophobic, broad spectrum, and natural antimicrobial peptide. Important drawback associated with temporin-SHf is the susceptibility of its bioactive conformation for denaturation and proteolytic degradation. In the current report, disulfide engineering strategy has been adopted to improve the stability of bioactive conformation of temporin-SHf. The functionally non-critical Leu4 and Ile7 residues at i and i + 3 position of helical conformation of temporin-SHf were mutated with cysteine disulfide. Designed [L4C, I7C]temporin-SHf was synthesized, characterized using NMR spectroscopy, and accessed for antimicrobial activity. [L4C, I7C]Temporin-SHf adopts helical conformation from Phe3 to Phe8 in the absence of membrane-mimetic environment and retains broad spectrum antimicrobial activity. The reduction potential of cysteine disulfide of [L4C, I7C]temporin-SHf is -289 mV. Trypsin-induced digestion and serum-induced digestion have confirmed the advantage of cysteine disulfide in imparting proteolytic stability to temporin-SHf. Disulfide-stabilized temporin-SHf may serve as a good model for the rational design of temporin-SHf based antibiotics for treatment of infectious diseases.
Collapse
Affiliation(s)
- Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Veera Babu Nagati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Yamanappa Hunashal
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kiran Krishnamurthy
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
29
|
Carbajo D, El-Faham A, Royo M, Albericio F. Optimized Stepwise Synthesis of the API Liraglutide Using BAL Resin and Pseudoprolines. ACS OMEGA 2019; 4:8674-8680. [PMID: 31459957 PMCID: PMC6648002 DOI: 10.1021/acsomega.9b00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 05/15/2023]
Abstract
The number of peptide-based active pharmaceutical ingredients (APIs) has increased enormously in recent years. Furthermore, the emerging new peptide drug candidates are more complex and larger. For the industrial solid-phase synthesis of C-carboxylic acid peptides, the two main resins available, Wang and chlorotrityl chloride (CTC), have a number of drawbacks. In this context, resins that form an amide bond with the first amino acid are more robust than Wang and CTC resins. Here, we address the use of the backbone (BAL) resin for the synthesis of the peptide liraglutide. The BAL resin, in conjunction with the use of pseudoprolines to avoid aggregation, allows the stepwise solid-phase synthesis of this API in excellent purity and yield.
Collapse
Affiliation(s)
- Daniel Carbajo
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
| | - Ayman El-Faham
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Alexandria 21321, Egypt
| | - Miriam Royo
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of
Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- E-mail: , . Phone: (+34) 618 089
145, (+27) 614 009 144
| |
Collapse
|
30
|
Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V. Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 2019; 18:339-357. [PMID: 30728472 PMCID: PMC6499689 DOI: 10.1038/s41573-019-0013-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.
Collapse
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | | | | | - K George Chandy
- Molecular Physiology Laboratory, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vladimir Yarov-Yarovoy
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
31
|
2018 FDA Tides Harvest. Pharmaceuticals (Basel) 2019; 12:ph12020052. [PMID: 30959752 PMCID: PMC6631726 DOI: 10.3390/ph12020052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
In 2018, the United States Food and Drug Administration (FDA) approved a total of 59 new drugs, three of them (5%) are TIDES (or also, -tides), two oligonucleotides and one peptide. Herein, the three TIDES approved are analyzed in terms of medical target, mode of action, chemical structure, and economics.
Collapse
|
32
|
Kumar A, Thompson-Adewumi A, Nandhini KP, Collins JM, Albericio F, de la Torre BG. Troubleshooting When Using γ-Valerolactone (GVL) in Green Solid-Phase Peptide Synthesis. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ashish Kumar
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Adeniyi Thompson-Adewumi
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - K. P. Nandhini
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Jonathan M. Collins
- CEM Corporation, 3100 Smith Farm Road, Matthews, North Carolina 28104, United States
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
33
|
Zanella S, Bocchinfuso G, De Zotti M, Arosio D, Marino F, Raniolo S, Pignataro L, Sacco G, Palleschi A, Siano AS, Piarulli U, Belvisi L, Formaggio F, Gennari C, Stella L. Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Front Chem 2019; 7:170. [PMID: 30984741 PMCID: PMC6449863 DOI: 10.3389/fchem.2019.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 01/25/2023] Open
Abstract
Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.
Collapse
Affiliation(s)
- Simone Zanella
- Department of Chemistry, University of Milan, Milan, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Marta De Zotti
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Daniela Arosio
- National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Stefano Raniolo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Luca Pignataro
- Department of Chemistry, University of Milan, Milan, Italy
| | - Giovanni Sacco
- Department of Chemistry, University of Milan, Milan, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Umberto Piarulli
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Fernando Formaggio
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Cesare Gennari
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
34
|
Rivas L, Rojas V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch Biochem Biophys 2019; 664:24-39. [PMID: 30707942 DOI: 10.1016/j.abb.2019.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Parasites are scarcely addressed target for antimicrobial peptides despite their big impact in health and global economy. The notion of antimicrobial peptides is frequently associated to the innate immune defense of vertebrates and invertebrate vectors, as the ultimate recipients of the parasite infection. These antiparasite peptides are produced by ribosomal synthesis, with few post-translational modifications, and their diversity come mostly from their amino acid sequence. For many of them permeabilization of the cell membrane of the targeted pathogen is crucial for their microbicidal mechanism. In contrast, cyanobacterial peptides are produced either by ribosomal or non-ribosomal biosynthesis. Quite often, they undergo heavy modifications, such as the inclusion of non-proteinogenic amino acids, lipid acylation, cyclation, Nα-methylation, or heterocyclic rings. Furthermore, the few targets identified for cyanobacterial peptides in parasites are intracellular. Some cyanobacterial antiparasite peptides are active at picomolar concentrations, whereas those from higher eukaryotes usually work in the micromolar range. In all, cyanobacterial peptides are an appealing target to develop new antiparasite therapies and a challenge in the invention of new synthetic methods for peptides. This review aims to provide an updated appraisal of antiparasite cyanobacterial peptides and to establish a side-by -side comparison with those antiparasite peptides from higher eukaryotes.
Collapse
Affiliation(s)
- Luis Rivas
- Centro de Investigaciones Biológicas (C.S.I.C), c/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Campus Curauma, Curauma, Valparaíso, Chile.
| |
Collapse
|
35
|
Al Musaimi O, Jad YE, Kumar A, El-Faham A, Collins JM, Basso A, de la Torre BG, Albericio F. Greening the Solid-Phase Peptide Synthesis Process. 2-MeTHF for the Incorporation of the First Amino Acid and Precipitation of Peptides after Global Deprotection. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Othman Al Musaimi
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Yahya E. Jad
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ashish Kumar
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Jonathan M. Collins
- CEM Corporation, 3100 Smith Farm Road, Matthews, North Carolina 28104, United States
| | - Alessandra Basso
- Purolite, Llantrisant
Business Park, Llantrisant CF72 8LF, United Kingdom
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Agrawal P, Raghava GPS. Prediction of Antimicrobial Potential of a Chemically Modified Peptide From Its Tertiary Structure. Front Microbiol 2018; 9:2551. [PMID: 30416494 PMCID: PMC6212470 DOI: 10.3389/fmicb.2018.02551] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Designing novel antimicrobial peptides is a hot area of research in the field of therapeutics especially after the emergence of resistant strains against the conventional antibiotics. In the past number of in silico methods have been developed for predicting the antimicrobial property of the peptide containing natural residues. This study describes models developed for predicting the antimicrobial property of a chemically modified peptide. Our models have been trained, tested and evaluated on a dataset that contains 948 antimicrobial and 931 non-antimicrobial peptides, containing chemically modified and natural residues. Firstly, the tertiary structure of all peptides has been predicted using software PEPstrMOD. Structure analysis indicates that certain type of modifications enhance the antimicrobial property of peptides. Secondly, a wide range of features was computed from the structure of these peptides using software PaDEL. Finally, models were developed for predicting the antimicrobial potential of chemically modified peptides using a wide range of structural features of these peptides. Our best model based on support vector machine achieve maximum MCC of 0.84 with an accuracy of 91.62% on training dataset and MCC of 0.80 with an accuracy of 89.89% on validation dataset. To assist the scientific community, we have developed a web server called "AntiMPmod" which predicts the antimicrobial property of the chemically modified peptide. The web server is present at the following link (http://webs.iiitd.edu.in/raghava/antimpmod/).
Collapse
Affiliation(s)
- Piyush Agrawal
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi, India
| | - Gajendra P S Raghava
- Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi, India
| |
Collapse
|
37
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|