1
|
Zainab I, Naseem Z, Batool SR, Waqas M, Nazir A, Nazeer MA. Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:591-612. [PMID: 40297246 PMCID: PMC12035910 DOI: 10.3762/bjnano.16.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The importance of electrospun membranes for biomedical applications has increased, especially when it comes to skin regeneration and wound healing. This review presents the production and applications of electrospun membranes based on polyurethane (PU) and silk fibroin (SF) and highlights their benefits as a skin substitute. This review also highlights the electrospinning technique used to prepare nanofibers for these biomedical applications. Silk, well-known for its excellent biocompatibility, biodegradability, structural properties, and low immunogenic response, is extensively investigated by addressing its molecular structure, composition, and medical uses. PU is a candidate for potential biomedical applications because of its strength, flexibility, biocompatibility, cell-adhesive properties, and high resistance to biodegradation. PU combined with silk offers a number of enhanced properties. The study offers a comprehensive overview of the advanced developments and applications of PU/SF composites, highlighting their significant potential in wound healing. These composite membranes present promising advancements in wound healing and skin regeneration by combining the unique properties of silk and PU, opening up the possibilities for innovative treatments.
Collapse
Affiliation(s)
- Iqra Zainab
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Zohra Naseem
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Waqas
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
2
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025; 195:52-72. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
4
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
5
|
L J, Kamaraj S, Kandasamy R, Alagarsamy S. Electrospinning: A New Frontier in Peptide Therapeutics. AAPS PharmSciTech 2025; 26:69. [PMID: 40011310 DOI: 10.1208/s12249-025-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The nanofiber technology has recently undergone an unprecedented transformation, finding widespread utilities across diverse scientific disciplines. It is noteworthy that electrospinning approaches have emerged as an adaptable and successful approach to generate fibers ranging in rapidly as a class of therapeutic agents with a high level of target specificity. Peptides encounter several challenges as drugs, including swift breakdown by the body, rapid elimination from the bloodstream, inadequate stability, and restricted ability to cross cell membranes. This renders it challenging to employ them as drugs. However, electrospun nanofibers might address these problems. This review explores the promising potential of electrospinning nanofibers for peptide delivery. We delve into recent advancements in this technique, highlighting its effectiveness in overcoming challenges associated with peptide drug delivery. It provides an analysis of the trends identified in the use of the electrospinning technique and its role in peptide drug delivery systems, based on a review of data collected over a period of five to seven years.
Collapse
Affiliation(s)
- Jeyanthi L
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sivadharshini Kamaraj
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
6
|
Halim N, Nallusamy N, Lakshminarayanan R, Ramakrishna S, Vigneswari S. Electrospinning in Drug Delivery: Progress and Future Outlook. Macromol Rapid Commun 2025:e2400903. [PMID: 39973618 DOI: 10.1002/marc.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Indexed: 02/21/2025]
Abstract
There is intense research during the past few decades to design and fabricate drug delivery systems using the electrospinning system. Electrospinning is an efficient technique to produce nanofiber materials with different dimensions and morphologies by adjusting the processing parameters. Electrospinning is becoming an innovative technology that promotes the pursuit and maintenance of human health. Herein, the review discusses the contribution of electrospinning technology in drug delivery systems, summarising the modification of the various electrospinning system configurations and the effects of the process parameters on fibers, their application in drug delivery including carrier materials, loaded drugs and their release mechanisms and illustrates their various medical applications. Finally, this review discusses the challenges, bottlenecks, and development prospects of electrospinning technology in the field of drug delivery in terms of scaling up for clinical use and exploring potential solutions to pave the way to establish electrospinning for future drug delivery systems.
Collapse
Affiliation(s)
- Nurfitrah Halim
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Nithiskanna Nallusamy
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Rajamani Lakshminarayanan
- Ocular Infections and Antimicrobials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore, 169856, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
- Ocular Infections and Antimicrobials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore, 169856, Singapore
| |
Collapse
|
7
|
Turker B. Redesigning FDM Platforms for Bio-Printing Applications. MICROMACHINES 2025; 16:226. [PMID: 40047710 PMCID: PMC11857145 DOI: 10.3390/mi16020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Fused Deposition Modeling (FDM) is a prominent additive manufacturing technique known for its ability to provide cost-effective and fast printing solutions. FDM enables the production of computer-aided 3D designs as solid objects at macro scales with high-precision alignment while sacrificing excellent surface smoothness compared to other 3D printing techniques such as SLA (Stereolithography) and SLS (Selective Laser Sintering). Electro-Spinning (ES) is another technique for producing soft-structured nonwoven micro-scale materials, such as nanofibers. However, compared to the FDM technique, it has limited accuracy and sensitivity regarding high-precision alignment. The need for high-precision alignment of micro-scaled soft structures during the printing process raises the question of whether FDM and ES techniques can be combined. Today, the printing technique with such capability is called Melt Electro Writing (MEW), and in practice, it refers to the basic working principle on which bio-printers are based. This paper aims to examine how these two techniques can be combined affordably. Comparatively, it presents output production processes, design components, parameters, and materials used in output production. It discusses the limitations and advantages of such a hybrid platform, specifically from the perspective of engineering design and its biomedical applications.
Collapse
Affiliation(s)
- Burak Turker
- Department of Biomedical Engineering, Engineering Faculty, Ahmet Necdet Sezer Campus, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
8
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:371-413. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
9
|
Dhoundiyal S, Sharma A, Alam MA. Fiber Technology in Drug Delivery and Pharmaceuticals. Curr Drug Deliv 2025; 22:261-282. [PMID: 38279740 DOI: 10.2174/0115672018279628231221105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/28/2024]
Abstract
The field of fiber technology is a dynamic and innovative domain that offers novel solutions for controlled and targeted therapeutic interventions. This abstract provides an overview of key aspects within this field, encompassing a range of techniques, applications, commercial developments, intellectual property, and regulatory considerations. The foundational introduction establishes the significance of fiber-based drug delivery systems. Electrospinning, a pivotal technique, has been explored in this paper, along with its various methods and applications. Monoaxial, coaxial, triaxial, and side-by-side electrospinning techniques each offer distinct advantages and applications. Centrifugal spinning, solution and melt blowing spinning, and pressurized gyration further contribute to the field's diversity. The review also delves into commercial advancements, highlighting marketed products that have successfully harnessed fiber technology. The role of intellectual property is acknowledged, with patents reflecting the innovative strides in fiber-based drug delivery. The regulatory perspective, essential for ensuring safety and efficacy, is discussed in the context of global regulatory agencies' evaluations. This review encapsulates the multidimensional nature of fiber technology in drug delivery and pharmaceuticals, showcasing its potential to revolutionize medical treatments and underscores the importance of continued collaboration between researchers, industry, and regulators for its advancement.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aditya Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Huaman-De la Cruz M, Medina J, Munive-Degregori A, Medina-Calderon K, Espinoza-Carhuancho F, Mayta-Tovalino F. Trends and Collaborative Networks in the Use of Electrospun Nanofibers in Dentistry: A Bibliometric Study. J Contemp Dent Pract 2025; 26:110-116. [PMID: 40254878 DOI: 10.5005/jp-journals-10024-3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND To analyze trends and collaboration networks in the use of electrospun nanofibers in dentistry from 2019 to 2024. MATERIALS AND METHODS A descriptive, observational study with a bibliometric approach was conducted. The inclusion criteria were documents that addressed the use of electrospun nanofibers in dentistry, published between 2019 and 2024. The search was performed in Scopus on December 30, 2024, using a specific keyword strategy. Forty-five relevant documents were identified. The selection, extraction, and analysis procedures were carried out using Bibliometrix, R Studio, and SciVal. Some metrics analysis such as the h-index, number of citations, and collaboration networks were evaluated. RESULTS The results showed an annual decrease of 2.64% in publication growth, with an average of 11.69 citations per document. The University of Michigan, Ann Arbor, and the University of British Columbia stood out for their impact. The most relevant thematic clusters were "tissue scaffolds" and "nanofibers." Most authors had written only one paper. The most influential journals were found in Zone 1 according to Bradford's law. CONCLUSION These findings underline the importance of fostering international collaboration and focusing on high-citation areas to advance the research and application of electrospun nanofibers in dentistry. CLINICAL SIGNIFICANCE This study highlights the clinical importance of electrospun nanofibers in dentistry, showcasing their potential to transform dental treatments. The results stress the need for international collaboration and focusing on high-impact research areas. By analyzing trends and collaborative networks, dental professionals can utilize the advantages of electrospun nanofibers, resulting in improved patient outcomes, enhanced tissue regeneration, and more effective dental therapies. This research paves the way for innovative applications and future advancements in dental materials and techniques. How to cite this article: Huaman-De la Cruz M, Medina J, Munive-Degregori A, et al. Trends and Collaborative Networks in the Use of Electrospun Nanofibers in Dentistry: A Bibliometric Study. J Contemp Dent Pract 2025;26(1):110-116.
Collapse
Affiliation(s)
- Mabel Huaman-De la Cruz
- Academic Department, Research, Innovation and Entrepreneurship Unit, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Julia Medina
- Academic Department, Research, Innovation and Entrepreneurship Unit, Universidad Nacional Federico Villarreal, Lima, Peru
| | | | - Katia Medina-Calderon
- Academic Department, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Fran Espinoza-Carhuancho
- Bibliometrics Evidence Evaluation and Systematic Reviews Group (BEERS) Human Medicine Career, Universidad Científica del Sur, Lima, Peru
| | - Frank Mayta-Tovalino
- Vice-rectorate of Research Department, Universidad San Ignacio de Loyola, Lima, Peru, Phone: +51 1 317 1023, e-mail:
| |
Collapse
|
11
|
Tripathi D, Gupta T, Rai AK, Pandey P. Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight. Anticancer Agents Med Chem 2025; 25:468-489. [PMID: 39773055 DOI: 10.2174/0118715206348821241119100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Oral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning "electrospun nanofibers" and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.
Collapse
Affiliation(s)
- Devika Tripathi
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, 208002, Uttar Pradesh, India
| | - Tanya Gupta
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, 208002, Uttar Pradesh, India
| | - Awani Kumar Rai
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, 208002, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, U.P., India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
12
|
Dini VA, Kiebala DJ, Genovese D, Zaccheroni N, Calvino C, Contini E, Weder C, Schrettl S, Gualandi C. In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers. Macromol Rapid Commun 2024:e2400855. [PMID: 39714132 DOI: 10.1002/marc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm. The influence of the additive concentration and fiber orientation on the mechanofluorescent response under tensile deformation is investigated. In situ fluorescence spectroscopy and microscopy imaging reveal a strain-dependent change of the fluorescence color from orange to yellow or green, with a more pronounced response in prealigned fibers. Stresses experienced by the nanofibers during elongation are mapped in real-time. The data reveal that forces initially concentrate in fibers that are aligned parallel to the applied strain, and only later redistribute as other fibers once they also align. These findings advance the understanding of force transfer within fibrous polymer mats and are expected to facilitate the development of self-reporting nanofibers for applications in load-bearing devices, wearable technologies, and mechanochromic textiles.
Collapse
Affiliation(s)
- Valentina A Dini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Derek J Kiebala
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- Department of Chemistry, Johannes Gutenberg University of Mainz, 55128, Mainz, Germany
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Céline Calvino
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Emma Contini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna, 40136, Italy
| |
Collapse
|
13
|
Chen Y, Zhu Z, Shi K, Jiang Z, Guan C, Zhang L, Yang T, Xie F. Shellac-based materials: Structures, properties, and applications. Int J Biol Macromol 2024; 279:135102. [PMID: 39197605 DOI: 10.1016/j.ijbiomac.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Shellac stands out among natural polymers as the sole animal-derived resin, boasting a complex polyester composition comprising polyhydroxy long-chain fatty acids and sesquiterpene acids. Its unique attributes include biocompatibility, non-toxicity, distinctive amphiphilicity, superb film-forming and adhesive properties, excellent dielectric properties, rapid drying, and solubility in alkaline solutions while resisting acidic ones. These exceptional qualities have propelled shellac beyond its traditional role as a varnish and decorative material, positioning it as a viable option for diverse applications such as food packaging, pharmaceutical formulations, electronic devices, fiber dyeing, and wood restoration. Furthermore, shellac serves as a crucial carbon source for graphene materials. This review comprehensively explores shellac's contributions to prolonging food shelf life, enhancing the carbon sourcing of graphene materials, facilitating the delivery of active substances, boosting the performance of organic field-effect transistors, enabling environmentally friendly textile dyeing, and providing protective coatings for wood. Additionally, it delves into the current limitations and future directions of shellac's applications. By disseminating this knowledge, we aim to deepen researchers' comprehension of shellac and inspire further exploration, thereby fostering sustainable advancements across various industries.
Collapse
Affiliation(s)
- Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhu Zhu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Kunbo Shi
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhiyao Jiang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chengran Guan
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China; Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, Jiangsu 225127, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
14
|
Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications. Adv Healthc Mater 2024; 13:e2400930. [PMID: 38847291 DOI: 10.1002/adhm.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here, a comprehensive overview of EHD direct-writing is provided, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jinqiao Jia
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xin Xie
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Haiqing Bai
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Xiaomin He
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310000, P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, 200433, P. R. China
| | - Zhaoyan Yu
- Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, P. R. China
| | - Xudong Ma
- Cytori Therapeutics LLC., Shanghai, 201802, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
15
|
Łyszczarz E, Sosna O, Srebro J, Rezka A, Majda D, Mendyk A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1569. [PMID: 39404296 PMCID: PMC11478052 DOI: 10.3390/nano14191569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active pharmaceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to improve both their solubility and dissolution rate. One of the most effective approaches used for this purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP), Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV and RTV amorphization were investigated. The characterization of the electrospun fibers included microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility and dissolution studies. The application of the electrospinning process led to the full amorphization of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology, had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.
Collapse
Affiliation(s)
- Ewelina Łyszczarz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Oskar Sosna
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Justyna Srebro
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Doctoral School of Medicinal and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 16, 31-530 Cracow, Poland
| | - Aleksandra Rezka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Dorota Majda
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
16
|
Huang K, Si Y, Guo C, Hu J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv Colloid Interface Sci 2024; 331:103236. [PMID: 38917594 DOI: 10.1016/j.cis.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China.
| |
Collapse
|
17
|
Walsh T, Hadisi Z, Dabiri SMH, Hasanpour S, Samimi S, Azimzadeh M, Akbari M. Facile roll-to-roll production of nanoporous fiber coatings for advanced wound care sutures. NANOSCALE 2024; 16:15615-15628. [PMID: 39110148 DOI: 10.1039/d4nr01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Theranostic sutures are derived from innovative ideas to enhance wound healing results by adding wound diagnostics and therapeutics to typical sutures by functionalizing them with additional materials. Here, we present a new direct electrospinning method for the fast, continuous, inexpensive, and high-throughput production of versatile nanofibrous-coated suture threads, with precise control over various essential microstructural and physical characteristics. The thickness of the coating layer and the alignment of nanofibers with the thread's direction can be adjusted by the user by varying the spooling speed and the displacement between the spinneret needle and thread. To show the flexibility of our method for a range of different materials selected, gelatin, polycaprolactone, silk fibroin, and PEDOT:PSS (poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)) were the resultant nanofibers characterized by scanning electron microscopy (SEM) imaging and conductivity tests. In a series of in vitro and ex vivo tests (pig skin), sutures were successfully tested for their flexibility and mechanical properties when used as weaving and knotting sutures, and their biocompatibility with a keratinocyte cell line. For temperature-based drug-releasing tests, two fluorescent molecules as drug models with high and low molecular weight, namely fluorescein isothiocyanate-dextran (20 kDa) and rhodamine B (470 Da), were used, and their steady release with incremental increase of temperature to 37 °C over 120 min was seen, which is appropriate for bacterial treatment drugs. Given the advantages of the presented technique, it seems to have promising potential to be used in future medical applications for wound closure and bacterial infection treatment via a temperature-triggered drug release strategy.
Collapse
Affiliation(s)
- Tavia Walsh
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Zhina Hadisi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sadegh Hasanpour
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sadaf Samimi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mostafa Azimzadeh
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
18
|
Bartkowiak A, Grzeczkowicz M, Lewińska D. The Effects of Pulsed Electrospinning Process Variables on the Size of Polymer Fibers Established with a 2 3 Factorial Design. Polymers (Basel) 2024; 16:2352. [PMID: 39204572 PMCID: PMC11360675 DOI: 10.3390/polym16162352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In the present study, the influence of the electrical parameters of the pulsed electrospinning process, such as the electrical voltage, the frequency of pulses, and the pulse duration, on the structure of obtained nonwovens was determined for the first time. It was found that all the parameters studied strongly influence the average diameter of the obtained fibers and that the pulsed electrospinning process carried out under specific conditions makes it possible to obtain, among other things, bimodal nonwovens. A 23 factorial design was used to determine how the selected electrical parameters of the pulsed electrospinning process affect the structure of the resulting electrospun mats. It is shown, among other things, that by appropriately selecting the parameters of the electrospinning process, the thickness of fibers can be controlled, resulting in nonwovens with a desired morphology.
Collapse
Affiliation(s)
- Aleksandra Bartkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (M.G.); (D.L.)
| | | | | |
Collapse
|
19
|
Fardous RS, Alshmmari S, Tawfik E, Khadra I, Ramadan Q, Zourob M. An Integrated and Modular Compartmentalized Microfluidic System with Tunable Electrospun Porous Membranes for Epithelialized Organs-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047263 DOI: 10.1021/acsami.4c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.
Collapse
Affiliation(s)
- Roa S Fardous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Sultan Alshmmari
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Essam Tawfik
- Advanced Diagnostics & Therapeutics Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Kingdome Saudi Arabia
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
| | - Qasem Ramadan
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | | |
Collapse
|
20
|
Wen KC, Li ZA, Liu JH, Zhang C, Zhang F, Li FQ. Recent developments in ureteral stent: Substrate material, coating polymer and technology, therapeutic function. Colloids Surf B Biointerfaces 2024; 238:113916. [PMID: 38636438 DOI: 10.1016/j.colsurfb.2024.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The ureteral stent is an effective treatment for clinical ureteral stricture following urological surgery, and the functional coating of the stent could effectively inhibit bacterial colonization and other complications. The present review provides an analysis and description of the materials used in ureteral stents and their coatings. Emphasis is placed on the technological advancements of functional coatings, taking into consideration the characteristics of these materials and the properties of their active substances. Furthermore, recent advances in enhancing the therapeutic efficacy of functional coatings are also reviewed. It is anticipated that this article will serve as a valuable reference providing insights for future research development on new drug-loaded ureteral stents.
Collapse
Affiliation(s)
- Kai-Chao Wen
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zheng-An Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Ji-Heng Liu
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Feng Zhang
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Feng-Qian Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| |
Collapse
|
21
|
Eslaminezhad S, Moradi F, Hojjati MR. Evaluation of the wound healing efficacy of new antibacterial polymeric nanofiber based on polyethylene oxide coated with copper nanoparticles and defensin peptide: An in-vitro to in-vivo assessment. Heliyon 2024; 10:e29542. [PMID: 38628749 PMCID: PMC11019281 DOI: 10.1016/j.heliyon.2024.e29542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Today, designing nanofibers with antibacterial properties using electrospinning technology is one of the attractive approaches for wound healing. Methods & analysis: This study aims to fabricate a nanocomposite from polyethylene oxide (PEO) coated with copper nanoparticles (NPs) and defensin peptide with wound healing and antimicrobial properties in different ratios of CuNPs/defensin (2/0 mg), (1.5/0.5 mg), and (1/1 mg) in the fixed contain polymer (98 mg). Then, the nanofiber properties were investigated by SEM, tensile, DSC, and BET analysis. Also, the antibacterial properties against S. aureus and E. coli, antioxidant, and in-vivo wound healing effects and histological analysis of the designed nanocomposites were evaluated in rat models. Results Our SEM images showed that CuNPs and defensin were properly coated on the PEO surface. According to the tensile, DSC, and antibacterial analysis results, the most appropriate feature was related to CuNPs/defensin (1.5/0.5 mg), with maximum elasticity, heat resistance, and antibacterial activity. Furthermore, the designed nanocomposites showed the best performance as a wound closure agent by increasing dermis and epidermis volume density, stimulating fibroblast cells and collagen fiber production, and improving skin vessels. Conclusion According to our results, PEO nanofibers loaded with CuNPs and defensin have the best potential for wound healing, and they can be used as antibacterial materials in the textile, drug, and medical industries.
Collapse
Affiliation(s)
- Sahba Eslaminezhad
- Sahba Eslaminezhad, Department of chemical engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Farhad Moradi
- Farhad Moradi, Department of Bacteriology & Virology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Reza Hojjati
- Mahmoud Reza Hojjati, Faculty of Engineering, Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
22
|
Saliy O, Popova M, Tarasenko H, Getalo O. Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies. Eur J Pharm Sci 2024; 195:106636. [PMID: 38185273 DOI: 10.1016/j.ejps.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Doxycycline hyclate (DOXH) is a broad-spectrum antibiotic derived synthetically from tetracycline. Despite its use in clinical practice for more than 40 years, DOXH remains an effective antibiotic with retained activity. The potential advantages of DOXH for wound healing therapy include its mechanisms of action, such as anti-inflammatory effects, antioxidant properties, modulation of cellular processes, stimulation of collagen synthesis, and antimicrobial activity. As current standards of care aim to improve wound healing by promoting rapid closure, a relevant direction is the development of novel DOXH formulations for parenteral delivery that enhance both skin regeneration and control of infectious conditions. Oral delivery is the most common and commercially available route for administering DOXH therapeutic agents. However, parenteral delivery of DOXH, where the antibiotic substance is not in a solid state (as in powdered or compressed solid form) but rather dissolved in any carrier, presents challenges regarding DOX solubility and the stability of DOXH solutions, which are major factors complicating the development of new formulations for parenteral administration. This review discusses the achievements in research strategies and the development of new pharmaceutical formulations for the delivery of doxycycline in the treatment of wounds of various etiologies.
Collapse
Affiliation(s)
- Olena Saliy
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Mariia Popova
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine.
| | - Hanna Tarasenko
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Olga Getalo
- Department of Industrial, Clinical pharmacy and Clinical pharmacology, Shupyk National Healthcare University of Ukraine, Dorohozhytska Street 9, Kyiv 04112 Ukraine
| |
Collapse
|
23
|
Chen J, Li J, Li Y, Wu S. Fabrication and characterisation of collagen/pullulan ultra-thin fibers by electrospinning. Food Chem X 2024; 21:101138. [PMID: 38304044 PMCID: PMC10831494 DOI: 10.1016/j.fochx.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Collagen electrospun fibers are promising materials for food packaging and tissue engineering. The conventional electrospinning of collagen, however, is usually carried out by dissolving it in organic reagents, which are toxic. In this study, collagen/pullulan (COL/PUL) ultra-thin fibers were prepared by electrospinning using acetic acid as a solvent. Compared to the conventional preparation method, the proposed method is safe and does not produce toxic solvent residues. The introduction of PUL increased the degree of molecular entanglement in the solution, so the viscosity of the COL/PUL electrospun solution increased from 0.50 ± 0.01 Pa∙s to 4.40 ± 0.08 Pa∙s, and the electrical conductivity decreased from 1954.00 ± 1.00 mS/cm to 1372.33 ± 0.58 mS/cm. Scanning electron microscopy analysis confirmed that PUL improved the spinnability of COL, and smooth, defect-free COL/PUL ultra-thin fibers with diameters of 215.32 ± 40.56 nm and 240.97 ± 53.93 nm were successfully prepared at a viscosity of greater than 1.18 Pa∙s. As the proportion of PUL increased, intramolecular hydrogen bonds became the dominant interaction between COL and PUL. The intermolecular hydrogen bonding content decreased from 52.05 % to 36.45 %, and the intramolecular hydrogen bonding content increased from 46.11 % to 62.95 %. The COL was gradually unfolded, the content of α-helices decreased from 33.57 % to 25.91 % and the random coils increased from 34.22 % to 40.09 %. More than 36 % of the triple helix fraction of COL was retained by the COL/PUL ultra-thin fibers, whereas only 16 % of the triple helix fraction of COL was retained by the COL nanofibers prepared with 2.2.2-trifluoroethanol. These results could serve as a reference for the development of green food COL-based fibers.
Collapse
Affiliation(s)
| | | | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Sijia Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
24
|
Soleiman-Dehkordi E, Reisi-Vanani V, Hosseini S, Lorigooini Z, Zvareh VA, Farzan M, Khorasgani EM, Lozano K, Abolhassanzadeh Z. Multilayer PVA/gelatin nanofibrous scaffolds incorporated with Tanacetum polycephalum essential oil and amoxicillin for skin tissue engineering application. Int J Biol Macromol 2024; 262:129931. [PMID: 38331079 DOI: 10.1016/j.ijbiomac.2024.129931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Wound infection is still an important challenge in healing of different types of skin injuries. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action. In this study, by electrospinning process Tanacetum polycephalum essential oil (EO), as a natural antibacterial and anti-inflammatory agent, along with Amoxicillin (AMX) as an antibiotic are incorporated into PVA/gelatin-based nanofiber mats individually and in combination to fabricate a novel wound dressing. Briefly, we fabricated PVA/gelatin loaded by Amoxicillin as first layer for direct contact with wound surface to protects the wound from exogenous bacteria, and then built a PVA/gelatin/Tanacetum polycephalum essential oil layer on the first layer to help cleanses the wound from infection and accelerates wound closure. Finally, PVA/gelatin layer as third layer fabricated on middle layer to guarantee desirable mechanical properties. For each layer, the electrospinning parameters were adjusted to form bead-free fibers. The morphology of fabricated nanofiber scaffolds was characterized by Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM). Microscopic images demonstrated the smooth bead-free microstructures fabrication of every layer of nanofiber with a uniform fiber size of 126.888 to 136.833 nm. While, EO and AMX increased the diameter of nanofibers but there was no change in physical structure of nanofiber. The water contact angle test demonstrated hydrophilicity of nanofibers with 47.35°. Although EO and AMX had little effect on reducing hydrophilicity but nanofibers with contact angle between 51.4° until 65.4° are still hydrophilic. Multilayer nanofibers loaded by EO and AMX killed 99.99 % of both gram-negative and gram-positive bacteria in comparison with control and PVA/gelatin nanofiber. Also, in addition to confirming the non-toxicity of nanofibers, MTT results also showed the acceleration of cell proliferation. In vivo wound evaluation in mouse models showed that designed nanofibrous scaffolds could be an appropriate option for wound treatment due to their positive effect on angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound closure.
Collapse
Affiliation(s)
- Ebrahim Soleiman-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Reisi-Vanani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samanesadat Hosseini
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vajihe Azimian Zvareh
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
| | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Moghtadaie Khorasgani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Zohreh Abolhassanzadeh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
25
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
26
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
27
|
Soukarie D, Nocete L, Bittner AM, Santiago I. DNA data storage in electrospun and melt-electrowritten composite nucleic acid-polymer fibers. Mater Today Bio 2024; 24:100900. [PMID: 38234463 PMCID: PMC10792485 DOI: 10.1016/j.mtbio.2023.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Incorporating biomolecules as integral parts of computational systems represents a frontier challenge in bio- and nanotechnology. Using DNA to store digital data is an attractive alternative to conventional information technologies due to its high information density and long lifetime. However, developing an adequate DNA storage medium remains a significant challenge in permitting the safe archiving and retrieval of oligonucleotides. This work introduces composite nucleic acid-polymer fibers as matrix materials for digital information-bearing oligonucleotides. We devised a complete workflow for the stable storage of DNA in PEO, PVA, and PCL fibers by employing electrohydrodynamic processes to produce electrospun nanofibers with embedded oligonucleotides. The on-demand retrieval of messages is afforded by non-hazardous chemical treatment and subsequent PCR amplification and DNA sequencing. Finally, we develop a platform for melt-electrowriting of polymer-DNA composites to produce microfiber meshes of programmable patterns and geometries.
Collapse
Affiliation(s)
| | - Lluis Nocete
- Universitat Autònoma de Barcelona, Facultat de Ciències, Barcelona, 08193, Spain
| | - Alexander M. Bittner
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ibon Santiago
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
| |
Collapse
|
28
|
Ramezani M, Getya D, Gitsov I, Monroe MBB. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications. J Mater Chem B 2024; 12:1217-1231. [PMID: 38168979 DOI: 10.1039/d3tb02472e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biostable shape memory polymers that remain stable in physiological conditions are beneficial for user-defined shape recovery in response to a specific stimulus. For potential commercialization and biocompatibility considerations, biomaterial synthesis must be simple and scalable. Hence, a library of biostable and cytocompatible shape memory polymers with tunable thermomechanical properties based on hard segment content was synthesized using a solvent-free method. Polymer surface chemistry, thermomechanical and shape memory properties, and biostability were assessed. We also investigated the effects of processing methods on thermomechanical and shape memory properties. All polymers showed high glass transition temperatures (>50 °C), which indicates that their temporary shape could be preserved after implantation. Polymers also demonstrate high shape fixity (73-80%) and shape recovery (93-95%). Minimal mass loss (<5%) was observed in accelerated oxidative (20% H2O2) and hydrolytic (0.1 M NaOH) media. Additionally, minimal shape recovery (∼0%) occurred in programmed samples with higher hard segment content that were stored in degradation media. After 40 days of storage in media, programmed samples recovered their primary shapes upon heating to temperatures above their transition temperature. Annealing to above the polymer melting point and solvent casting of polymers improved shape memory and thermal properties. To enable their potential use as biomaterial scaffolds, fiber formation of synthesized polyurethanes was compared with those of samples synthesized using a previously reported solvent-based method. The new method provided polymers that can form fibrous scaffolds with improved mechanical and shape memory properties, which is attributed to the higher molecular weight and crystalline content of polymers synthesized using the new, solvent-free approach. These biostable segmented polyurethanes could be coupled with a range of components that respond to specific stimuli, such as enzymes, magnetic field, pH, or light, to enable a specific shape change response, which could be coupled with drug and/or bioactive material delivery in future work.
Collapse
Affiliation(s)
- Maryam Ramezani
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, NY, USA.
| | - Dariya Getya
- Department of Chemistry, State University of New York ESF, Syracuse, NY, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY, USA
| | - Ivan Gitsov
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, NY, USA.
- Department of Chemistry, State University of New York ESF, Syracuse, NY, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY, USA
| | - Mary Beth Browning Monroe
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
29
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
30
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
31
|
O’Meara CH, Nguyen TV, Jafri Z, Boyer M, Shonka DC, Khachigian LM. Personalised Medicine and the Potential Role of Electrospinning for Targeted Immunotherapeutics in Head and Neck Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:6. [PMID: 38202461 PMCID: PMC10780990 DOI: 10.3390/nano14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Advanced head and neck cancer (HNC) is functionally and aesthetically destructive, and despite significant advances in therapy, overall survival is poor, financial toxicity is high, and treatment commonly exacerbates tissue damage. Although response and durability concerns remain, antibody-based immunotherapies have heralded a paradigm shift in systemic treatment. To overcome limitations associated with antibody-based immunotherapies, exploration into de novo and repurposed small molecule immunotherapies is expanding at a rapid rate. Small molecule immunotherapies also have the capacity for chelation to biodegradable, bioadherent, electrospun scaffolds. This article focuses on the novel concept of targeted, sustained release immunotherapies and their potential to improve outcomes in poorly accessible and risk for positive margin HNC cases.
Collapse
Affiliation(s)
- Connor H. O’Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, The Canberra Hospital, Garran, ACT 2605, Australia
- ANU School of Medicine, Australian National University, Canberra, ACT 0200, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (Z.J.)
| | - Michael Boyer
- Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia;
| | - David C. Shonka
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (Z.J.)
| |
Collapse
|
32
|
Meng W, Jiang Z, Wang J, Chen X, Chen B, Cai B, Zhou Y, Ma L, Guan Y. Inhibition of urethral stricture by a catheter loaded with nanoparticle/ pirfenidone complexes. Front Bioeng Biotechnol 2023; 11:1254621. [PMID: 37954024 PMCID: PMC10639154 DOI: 10.3389/fbioe.2023.1254621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Urethral strictures are common injurious conditions of the urinary system. Reducing and preventing urethral strictures has become a hot and challenging topic for urological surgeons and related researchers. In this study, we developed a catheter loaded with nanoparticle/pirfenidone (NP/PFD) complexes and evaluated its effectiveness at inhibiting urethral stricture in rabbits, providing more references for the clinical prevention and reduction of urethral stenosis. Methods: Twelve adult male New Zealand rabbits were selected and divided into the following four groups in a ratio of 1:1:1:1 using the random number table method: Group A, sham; Group B, urethral stricture (US); Group C, US + unmodified catheter; and Group D, US + NP/PFD catheter. On the 30th day after modelling, retrograde urethrography was performed to evaluate urethral stricture formation, and histopathological examination was performed on the tissues of the corresponding surgical site. Meanwhile, changes in the expression level of Transforming growth factor β1 (TGF-β1) in the tissues were detected by immunohistochemistry. Results: The NP/PFD complexes adhered uniformly to the catheter surface. They remained on the surface of the catheter after insertion into the urethra. In addition, the NP/PFD complexes spread into the urethral epithelium 2 weeks after surgery. Ultimately, urethral strictures were significantly reduced with the placement of the NP/PFD complex catheter. Conclusion: Our catheter loaded with NP/PFD complexes effectively delivered PFD to the urethral epithelium through continuous local delivery, thereby reducing fibrosis and stricture after urethral injury, which may be associated with the inhibition of TGF-β1 expression.
Collapse
Affiliation(s)
- Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhaosheng Jiang
- Department of Urology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Jiahao Wang
- Department of Urology, Wuxi Hospital Affiliated to the Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaohua Chen
- Department of Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bo Chen
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
33
|
Agrawal G, Aswath S, Laha A, Ramakrishna S. Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Adv Wound Care (New Rochelle) 2023; 12:529-543. [PMID: 36680757 DOI: 10.1089/wound.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed drugs to treat inflammation and related ailments. In recent years, loading these drugs onto nanodevices like nanoparticles, nanofibers, etc. as a drug delivery system has gained momentum due to its desirable properties and advantages. The purpose of this review is to examine the existing research on the potential and novel use of nanofiber-assisted delivery of NSAIDs. Recent Advances: Electrospun nanofibers have recently garnered considerable attention from researchers in a variety of sectors. They have proved to be promising vehicles for drug delivery systems because of their exceptional and favorable features like prolonged drug release, controllable porosity, and high surface area. In this article, various polymers and even combinations of polymers loaded with single or multiple drugs were analyzed to achieve the desired drug release rates (burst, sustained, and biphasic) from the electrospun nanofibers. Critical Issues: The administration of these medications can induce major adverse effects, causing patients discomfort. Thus, encapsulating these drugs within electrospun nanofibers helps to reduce the severity of side effects while also providing additional benefits such as targeted and controlled drug release, reduced toxicity, and long-lasting effects of the drug with lower amounts of administration. Future Directions: This review covers previous research on the delivery of NSAIDs using electrospun nanofibers as the matrix. Also, this study intends to aid in the development of enhanced drug delivery systems for the treatment of inflammation and related issues.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Surabhi Aswath
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
- Department of Chemical Engineering, Calcutta Institute of Technology, Howrah, India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Westwood L, Emmerson E, Callanan A. Fabrication of polycaprolactone electrospun fibres with retinyl acetate for antioxidant delivery in a ROS-mimicking environment. Front Bioeng Biotechnol 2023; 11:1233801. [PMID: 37650040 PMCID: PMC10463743 DOI: 10.3389/fbioe.2023.1233801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Increased cancer rates denote that one in two people will be diagnosed with cancer in their lifetime. Over 60% of cancer patients receive radiotherapy, either as a stand-alone treatment or in combination with other treatments such as chemotherapy and surgery. Whilst radiotherapy is effective in destroying cancer cells, it also causes subsequent damage to healthy cells and surrounding tissue due to alterations in the tumor microenvironment and an increase in reactive oxygen species (ROS). This can cause extensive damage that impairs tissue function, and the likelihood of tissue regeneration and restoration of function is significantly reduced as new healthy cells cannot survive in the damaged environment. In the treatment of head and neck cancers, radiotherapy can cause salivary gland dysfunction. This significantly impairs the patient's quality of life and there is currently no cure, only palliative treatment options. Tissue engineering approaches are used to mimic the microenvironment of the tissue and can mediate the damaged microenvironment via bioactive compounds, to support the delivery, survival, and proliferation of new, healthy cells into the damaged environment. Methods: In this study, retinyl acetate, a derivative of vitamin A, was successfully incorporated into electrospun polycaprolactone fibres. Results: SEM images and characterization analyses showed that all scaffolds produced had similar characteristics, including fiber morphology and scaffold wettability. The vitamin scaffolds were shown to exert an antioxidant effect through scavenging activity of both DPPH and hydroxyl radicals in vitro. Critically, the antioxidant scaffolds supported the growth of human submandibular gland cells and significantly upregulated the expression of GPx1, an antioxidant enzyme, when cultured under both normal conditions and under a simulated oxidative stress environment. Discussion: These results suggest that incorporation of retinyl acetate into electrospun fibres has may mediate the damaged microenvironment post cancer radiation therapy.
Collapse
Affiliation(s)
- Lorna Westwood
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, United Kingdom
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Salaris V, San Félix García-Obregón I, López D, Peponi L. Fabrication of PLA-Based Electrospun Nanofibers Reinforced with ZnO Nanoparticles and In Vitro Degradation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2236. [PMID: 37570553 PMCID: PMC10420940 DOI: 10.3390/nano13152236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
In this work, electrospun nanofibers based on polylactic acid, PLA, reinforced with ZnO nanoparticles have been studied, considering the growing importance of electrospun mats based on biopolymers for their applications in different fields. Specifically, electrospun nanofibers based on PLA have been prepared by adding ZnO nanoparticles at different concentrations, such as 0.5, 1, 3, 5, 10 and 20 wt%, with respect to the polymer matrix. The materials have been characterized in terms of their morphological, mechanical, and thermal properties, finding 3 wt% as the best concentration to produce PLA nanofibers reinforced with ZnO nanoparticles. In addition, hydrolytic degradation in phosphate buffer solution (PBS) was carried out to study the effect of ZnO nanoparticles on the degradation behavior of PLA-based electrospun nanofiber mats, obtaining an acceleration in the degradation of the PLA electrospun mat.
Collapse
Affiliation(s)
| | | | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (V.S.); (I.S.F.G.-O.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (V.S.); (I.S.F.G.-O.)
| |
Collapse
|
36
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Xie Y, Fang Q, Zhao H, Li Y, Lin Z, Chen J. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing. MICROMACHINES 2023; 14:1437. [PMID: 37512748 PMCID: PMC10385759 DOI: 10.3390/mi14071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Melt electrospinning writing is a new and promising method for fabricating micro/nanofibers, which has shown great prospects in the biomedical fields such as 3D printing of porous scaffolds. The diameter of the melt electrospinning writing fiber can determine the resolution of the microstructure; thus, the controllability of the fiber diameter is of great significance to the whole fabrication process. In this paper, an orthogonal design experiment (six factors, three levels) was used to explore the impacts of six melt electrospinning parameters (melt temperature, collector speed, tip-to-collector distance, melt flow rate, voltage, and needle gauge) on the fiber diameter. In this experiment, the diameter of fibers obtained with the designed experimental parameters and conditions varied from 10.30 μm to 20.02 μm. The range analysis of orthogonal test results showed that the melt flow rate was the most important factor influencing the diameter of melt electrospinning writing fiber, while the voltage was the least influential factor. The variance analysis of orthogonal test results showed that melt temperature, collector velocity, tip-to-collector distance and melt flow rate had a significant influence on the diameter of melt electrospinning writing fiber. On the basis of the first-order regression equation, the fiber diameter of poly-ε-caprolactone can be accurately controlled, thus improving the engineering applications of poly-ε-caprolactone.
Collapse
Affiliation(s)
- Yu Xie
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Qi Fang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Han Zhao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Yang Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Zhihai Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Jianxiong Chen
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| |
Collapse
|
38
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
39
|
Wei F, Qi F, Li Y, Dou W, Zeng T, Wang J, Yao Z, Zhang L, Tang Z. Amino-rich nanofiber membrane with favorable hemocompatibility for highly efficient removal of bilirubin from plasma. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
40
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
41
|
Zhong G, Qiu M, Zhang J, Jiang F, Yue X, Huang C, Zhao S, Zeng R, Zhang C, Qu Y. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int J Biol Macromol 2023; 234:123693. [PMID: 36806778 DOI: 10.1016/j.ijbiomac.2023.123693] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
In this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study. The results of tension test results indicated the RA-BSP-PVA@PLA nanofiber exhibited excellent flexibility and better accommodates wounds. Moreover, the biocompatibility of RA-BSP-PVA@PLA was examined through MTT assay. Lastly, RA-BSP-PVA@PLA nanofibers can induce wound tissue growth, as verified by the rat dorsal skin wound models and tissue sections. Furthermore, RA-BSP-PVA@PLA can facilitate the proliferation and transformation of early wound macrophages, and down-regulate MPO+ expression of on the wound, thus facilitating wound healing, as confirmed by the result of immunohistochemical. Thus, RA-BSP-PVA@PLA nanofibers show great potential as wound dressings in wound healing.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
42
|
Lee JE, Heo SW, Kim CH, Park SJ, Park SH, Kim TH. In-situ ionic crosslinking of 3D bioprinted cell-hydrogel constructs for mechanical reinforcement and improved cell growth. BIOMATERIALS ADVANCES 2023; 147:213322. [PMID: 36758283 DOI: 10.1016/j.bioadv.2023.213322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/01/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Hydrogels are commonly used in 3D bioprinting technology owing to their ability to encapsulate living cells. However, their inherent delicate properties limit their applicability in the fabrication of mechanically reliable tissue engineering constructs. Herein, we propose a novel reinvented layering integration method for the functional enhancement of 3D cell-hydrogel bioprinting. This was implemented by inserting electrospun microfiber sheets with a crosslinker between the 3D bioprinted layers. When surface-modified microfiber sheets were combined with Ca2+ ionic crosslinkers, the as-printed cell-hydrogel strand was immediately crosslinked when it contacted the sheet surface. The in-situ crosslinking in the bioprinting process not only improved the overall structural stability, but also reinforced the compressive strength and elastic modulus. The enhanced structural stability guaranteed the shape fidelity of the 3D architecture, which included the internal channel network, resulting in improved perfusion conditions for cell growth. The growth of NIH3T3 fibroblasts in 3D bioconstructs with in-situ crosslinking increased by up to five times compared to that of normally bioprinted constructs. The strengthened structural integrity was distinctly sustainable during the cell culture period owing to the sustained release of Ca2+ ions from the embedded microfiber sheets. The synergistic effect of the reinforced mechanical properties with enhanced cell growth is expected to extend the applicability of the proposed hydrogel-based bioprinting technique for soft tissue engineering.
Collapse
Affiliation(s)
- Ji Eun Lee
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, South Korea
| | - Seung Won Heo
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, South Korea
| | - Chae Hwa Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, South Korea
| | - Seong Je Park
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang avenue, 639798, Singapore
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea.
| | - Tae Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, South Korea.
| |
Collapse
|
43
|
Tahir M, Vicini S, Sionkowska A. Electrospun Materials Based on Polymer and Biopolymer Blends-A Review. Polymers (Basel) 2023; 15:1654. [PMID: 37050268 PMCID: PMC10096894 DOI: 10.3390/polym15071654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This review covers recent developments and progress in polymer and biopolymer blending and material preparation by electrospinning. Electrospinning is a technique that is used to produce nanofibers to improve the quality of membranes. Electrospun nanofibers are highly applicable in biomedical sciences, supercapacitors, and in water treatment following metal ion adsorption. The key affecting factors of electrospinning have been checked in the literature to obtain optimal conditions of the electrospinning process. Future research directions and outlooks have been suggested to think about innovative ideas for research in this field.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genoa, Italy
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
44
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
45
|
Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023; 13:7312-7328. [PMID: 36891485 PMCID: PMC9987416 DOI: 10.1039/d2ra06023j] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 03/08/2023] Open
Abstract
Emerging drug-delivery systems demand a controlled or programmable or sustained release of drug molecules to improve therapeutic efficacy and patient compliance. Such systems have been heavily investigated as they offer safe, accurate, and quality treatment for numerous diseases. Amongst newly developed drug-delivery systems, electrospun nanofibres have emerged as promising drug excipients and are coming up as promising biomaterials. The inimitable characteristics of electrospun nanofibres in terms of their high surface-to-volume ratio, high porosity, easy drug encapsulation, and programmable release make them an astounding drug-delivery vehicle.
Collapse
Affiliation(s)
- Mrunalini K Gaydhane
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Saptarshi Majumdar
- Poly-Nano-Bio Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| |
Collapse
|
46
|
Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The importance of electrospinning to produce biomimicking micro- and nano-fibrous matrices is realized by many who work in the area of fibers. Based on the solubility of the materials to be spun, organic solvents are typically utilized. The toxicity of the utilized organic solvent could be extremely important for various applications, including tissue engineering, biomedical, agricultural, etc. In addition, the high viscosities of such polymer solutions limit the use of high polymer concentrations and lower down productivity along with the limitations of obtaining desired fiber morphology. This emphasizes the need for a method that would allay worries about safety, toxicity, and environmental issues along with the limitations of using concentrated polymer solutions. To mitigate these issues, the use of emulsions as precursors for electrospinning has recently gained significant attention. Presence of dispersed and continuous phase in emulsion provides an easy route to incorporate sensitive bioactive functional moieties within the core-sheath fibers which otherwise could only be hardly achieved using cumbersome coaxial electrospinning process in solution or melt based approaches. This review presents a detailed understanding of emulsion behavior during electrospinning along with the role of various constituents and process parameters during fiber formation. Though many polymers have been studied for emulsion electrospinning, poly(ε-caprolactone) (PCL) is one of the most studied polymers for this technique. Therefore, electrospinning of PCL based emulsions is highlighted as unique case-study, to provide a detailed theoretical understanding, discussion of experimental results along with their suitable biomedical applications.
Collapse
|
47
|
Uhlířová R, Langová D, Bendová A, Gross M, Skoumalová P, Márová I. Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against Cutibacterium acnes and Staphylococcus epidermidis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:844. [PMID: 36903722 PMCID: PMC10005654 DOI: 10.3390/nano13050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Acne vulgaris is a prevalent skin condition that is caused by an imbalance in skin microbiomes mainly by the overgrowth of strains such as Cutibacterium acnes and Staphylococcus epidermidis which affect both teenagers and adults. Drug resistance, dosing, mood alteration, and other issues hinder traditional therapy. This study aimed to create a novel dissolvable nanofiber patch containing essential oils (EOs) from Lavandula angustifolia and Mentha piperita for acne vulgaris treatment. The EOs were characterized based on antioxidant activity and chemical composition using HPLC and GC/MS analysis. The antimicrobial activity against C. acnes and S. epidermidis was observed by the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The MICs were in the range of 5.7-9.4 μL/mL, and MBCs 9.4-25.0 μL/mL. The EOs were integrated into gelatin nanofibers by electrospinning and SEM images of the fibers were taken. Only the addition of 20% of pure essential oil led to minor diameter and morphology alteration. The agar diffusion tests were performed. Pure and diluted Eos in almond oil exhibited a strong antibacterial effect on C. acnes and S. epidermidis. After incorporation into nanofibers, we were able to focus the antimicrobial effect only on the spot of application with no effect on the surrounding microorganisms. Lastly, for cytotoxicity evaluation, and MTT assay was performed with promising results that samples in the tested range had a low impact on HaCaT cell line viability. In conclusion, our gelatin nanofibers containing EOs are suitable for further investigation as prospective antimicrobial patches for acne vulgaris local treatment.
Collapse
Affiliation(s)
- Renata Uhlířová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
48
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
49
|
Patel PR, Gundloori RVN. A review on electrospun nanofibers for multiple biomedical applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratikshkumar R. Patel
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Rathna Venkata Naga Gundloori
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
50
|
Snari RM, Bayazeed A, Ibarhiam SF, Alnoman RB, Attar R, Abumelha HM, El-Metwaly NM. Solution blowing spinning of polylactate/polyvinyl alcohol/ZnO nanocomposite toward green and sustainable preparation of wound dressing nanofibrous films. Microsc Res Tech 2022; 85:3860-3870. [PMID: 36178460 DOI: 10.1002/jemt.24237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
The outstanding biodegradability, biocompatibility, affordability, and renewability of polylactic acid have made it a prominent biomaterial. Herein, an innovative, easy, and eco-friendly technique is used to prepare sodium polylactate (SP)-based nanofibers. Solution blowing spinning (SBS) was used to create fibrous mats of SP and polyvinyl alcohol (PVA). SBS's SP nanfibers were crosslinked using an aqueous solution of calcium chloride to produce moisture-resistant calcium polylactate nanofibrous spun mats. Both of UV-visible absorption spectra and transmission electron microscopy were utilized to study the produced zinc oxide (ZnO) nanoparticles (NPs) to indicate a diameter of around 15-23 nm with a high intensity absorption intensity at 370 nm. New polylactate copolymer was synthesized and characterized by infrared and NMR spectroscopic techniques. In order to prepare SP/PVA/ZnO nanocomposite nanofibers, various ZnO ratios were used. The morphologies of the composite nanofibers were investigated by infrared spectroscopy (FTIR), energy-dispersive X-ray analyzer, and scanning electron microscopy. The cytotoxicity tests of the prepared mat were studied by conducting experiments with L-929 cells at various time intervals. The prepared composite SP/PVA/ZnO nanofibers were subjected to cytotoxicity tests to determine their cytocompatibility. Results showed that those with ZnO concentrations between 0.5% and 2% were found to be less harmful than those with higher concentrations. A variety of bacterial species, including Bacillus pumilus and Staphylococcus aureus, as well as Klebseilla pneumoniae and Escherichia coli, were used to test the antibacterial properties of SP/PVA/ZnO spun mats. The ZnO NPs integrated in the SP/PVA fibrous mats were responsible for their antibacterial properties. After finding the appropriate concentration of ZnO that is least harmful while yet giving a satisfactory antibacterial activity, this biomaterial might be perfect for wound dressing applications. HIGHLIGHTS: New eco-friendly biodegradable sodium polylactate (SP) copolymer was synthesized. Zinc oxide nanoparticles (ZnO NPs) with a diameter of 15-23 nm were prepared. High antibacterial SP/PVA/ZnO fibers were prepared by solution blowing spinning. SP/PVA/ZnO nanofibers (180-220 nm) with various ratios of ZnO were presented. Cytotoxicity results showed that the cell viability decreases with increasing ZnO.
Collapse
Affiliation(s)
- Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Saham F Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rua B Alnoman
- Department of Chemistry, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Roba Attar
- Department of Microbiology, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana M Abumelha
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|