1
|
Ali KA, Chakraborty R, Roy SK, Ghosal K. Design and development of Ondansetron-loaded polysaccharide-based buoyant formulation for improved gastric retention and drug release, using both natural and semi-synthetic polymers. Int J Biol Macromol 2025; 305:141105. [PMID: 39956232 DOI: 10.1016/j.ijbiomac.2025.141105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Extended gastric residence of drugs can enhance the therapeutic effect, increase bioavailability, improve efficacy, and reduce the number of required doses by prolonging the retention of the drug delivery system. A new floating drug delivery for Ondansetron was designed and evaluated. Pre-formulation studies included the assessment of powder flow properties and drug-excipient compatibility. In-vitro release studies and a buoyancy test were performed to characterize the performance of the system. The study evaluated the properties of Ondansetron tablets. The optimized batches had compressibility index values ranging from 7.272 % to 25 %, with percentage weight fluctuation ranging from 0 to 1.05 %. The tablets were 2.92 and 3.52 mm thick, hardness between 3.50 and 4.65 kg/cm2, and loss percentages between 0.12 and 0.68 %, except batch T8, which had high friability index values of 1.02. Thermo-gravimetric analysis and Differential scanning Calorimetry showed no interaction between the drug and other polymers. Formulations showed a sustained release of the drug for periods of >12 h for several compositions, while some showed a release of >90 %. The formulations with HPMC K4M showed slower drug release due to a strong hydro layer. Citric acid content increased drug release, suggesting modulation of drug release kinetics. Kinetic modeling revealed that some of the formulations exhibited zero-order release kinetics, which means that the drug is released at a constant rate to maintain a steady level of the drug in the body. This project aims to improve the therapeutic effect of Class I Biopharmaceutical Classification System (BCS I) drug ondansetron by using a stomach-retaining, floating drug delivery system. Promising results are indicative of better bioavailability and sustained therapeutic doses. Findings may influence the development of delivery methods for similar substances facing gastrointestinal absorption challenges.
Collapse
Affiliation(s)
- Kazi Asraf Ali
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, West Bengal, Nadia, PIN-741249, India
| | - Rideb Chakraborty
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur, West Bengal 713212, India
| | - Sanjit Kr Roy
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, West Bengal, Nadia, PIN-741249, India
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Bollareddy SR, Chauhan SS, Venuganti VVK. Bioinspired Long-Acting Mucoadhesive Gastric Patch for Levothyroxine Delivery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14924-14939. [PMID: 40029042 DOI: 10.1021/acsami.4c20569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The delivery of long-acting therapeutic dosage forms through the oral route is a challenge. A bioinspired mucoadhesive gastric patch was developed as a platform technology for the long-acting delivery of levothyroxine sodium (LT). The mucoadhesive patch was designed to have a three-layer composition, including a core, mucoadhesive, and backing layer. The water contact angle on the mucoadhesive and backing layer sides of the patch was found to be 68 ± 1.4° and 121 ± 0.4°, respectively. The adhesive strength of the mucoadhesive layer, made of a 4-carboxyphenylboronic acid-chitosan conjugate, was found to be 25 ± 1.1 kPa when adhered to the rat stomach mucosa. The LT-containing patch was found to remain adhered to the body region of the rat stomach after 30 days of oral administration. A single dose of the mucoadhesive gastric patch containing 15.8 μg/kg/day of LT was able to provide a constant plasma concentration (87-126 ng/mL) of LT for 38 days in rats. There was no significant (P < 0.05) difference in the concentration of inflammatory markers including tumor necrosis factor-α (TNF-α), interleukins 1β (IL-1 β) and 6 (IL-6), with and without long-acting patch administration. The patches were found to be stable when stored at 5 ± 3 °C for 6 months. Taken together, the bioinspired mucoadhesive gastric patch can be developed for the long-acting delivery of LT through the oral route.
Collapse
Affiliation(s)
- Srivarsha Reddy Bollareddy
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Shreya Shashank Chauhan
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| |
Collapse
|
3
|
Pandav G, Karanwad T, Banerjee S. 3D printed gastroretentive floating-hollow capsular device (GRF-HCD) for levofloxacin oral delivery using selective laser sintering (SLS) platform technology. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-18. [PMID: 39898585 DOI: 10.1080/09205063.2025.2458841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The development of gastroretentive drug delivery systems is one such instance, which was developed to improve the oral bioavailability and effectiveness of drugs, which has a poor absorption window in the upper GIT and/or triggers local activity such as duodenal and stomach activity. In this work, the objective of sintering gastroretentive dosage forms was to sustain the release of levofloxacin in the gastric region for an extended period of time. Selective laser sintering (SLS)-mediated powder bed fusion 3D printing technology was utilized to design and fabricate a modified-release gastroretentive floating-hollow capsular device (GRF-HCD) in three distinct capsule sizes namely, 000, 00, and 0 with the aid of pharmaceutical grade polymers (combinations of Kolliphor P188 and Kollidon SR in 1:1 ratio). Sintered GRF-HCD was further subjected to morphological analysis, weight variation, and swelling index. In addition, in vitro and in vivo buoyancy studies were performed in an animal model using X-ray imaging. Finally, the in vitro drug release from GRF-HCD was performed in simulated gastric pH condition (pH-1.2) upto 12 h. Levofloxacin concentration was then quantified using validated RP-HPLC method. The in vitro floating behaviour was mimicked with the in vivo floating, where the GRF-HCD was retained in the rabbit stomach for an extended period which will help to sustain the drug release for a longer period and maintained the maximum concentration of levofloxacin in the gastric region.
Collapse
Affiliation(s)
- Ganesh Pandav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| |
Collapse
|
4
|
Bhardwaj BY, Vihal S, Pahwa R, Agarwal S, Gupta B, Yang JC, Chauhan R, Chellappan DK, Gupta G, Singh SK, Dua K, Negi P. Recent advancements in xanthan gum-based gastroretentive floating formulations: Chemical modification, production and applications. Carbohydr Polym 2025; 348:122809. [PMID: 39562084 DOI: 10.1016/j.carbpol.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Non-toxic, biocompatible, biodegradable, and bioadhesive, characteristics, of natural polysaccharides, are widely recognized and well accepted. Their usage in dietary, medicinal, biomedical, and cosmetic, applications is due to their unique and fascinating attributes. Xanthan gum, a microbial polysaccharide possesses diverse-wonderful features. It is a naturally occurring heteropolysaccharide, with large molecular weight, derived from the Gram-negative bacteria, Xanthomonas Campestris. This biopolymer has been studied extensively as a matrix for tablets, nanoparticles, microparticles, hydrogels, and various other formulation types. However, indigenous xanthan gum has its own set of restrictions, which may be overcome by chemical modification, to fine-tune the characteristics of the native gum, for attaining unmet demands. This approach has huge potential in the drug delivery and numerous other promising applications. The objective of this review is to provide a consolidated source of information on xanthan gum-based gastroretentive systems. Several approaches of floating techniques, with recent research avenues and patents, utilizing the natural polysaccharide xanthan gum is also discussed.
Collapse
Affiliation(s)
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Shweta Agarwal
- Swami Vivekanand College of Pharmacy, Near Banur, Rajpura, Patiala, Punjab, 140601, India
| | - Bhuvanesh Gupta
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Jen Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University,Taipei 110-52, Taiwan
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India.
| |
Collapse
|
5
|
Waqar MA, Mubarak N, Khan AM, Khan R, Shaheen F, Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. J Drug Target 2024; 32:655-671. [PMID: 38652465 DOI: 10.1080/1061186x.2024.2347366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilising the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilised for the delivery of drug in a delayed manner. Various polymers have been utilised for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Afshan Shabbir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
7
|
Orszulak L, Lamrani T, Bernat R, Tarnacka M, Żakowiecki D, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Zięba A, Kamiński K, Kamińska E. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol Pharm 2024; 21:3027-3039. [PMID: 38755753 DOI: 10.1021/acs.molpharmaceut.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 μg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 μg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Bernat
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Żakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
8
|
Sahu A, Rathee S, Saraf S, Jain SK. A Review on the Recent Advancements and Artificial Intelligence in Tablet Technology. Curr Drug Targets 2024; 25:416-430. [PMID: 38213164 DOI: 10.2174/0113894501281290231221053939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Tablet formulation could be revolutionized by the integration of modern technology and established pharmaceutical sciences. The pharmaceutical sector can develop tablet formulations that are not only more efficient and stable but also patient-friendly by utilizing artificial intelligence (AI), machine learning (ML), and materials science. OBJECTIVES The primary objective of this review is to explore the advancements in tablet technology, focusing on the integration of modern technologies like artificial intelligence (AI), machine learning (ML), and materials science to enhance the efficiency, cost-effectiveness, and quality of tablet formulation processes. METHODS This review delves into the utilization of AI and ML techniques within pharmaceutical research and development. The review also discusses various ML methodologies employed, including artificial neural networks, an ensemble of regression trees, support vector machines, and multivariate data analysis techniques. RESULTS Recent studies showcased in this review demonstrate the feasibility and effectiveness of ML approaches in pharmaceutical research. The application of AI and ML in pharmaceutical research has shown promising results, offering a potential avenue for significant improvements in the product development process. CONCLUSION The integration of nanotechnology, AI, ML, and materials science with traditional pharmaceutical sciences presents a remarkable opportunity for enhancing tablet formulation processes. This review collectively underscores the transformative role that AI and ML can play in advancing pharmaceutical research and development, ultimately leading to more efficient, reliable and patient-centric tablet formulations.
Collapse
Affiliation(s)
- Amit Sahu
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Shivani Saraf
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
9
|
Vrettos NN, Wang P, Wang Y, Roberts CJ, Xu J, Yao H, Zhu Z. Controlled release of MT-1207 using a novel gastroretentive bilayer system comprised of hydrophilic and hydrophobic polymers. Pharm Dev Technol 2023; 28:724-742. [PMID: 37493413 DOI: 10.1080/10837450.2023.2238822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
In the present study, novel gastroretentive bilayer tablets were developed that are promising for the once-a-day oral delivery of the drug candidate MT-1207. The gastroretentive layer consisted of a combination of hydrophilic and hydrophobic polymers, namely polyethylene oxide and Kollidon® SR. A factorial experiment was conducted, and the results revealed a non-effervescent gastroretentive layer that, unlike most gastroretentive layers reported in the literature, was easy to prepare, and provided immediate tablet buoyancy (mean floating lag time of 1.5 s) that lasted over 24 h in fasted state simulated gastric fluid (FaSSGF) pH 1.6, irrespective of the drug layer, thereby allowing a 24-hour sustained release of MT-1207 from the drug layer of the tablets. Furthermore, during in vitro buoyancy testing of the optimised bilayer tablets in media of different pH values (1.0, 3.0, 6.0), the significant difference (one-way ANOVA, p < 0.001) between the respective total floating times indicated that stomach pH effects on tablet buoyancy are important to be considered during the development of non-effervescent gastroretentive formulations and the choice of dosing regimen. To the best of our knowledge, this has not been reported before, and it should probably be factored in when designing dosing regimens. Finally, a pharmacokinetic study in Beagle dogs indicated a successful in vivo 24-hour sustained release of MT-1207 from the optimised gastroretentive bilayer tablet formulations with the drug plasma concentration remaining above the estimated minimum effective concentration of 1 ng/mL at the 24-hour timepoint and also demonstrated the gastroretentive capabilities of the hydrophilic and hydrophobic polymer combination. The optimised formulations will be forwarded to clinical development.
Collapse
Affiliation(s)
| | - Peng Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuhan Wang
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Clive J Roberts
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
Cirilli M, Maroni A, Moutaharrik S, Foppoli A, Ochoa E, Palugan L, Gazzaniga A, Cerea M. Organ-Retentive Osmotically Driven System (ORODS): A Novel Expandable Platform for in Situ Drug Delivery. Int J Pharm 2023; 644:123295. [PMID: 37544386 DOI: 10.1016/j.ijpharm.2023.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Drug delivery systems capable of being retained within hollow organs allow the entire drug dose to be delivered locally to the disease site or to absorption windows for improved systemic bioavailability. A novel Organ-Retentive Osmotically Driven System (ORODS) was here proposed, obtained by assembling drug-containing units having prolonged release kinetics with osmotic units used as increasing volume compartments. Particularly, prototypes having H-shape design were conceived, manufactured and evaluated. Such devices were assembled by manually inserting a tube made of regenerated cellulose (osmotic unit) into the holes of two perforated hydrophilic tableted matrices containing paracetamol as a tracer drug. The osmotic unit was obtained by folding and gluing a plain regenerated cellulose membrane and loading sodium chloride inside. When immersed in aqueous fluids, this compartment expanded to approximately 80% of its maximum volume within 30 min of testing, and a plateau was maintained for about 6 h. Subsequently, it slowly shrank to approximately 20% of the maximum volume in 24 h, which would allow for physiological emptying of the device from hollow organs. While expanding, the osmotic unit acquired stiffness. Drug release from H-shaped ORODSs conveyed in hard-gelatin capsules was shown to be prolonged for more than 24 h.
Collapse
Affiliation(s)
- Micol Cirilli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Saliha Moutaharrik
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy.
| | - Anastasia Foppoli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Evelyn Ochoa
- Università degli Studi di Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Palugan
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
11
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
12
|
Danielak D, Paszkowska J, Staniszewska M, Garbacz G, Terlecka A, Kubiak B, Romański M. Conjunction of semi-mechanistic in vitro-in vivo modeling and population pharmacokinetics as a tool for virtual bioequivalence analysis - a case study for a BCS class II drug. Eur J Pharm Biopharm 2023; 186:132-143. [PMID: 37015321 DOI: 10.1016/j.ejpb.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Virtual bioequivalence trial (VBE) simulations based on (semi)mechanistic in vitro-in vivo (IVIV) modeling have gained a huge interest in the pharmaceutical industry. Sophisticated commercially available software allows modeling variable drug fates in the gastrointestinal tract (GIT). Surprisingly, the between-subject and inter-occasion variability (IOV) of the distribution volumes and clearances are ignored or simplified, despite substantially contributing to varied plasma drug concentrations. The paper describes a novel approach for IVIV-based VBE by using population pharmacokinetics (popPK). The data from two bioequivalence trials with a poorly soluble BCS class II drug were analyzed retrospectively. In the first trial, the test drug product (biobatch 1) did not meet the bioequivalence criteria, but after a reformulation, the second trial succeeded (biobatch 2). The popPK model was developed in the Monolix software (Lixoft SAS, Simulation Plus) based on the originator's plasma concentrations. The modified Noyes-Whitney model was fitted to the results of discriminative biorelevant dissolution tests of the two biobatches and seven other reformulations. Then, the IVIV model was constructed by joining the popPK model with fixed drug disposition parameters, the drug dissolution model, and mechanistic approximation of the GIT transit. It was used to simulate the drug concentrations at different IOV levels of the primary pharmacokinetic parameters and perform the VBE. Estimated VBE success rates for both biobatches well reflected the outcomes of the bioequivalence trials. The predicted 90% confidence intervals for the area under the time-concentration curves were comparable with the observed values, and the 10% IOV allowed the closest approximation to the clinical results. Simulations confirmed that a significantly lower maximum drug concentration for biobatch 1 was responsible for the first clinical trial's failure. In conclusion, the proposed workflow might aid formulation screening in generic drug development.
Collapse
|
13
|
Rump A, Tetyczka C, Littringer E, Kromrey ML, Bülow R, Roblegg E, Weitschies W, Grimm M. In Vitro and In Vivo Evaluation of Carbopol 71G NF-Based Mucoadhesive Minitablets as a Gastroretentive Dosage Form. Mol Pharm 2023; 20:1624-1630. [PMID: 36705398 DOI: 10.1021/acs.molpharmaceut.2c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gastroretentive dosage forms are intended to stay inside the stomach for a long period of time while releasing an active pharmaceutical ingredient. Such systems may offer significant benefits for numerous drugs compared to other sustained release systems, such as improved pharmacokinetics/bioavailability and reduced intake frequency and thereby improved adherence to the medical therapy. However, there is no gastroretentive product on the market with proven reliable gastroretentive properties in humans. A major obstacle is the motility pattern of the stomach in the fasting state in humans, which reliably ensures gastric emptying of even large indigestible objects into the small intestine. One promising approach to avoid gastric emptying is adhesion of the drug delivery system to the gastric mucosa. In order to achieve mucoadhesive properties, minitablets containing Carbopol 71G NF were developed and compared to minitablets without adhesive properties. In a specialized mucoadhesive test system, the adhesion time was prolonged for adhesive minitablets (240 min) compared to non-adhesive minitablets (30 min). The in vivo transit behavior was investigated using magnetic resonance imaging in 11 healthy volunteers in fasted state in a crossover setup. It was found that the gastric residence time (GRT) of the adhesive minitablets (median of 37.5 min with IQR = 22.5-52.5) was statistically significantly prolonged compared to the non-adhesive minitablets (median of 7.5 with IQR = 7.5-22.5), indicating a delay in gastric emptying by adhesion to the gastric mucosa. However, the system needs further improvement to create a clinical benefit. Furthermore, it was observed that for 9 of 22 administrations (three minitablets were given simultaneously with every administration), the minitablets were not emptied together but showed different GRTs.
Collapse
Affiliation(s)
- Adrian Rump
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | | | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | - Werner Weitschies
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Michael Grimm
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
14
|
Evodiamine-loaded rhEGF-conjugated bovine serum albumin nanoparticles alleviate indomethacin-associated gastric mucosal injury in male SD rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Fredholt F, Di Meo C, Sloth S, Müllertz A, Berthelsen R. Direct visualizing of paracetamol immediate release tablet disintegration in vivo and in vitro. Eur J Pharm Biopharm 2022; 180:63-70. [PMID: 36122785 DOI: 10.1016/j.ejpb.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to study tablet disintegration by direct visualization, in vivo and in vitro. Based on literature data, a standard conventional paracetamol (CP) tablet, Panodil®, and a rapidly absorbed paracetamol (RP) tablet, Panodil® Zapp, were chosen as model systems to study tablet disintegration in the human stomach. Based on the obtained in vivo results, an in vitro disintegration method was designed to reproduce the visualized disintegration process occurring in the human stomach. For the clinical study, CP and RP tablets fastened to digital endoscopic camera capsules were administered to fasted human volunteers (n=4). The disintegration time and process were visualized by the real time video recordings, using the endoscopic camera capsule. The average disintegration time was found to be 26 ± 13 min and 10 ± 7 min, for CP (n=4) and RP (n=4) tablets, respectively. It was possible to reproduce the in vivo disintegration data in vitro using a USP 2 dissolution apparatus with 250 mL of viscous Fasted State Simulated Gastric Fluid (vFaSSGF*), simulating the rheological profile of human fasted state gastric fluid following administration of a glass of water. The viscosity of the simulated fasted state gastric fluid was found to have a large impact on the disintegration time of the tested immediate release tablets. Therefore, it is recommended to mimic gastric fluid viscosity during in vitro tablet disintegration studies.
Collapse
Affiliation(s)
- Freja Fredholt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla Di Meo
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stine Sloth
- Gastro Unit, Division of Endoscopy, Borgmester Ib Huuls vej 1, Hospital Herlev, Copenhagen University, DK-2730 Herlev, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
17
|
Mohamed JMM, Mahajan N, El-Sherbiny M, Khan S, Al-Serwi RH, Attia MA, Altriny QA, Arbab AH. Ameliorated Stomach Specific Floating Microspheres for Emerging Health Pathologies Using Polymeric Konjac Glucomannan-Based Domperidone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3670946. [PMID: 35872840 PMCID: PMC9300317 DOI: 10.1155/2022/3670946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The goal of this study was to use polymeric konjac glucomannan (KGM), Kollidon VA 64 (KVA64), and glutaraldehyde to ameliorate stomach specific floating microspheres (SSFM) using domperidone (DoN) to increase in vivo bioavailability and emerging health pathologies. The SSFM were made using the emulsion cross-linking process, and the polymer was chosen based on its ability to get cross-linked. The thermodynamic parameters were used to determine the AL classes of phase solubility curves using ideal complexes produced with KVA64. The optimal interaction constants at 25 and 37°C were found to be 116.14 and 128.05 M-1, respectively. The prepared SSFM had an average particle size (PS) of 163.71 ± 2.26 mm and a drug content of 96.66 ± 0.32%. It can be determined from in vitro drug release experiments that drug release is good in terms of regulated drug release after 12 h (92.62 ± 2.43%). The SSFMs were approximately sphere-shaped and had smooth surfaces, according to the morphological data. SSFMs were investigated using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and no chemical structural changes were identified. The SSFMs produces a considerable gastric residence time with optimal DoN release and absorption in stomach fluid, and the mean residence time (17.36 ± 1.4 h) and t 1/2 (10.47 ± 0.6 h) were considerably longer (p < 0.05) than those obtained following i.v. treatment (MRT = 8.42 ± 1.2 h; t 1/2 = 9.07 ± 0.7 h). The SSFMs maintained good physical stability for three months when stored at room temperature.
Collapse
Affiliation(s)
| | - Nikita Mahajan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shagufta Khan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Medical Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Attia
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Qamar Alsayed Altriny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| |
Collapse
|
18
|
Lex TR, Rodriguez JD, Zhang L, Jiang W, Gao Z. Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. AAPS J 2022; 24:40. [PMID: 35277760 DOI: 10.1208/s12248-022-00690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
In vitro dissolution testing is widely used to mimic and predict in vivo performance of oral drug products in the gastrointestinal (GI) tract. This literature review assesses the current in vitro dissolution methodologies being employed to simulate and predict in vivo drug dissolution under fasted and fed conditions, with emphasis on immediate release (IR) solid oral dosage forms. Notable human GI physiological conditions under fasted and fed states have been reviewed and summarized. Literature results showed that dissolution media, mechanical forces, and transit times are key dissolution test parameters for simulating specific postprandial conditions. A number of biorelevant systems, including the fed stomach model (FSM), GastroDuo device, dynamic gastric model (DGM), simulated gastrointestinal tract models (TIM), and the human gastric simulator (HGS), have been developed to mimic the postprandial state of the stomach. While these models have assisted in expanding physiological relevance of in vitro dissolution tests, in general, these models lack the ability to fully replicate physiological conditions/processes. Furthermore, the translatability of in vitro data to an in vivo system remains challenging. Additionally, physiologically based pharmacokinetic (PBPK) modeling has been employed to evaluate the effect of food on drug bioavailability and bioequivalence. Here, we assess the current status of in vitro dissolution methodologies and absorption PBPK modeling approaches to identify knowledge gaps and facilitate further development of in vitro dissolution methods that factor in fasted and fed states. Prediction of in vivo drug performance under fasted and fed conditions via in vitro dissolution testing and modeling may potentially help efforts in harmonizing global regulatory recommendations regarding in vivo fasted and fed bioequivalence studies for solid oral IR products.
Collapse
Affiliation(s)
- Timothy R Lex
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Zongming Gao
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
19
|
Qian H, Chen D, Xu X, Li R, Yan G, Fan T. FDM 3D-Printed Sustained-Release Gastric-Floating Verapamil Hydrochloride Formulations with Cylinder, Capsule and Hemisphere Shapes, and Low Infill Percentage. Pharmaceutics 2022; 14:pharmaceutics14020281. [PMID: 35214013 PMCID: PMC8878517 DOI: 10.3390/pharmaceutics14020281] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to design and fabricate fused deposition modeling (FDM) 3D-printed sustained-release gastric-floating formulations with different shapes (cylinder, capsule and hemisphere) and infill percentages (0% and 15%), and to investigate the influence of shape and infill percentage on the properties of the printed formulations. Drug-loaded filaments containing HPMC, Soluplus® and verapamil hydrochloride were prepared via hot-melt extrusion (HME) and then used to print the following gastric-floating formulations: cylinder-15, capsule-0, capsule-15, hemisphere-0 and hemisphere-15. The morphology of the filaments and the printed formulations were observed by scanning electron microscopy (SEM). The physical state of the drugs in the filaments and the printed formulations were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The printed formulations were evaluated in vitro, including the weight variation, hardness, floating time, drug content and drug release. The results showed that the drug-loaded filament prepared was successful in printing the gastric floating formulations. Verapamil hydrochloride was proved thermally stable during HME and FDM, and in an amorphous state in the filament and the printed formulations. The shape and infill percentage of the printed formulations effected the hardness, floating time and in vitro drug release.
Collapse
Affiliation(s)
- Haonan Qian
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (H.Q.); (D.C.); (R.L.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Di Chen
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (H.Q.); (D.C.); (R.L.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Rui Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (H.Q.); (D.C.); (R.L.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guangrong Yan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Tianyuan Fan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (H.Q.); (D.C.); (R.L.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-5123
| |
Collapse
|
20
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
21
|
Jafar M, Salahuddin M, Khan MSA, Alshehry Y, Alrwaili NR, Alzahrani YA, Imam SS, Alshehri S. Preparation and In Vitro-In Vivo Evaluation of Luteolin Loaded Gastroretentive Microsponge for the Eradication of Helicobacter pylori Infections. Pharmaceutics 2021; 13:2094. [PMID: 34959375 PMCID: PMC8705744 DOI: 10.3390/pharmaceutics13122094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The current study aimed to develop a luteolin gastric floating microsponge for targeting Helicobacter pylori. The microsponge formulations were prepared by a quasi-emulsion method, and then evaluated for various physicochemical variables. The best microsponge was further assessed for drug-polymer interactions, surface morphology, in vivo floating, and in vitro anti H. pylori activity. The formulation which exhibited comparatively good production yield (64.45% ± 0.83), high entrapment efficiency (67.33% ± 3.79), prolonged in vitro floating time (>8 h), and sustained in-vitro drug release was selected as the best microsponge. The SEM study revealed that the best microsponge was spherical in shape and has a porous surface with interconnecting channels. DSC and XRD studies demonstrated the dispersion of luteolin in the polymeric matrix of the microsponge. Ultrasonography confirmed that the best microsponge could in the rat stomach for 4 h. The in vitro MIC results indicate that the anti H. pylori activity of the best microsponge was almost doubled and more sustained compared to pure luteolin. To conclude, it can be said that the developed luteolin gastric floating microsponge could be a better option to effectively eradicate H. pylori infections and the histopathological and pharmacodynamic assessments of our best microsponge can be expected to provide a rewarding outcome.
Collapse
Affiliation(s)
- Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (Y.A.); (N.R.A.); (Y.A.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Yasir Alshehry
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (Y.A.); (N.R.A.); (Y.A.A.)
| | - Nazar Radwan Alrwaili
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (Y.A.); (N.R.A.); (Y.A.A.)
| | - Yazeed Ali Alzahrani
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (Y.A.); (N.R.A.); (Y.A.A.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| |
Collapse
|
22
|
Sohail Arshad M, Zafar S, Yousef B, Alyassin Y, Ali R, AlAsiri A, Chang MW, Ahmad Z, Ali Elkordy A, Faheem A, Pitt K. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev 2021; 178:113840. [PMID: 34147533 DOI: 10.1016/j.addr.2021.113840] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.
Collapse
Affiliation(s)
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Yasmine Alyassin
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Radeyah Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Pharmacy College, Pharmaceutics Department, Najran University, Najran, Saudi Arabia
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom; Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kendal Pitt
- Manufacturing, Science & Technology, Pharma Supply Chain, GlaxoSmithKline, Ware, United Kingdom.
| |
Collapse
|
23
|
Neumann M, Heimhardt C, Seidlitz K, Koziolek M, Schneider F, Schiller C, Hanke U, Anschütz M, Knopke C, Donath F, Thoma R, Brätter C, Schug B, Franke H, Weitschies W. Development of a furosemide-containing expandable system for gastric retention. J Control Release 2021; 338:105-118. [PMID: 34416321 DOI: 10.1016/j.jconrel.2021.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
More than 50 years ago, the first gastroretentive dosage forms came up. Since then, no practical and at the same time reliable gastroretentive system is available on market. A major obstacle in the development of novel gastroretentive systems is the lack of proper predictive test methods. In the present work, we aimed at developing and fully characterizing an expandable gastroretentive system containing furosemide as model drug. On the one hand, we used well-established in vitro tests for drug dissolution and gastroretentive properties (paddle apparatus, swelling characteristics). On the other hand, we used two novel models (dissolution stress test device, mechanical antrum model) to assess these properties under biorelevant conditions. Moreover, we performed an in vivo study under fed and fasted conditions that combined blood sampling and a high-resolution imaging technique (magnetic marker monitoring) to determine gastrointestinal location with the assessment of a pharmacodynamic endpoint (urinary sodium excretion). In vitro dissolution tests confirmed prolonged drug release over more than 8 h independent from pH and with slight pressure sensitivity. Swelling studies indicated good swelling behavior within 4 h along with medium gastroretentive properties as determined with the mechanical antrum model. In vivo imaging showed prolonged gastric residence time after fed compared to fasted administration (481 min vs 38 min). Comparison of geometric means of AUCo-tlast of the model drug confirmed this observation with 10 times higher value after fed administration. Urinary excretion of sodium well reflected the increased sodium-reuptake inhibition due to higher furosemide exposure under fed conditions. However, the poor performance after fasted intake of the system is in line with data from several other gastroretentive formulations. The present study highlighted the value of novel test methods during the development of gastroretentive formulations. Yet, a system with reproducible gastroretentive properties especially under fasted conditions has to be designed.
Collapse
Affiliation(s)
- Marco Neumann
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Claudia Heimhardt
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Knut Seidlitz
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Mirko Koziolek
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Felix Schneider
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Christiane Schiller
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Ulrike Hanke
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | | | | | - Frank Donath
- SocraTec R&D, Im Setzling 35, 61440 Oberursel, Germany
| | - Rudy Thoma
- Formula GmbH, Grenzallee 305b, 14167 Berlin, Germany
| | | | - Barbara Schug
- SocraTec R&D, Im Setzling 35, 61440 Oberursel, Germany
| | - Hanshermann Franke
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany.
| |
Collapse
|
24
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
25
|
Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021; 13:pharmaceutics13101591. [PMID: 34683884 PMCID: PMC8539558 DOI: 10.3390/pharmaceutics13101591] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
There have been many efforts to improve oral drug bioavailability and therapeutic efficacy and patient compliance. A variety of controlled-release oral delivery systems have been developed to meet these needs. Gastroretentive drug delivery technologies have the potential to achieve retention of the dosage form in the upper gastrointestinal tract (GIT) that can be sufficient to ensure complete solubilisation of the drugs in the stomach fluids, followed by subsequent absorption in the stomach or proximal small intestine. This can be beneficial for drugs that have an “absorption window” or are absorbed to a different extent in various segments of the GIT. Therefore, gastroretentive technologies in tandem with controlled-release strategies could enhance both the therapeutic efficacy of many drugs and improve patient compliance through a reduction in dosing frequency. The paper reviews different gastroretentive drug delivery technologies and controlled-release strategies that can be combined and summarises examples of formulations currently in clinical development and commercially available gastroretentive controlled-release products. The different parameters that need to be considered and monitored during formulation development for these pharmaceutical applications are highlighted.
Collapse
|
26
|
Thymoquinone loaded chitosan - Solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337:530-545. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
Collapse
Affiliation(s)
- Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Moe Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zhe Song
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK.
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
| |
Collapse
|
28
|
Haimhoffer Á, Vasvári G, Trencsényi G, Béresová M, Budai I, Czomba Z, Rusznyák Á, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Vecsernyés M, Fenyvesi F. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2021; 22:187. [PMID: 34155595 PMCID: PMC8217006 DOI: 10.1208/s12249-021-02066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - György Trencsényi
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - Monika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető utca 2-4, Debrecen, H-4028, Hungary
| | - Zsuzsa Czomba
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
29
|
Okur NÜ, Siafaka PI, Gökçe EH. Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors. Curr Pharm Biotechnol 2021; 22:892-905. [PMID: 32753006 DOI: 10.2174/1389201021666200804155535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to the physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. OBJECTIVE The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid-based nanoparticles seem to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. METHODS The present review provides a summary of the general theory of lipid-based nanoparticles, their preparation methods, as well as their oral applications. Moreover, oral drug delivery challenges are discussed. RESULTS According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension, etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid-based nanoparticles.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evren H Gökçe
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
30
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Rahim SA, Cespi M, Bisharat L, Berardi A. A facile and sensitive video-analysis method for tracking floating lag-time and floating rate of gastro-retentive tablets. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Sharma D, Sharma D. Novel Swellable/Expandable Gastroretentive Floating Films of Gliclazide Folded in Capsule Shell for the Effective Management of Diabetes Mellitus: Formulation Development, Optimization and In Vitro Evaluation. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201201122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Gliclazide (GLZ) belongs to the second-generation of sulphonylureas; it is a
drug of choice for the management of type II DM. It belongs to BCS Class II. The major site of drug
absorption for GLZ is the stomach; it displays variation in the drug absorption rate and bioavailability
due to the shorter gastric retention time. The floating mechanism gets affected when the gastric fluid
level is not sufficiently higher, which ultimately obstructs the floating behavior, which is the major
limitation of reported formulations. This limitation can be overcome by folding the film into the capsule
shell dissolved in the gastric fluid and the film swells/expands to dimensions higher than pylorus
sphincter (12mm), thus preventing its evacuation.
Objective:
The study aims to explore the floating mechanism in the design of films along with a tendency
to expand by swelling and unfolding by utilizing a mixture of hydrophilic and hydrophobic polymer
to achieve the controlled drug delivery and prolonged gastric retention of drug.
Methods:
The gastroretentive floating films were formulated by the solvent casting technique using 32
full factorial designs and subjected to in vitro evaluation parameters, drug-excipient compatibility, Xray
diffraction and accelerated stability study.
Results:
The pre-formulation study established the purity and identification of a drug. FTIR study
confirmed no drug excipient interaction. F3, F6, and F9 were optimized based on in vitro floating
characteristics, swelling/expanding ability, and unfolding time. All developed formulations were unfolded
within 14-22 min after capsule disintegration. The F3 was selected as the final formulation as
its ability to control the release of the drug for 24 hrs followed by zero-order kinetics having super
case 2 transport. XRD confirmed the amorphousness of the drug within the formulation. The stability
study results revealed that the formulation was quite stable at extreme storage conditions.
Conclusion:
The developed novel formulation has good potential for the effective management and
treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Pharmaceutics, Rayat Bahra Institute of Pharmacy, Hoshiarpur, Punjab, 146104,India
| | - Deepak Sharma
- Department of Pharmaceutics, Rayat Bahra Institute of Pharmacy, Hoshiarpur, Punjab, 146104,India
| |
Collapse
|
33
|
Ambay TM, Schick P, Grimm M, Sager M, Schneider F, Koziolek M, Siegmund W, Schindele F, Haas R, Weitschies W. Design and Optimization of a Novel Strategy for the Local Treatment of Helicobacter pylori Infections. J Pharm Sci 2020; 110:1302-1309. [PMID: 33253724 DOI: 10.1016/j.xphs.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
Infections with Helicobacter pylori are a global challenge. Currently, H. pylori infections are treated systemically, but the eradication rates of the different therapy regimens are declining due to the growing number of bacterial strains resistant to major antibiotics. Here, we present a strategy for the local eradication of H. pylori by the use of Penicillin G sodium (PGS). In vitro experiments revealed that PGS shows high antibiotic activity against resistant strains of Helicobacter pylori with a minimum inhibitory concentration (MIC) of 0.125 μg/ml. In order to provide luminal concentrations above the MIC for longer periods of time, an extended release tablet was developed. Alkalizers were included to prevent acidic degradation of PGS within the tablet matrix. Out of the tested alkalizers MgO, l-Lysine, NaHCO3, and Na2CO3 NaHCO3 provided the strongest rise in pH inside the hydrated matrix when tested in simulated gastric fluid. Better PGS stability can mainly reasoned from that, addition of MgO resulted in high pH values within the matrix, causing basic degradation of PGS. This work is a first step towards the use of extended release tablets containing PGS for the local treatment of H. pylori as a safe and cost-effective alternative to common systemic treatment regimens.
Collapse
Affiliation(s)
- Taddese Mekonnen Ambay
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Felix Schneider
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Werner Siegmund
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine, Greifswald, Germany
| | - Franziska Schindele
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
34
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
35
|
Lowinger MB, Maier EY, Williams RO, Zhang F. Hydrophilic Poly(urethanes) Are an Effective Tool for Gastric Retention Independent of Drug Release Rate. J Pharm Sci 2020; 109:1967-1977. [PMID: 32087181 DOI: 10.1016/j.xphs.2020.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Acyclovir is a poorly permeable, short half-life drug with poor colonic absorption, and current conventional controlled release formulations are unable to decrease the frequency of administration. We designed acyclovir dosage forms to be administered less frequently by being retained in the stomach and releasing drug over an extended duration. We developed a conventional modified-release matrix tablet to sustain the release of acyclovir and surrounded it with a hydrophilic poly(urethane) layer. When hydrated, the porous poly(urethane) swells to a size near or beyond that of the relaxed pylorus diameter and does not affect drug release rate. We demonstrated that the formulation is retained in the stomach for extended durations as it slowly releases drug, allowing for similar area under the curve but delayed tmax relative to a nongastroretentive control tablet. Unlike many other gastroretentive formulations, this dosage form design decouples drug release rate from gastric retention time, allowing them to be modulated independently. It also effectively retains in the stomach regardless of the prandial state, differentiating from other approaches. Our direct observation of excised rat stomachs allowed for a rigorous assessment of the impact of polymer swelling extent and the prandial state on both the dosage form integrity and retention time.
Collapse
Affiliation(s)
- Michael B Lowinger
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712; MRL, Merck & Co, Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065
| | - Esther Y Maier
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Feng Zhang
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712.
| |
Collapse
|
36
|
HPMC- and PLGA-Based Nanoparticles for the Mucoadhesive Delivery of Sitagliptin: Optimization and In Vivo Evaluation in Rats. MATERIALS 2019; 12:ma12244239. [PMID: 31861192 PMCID: PMC6947415 DOI: 10.3390/ma12244239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Mucoadhesive nanoparticles represent a potential drug delivery strategy to enhance the therapeutic efficacy in oral therapy. This study assessed the prospective of developing HPMC- and PLGA-based nanoparticles using a nanospray drier as a mucoadhesive extended release drug delivery system for sitagliptin and evaluated their potential in an animal model. Nanoparticles were prepared using a Buchi® B-90 nanospray drier. Optimization of particle size was performed using response surface methodology by examining the influence of spray-drying process variables (inlet temperature, feed flow, and polymer concentration) on the particle size. The prepared nanoparticles were characterized for various physicochemical characteristics (yield, drug content, morphology, particle size, thermal, and crystallographic properties) and assessed for drug release, stability, and mucoadhesive efficacy by ex vivo and in vivo studies in rats. A linear model was suggested by the design of the experiments to be the best fit for the generated design and values. The yield was 77 ± 4%, and the drug content was 90.5 ± 3.5%. Prepared nanoparticles showed an average particle size of 448.8 nm, with a narrow particle size distribution, and were wrinkled. Thermal and crystallographic characteristics showed that the drug present in the nanoparticles is in amorphous dispersion. Nanoparticles exhibited a biphasic drug release with an initial rapid release (24.9 ± 2.7% at 30 min) and a prolonged release (98.9 ± 1.8% up to 12 h). The ex vivo mucoadhesive studies confirmed the adherence of nanoparticles in stomach mucosa for a long period. Histopathological assessment showed that the formulation is safe for oral drug delivery. Nanoparticles showed a significantly higher (p < 0.05) amount of sitagliptin retention in the GIT (gastrointestinal tract) as compared to control. The data observed in this study indicate that the prepared mucoadhesive nanoparticles can be an effective alternative delivery system for the oral therapy of sitagliptin.
Collapse
|