1
|
Guo Y, Morshedi M. Cutting-edge nanotechnology: unveiling the role of zinc oxide nanoparticles in combating deadly gastrointestinal tumors. Front Bioeng Biotechnol 2025; 13:1547757. [PMID: 40182988 PMCID: PMC11966175 DOI: 10.3389/fbioe.2025.1547757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in cancer therapy due to their unique physical and chemical properties, particularly in treating gastrointestinal (GI) cancers such as gastric, colorectal, and hepatocellular carcinoma. These nanoparticles generate reactive oxygen species (ROS) upon entering cancer cells, causing oxidative stress that leads to cellular damage, DNA fragmentation, and apoptosis. ZnO-NPs affect the expression of key proteins involved in apoptosis, including p53, Bax, and Bcl-2, which regulate cell cycle arrest and programmed cell death. Additionally, ZnO-NPs can reduce mitochondrial membrane potential, further enhancing apoptosis in cancer cells. Furthermore, ZnO-NPs inhibit cancer cell proliferation by interfering with cell cycle progression. They reduce levels of cyclins and cyclin-dependent kinases (CDKs), leading to cell cycle arrest. ZnO-NPs also exhibit anti-metastatic properties by inhibiting the migration and invasion of cancer cells through modulation of signaling pathways that affect cell adhesion and cytoskeletal dynamics. The efficacy of ZnO-NPs in overcoming chemotherapy resistance has been demonstrated by their ability to reduce the IC50 values of chemotherapeutic agents, making cancer cells more susceptible to drug-induced cell death. In this review, we summarize the mechanisms by which ZnO-NPs exert anticancer effects in GI cancers, focusing on apoptosis, cell cycle regulation, and metastasis inhibition, while also highlighting the current limitations in translating these findings into effective clinical treatments.
Collapse
Affiliation(s)
- Yonggang Guo
- Pingdingshan College, Pingdingshan, Henan, China
| | | |
Collapse
|
2
|
Bahari N, Hashim N, Abdan K, Akim AM, Maringgal B, Al-Shdifat L. Green-synthesised silver and zinc oxide nanoparticles from stingless bee honey: Morphological characterisation, antimicrobial action, and cytotoxic assessment. CHEMOSPHERE 2025; 370:143961. [PMID: 39694281 DOI: 10.1016/j.chemosphere.2024.143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
This study investigated the green synthesis of silver nanoparticles (Ag-NPs) and zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of stingless bee honey (SBH) as a reducing and stabilising agent. The rich compositions of SBH containing flavonoids, phenolics, organic acids, sugars, and enzymes makes the SBH extract an ideal biocompatible precursor for the NPs synthesis. Physicochemical characterisation of the synthesised NPs was performed using UV-Vis spectroscopy, FESEM, TEM, XRD, and FTIR spectroscopy. The results revealed that the Ag-NPs and ZnO-NPs exhibited polydispersity, with size ranges between 25-50 nm and 15-30 nm, respectively. A majority of the NPs possessed a spherical morphology. Furthermore, the study evaluated the antimicrobial activity of the SBH-based NPs against gram-positive (Staphylococcus aureus, ATCC 43300) and gram-negative (Escherichia coli, ATCC 25922) bacteria. The findings demonstrated significantly higher antimicrobial efficacy of the Ag-NPs with a zone of inhibition (ZOI) of 16.91 mm against S. aureus, and 17.43 mm against E. coli compared to the ZnO-NPs which having a ZOI of 13.05 mm and 14.01 mm, respectively. Notably, cytotoxicity assays revealed no adverse effects of the synthesised NPs on normal mouse fibroblast (3T3) and human lung fibroblast (MRC5) cells up to 100 μg/ml of concentration. These findings suggest the potential of SBH-based Ag-NPs and ZnO-NPs as safe and effective antibacterial agents for various applications, including pharmaceuticals, cosmetics, ointments, and lotions.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Khalina Abdan
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Institute of Tropical Forestry & Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Abdah Mohd Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Laith Al-Shdifat
- Faculty of Pharmacy, Applied Science Private University, Al Arab St, P.O.Box 166, Amman, 11931, Jordan
| |
Collapse
|
3
|
Ajala O, Onwudiwe D, Ogunniyi S, Kurniawan SB, Esan O, Aremu OS. A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2024; 11:1329-1368. [DOI: 10.18596/jotcsa.1389331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanomaterials are currently one of the most popular emerging materials used in different applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and production of pesticide. This is due to their interesting features including size-dependent properties, lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification and are used in multiple functions with enormous possibilities. Some of them are medically suitable which has opened new opportunities for medical improvement especially for human health. These characteristics also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the evaluation of synthesis approach that biological approach is the savest method but with a low yield, while the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis revealed that the field of nanotechnology is a trending and hot ground for research.
Collapse
|
4
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Akhter H, Ritu SS, Siddique S, Chowdhury F, Chowdhury RT, Akhter S, Hakim M. In silico molecular docking and ADMET prediction of biogenic zinc oxide nanoparticles: characterization, and in vitro antimicrobial and photocatalytic activity. RSC Adv 2024; 14:36209-36225. [PMID: 39534048 PMCID: PMC11555492 DOI: 10.1039/d4ra06890d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Biogenic synthesis of metal oxide nanoparticles is a rapidly growing research area in the field of nanotechnology owing to their immense potential in multifaceted biomedical and environmental applications. In this study, zinc oxide (ZnO) nanoparticles (NPs) were biosynthesized from the Citrullus lanatus rind extract to elucidate their potential antimicrobial and dye degradation activity. The structural, morphological, and optical properties of the NPs were examined using various analytical techniques. UV-vis spectra showed a λ max at 370 nm and the optical band gap was determined to be 3.2 eV for the ZnO nanocomposite. The FTIR spectrum denoted the functional groups responsible for the reduction of zinc acetate precursor to ZnO NPs. XRD demonstrated that the mean crystalline size of the nanocomposites was 20.36 nm while DLS, ζ-potential, FE-SEM, and EDX analysis of synthesized NPs confirmed their hydrodynamic size distribution, stability, morphological features, and elemental compositions, respectively. Biogenic ZnO NPs unveiled potent antimicrobial activity against S. aureus, L. monocytogenes, E. coli, P. aeruginosa, and C. albicans, showing 13 to 22 mm ZOI. This bactericidal activity of ZnO NPs was further elucidated using molecular docking analysis. The results showed a favorable lowest binding energy between ZnO NPs and microbial proteins (AusA for S. aureus, and CAT III for E. coli), which led to a possible mechanistic approach for ZnO NPs. Furthermore, the remarkable photocatalytic activity of ZnO NPs was revealed by the degradation of 99.02% of methylene blue (MB) dye within 120 min. Therefore, the above findings suggest that green synthesized ZnO NPs can be exploited as an eco-friendly alternative to synthetic substances and a unique promising candidate for therapeutic applications and environmental remediation.
Collapse
Affiliation(s)
- Hajara Akhter
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Susmita Sarker Ritu
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Shahariar Siddique
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Rehnuma Tasmiyah Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Samina Akhter
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Mahmuda Hakim
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
6
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
7
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Sarthi S, Bhardwaj H, Kumar Jangde R. Advances in nucleic acid delivery strategies for diabetic wound therapy. J Clin Transl Endocrinol 2024; 37:100366. [PMID: 39286540 PMCID: PMC11404062 DOI: 10.1016/j.jcte.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, the prevalence of diabetic wounds has significantly increased, posing a substantial medical challenge due to their propensity for infection and delayed healing. These wounds not only increase mortality rates but also lead to amputations and severe mobility issues. To address this, advancements in bioactive molecules such as genes, growth factors, proteins, peptides, stem cells, and exosomes into targeted gene therapies have emerged as a preferred strategy among researchers. Additionally, the integration of photothermal therapy (PTT), nucleic acid, and gene therapy, along with 3D printing technology and the layer-by-layer (LBL) self-assembly approach, shows promise in diabetic wound treatment. Effective delivery of small interfering RNA (siRNA) relies on gene vectors. This review provides an in-depth exploration of the pathophysiological characteristics observed in diabetic wounds, encompassing diminished angiogenesis, heightened levels of reactive oxygen species, and impaired immune function. It further examines advancements in nucleic acid delivery, targeted gene therapy, advanced drug delivery systems, layer-by-layer (LBL) techniques, negative pressure wound therapy (NPWT), 3D printing, hyperbaric oxygen therapy, and ongoing clinical trials. Through the integration of recent research insights, this review presents innovative strategies aimed at augmenting the multifaceted management of diabetic wounds, thus paving the way for enhanced therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Soniya Sarthi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Harish Bhardwaj
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Rajendra Kumar Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| |
Collapse
|
9
|
Mutukwa D, Taziwa RT, Khotseng L. A Review of Plant-Mediated ZnO Nanoparticles for Photodegradation and Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1182. [PMID: 39057861 PMCID: PMC11279911 DOI: 10.3390/nano14141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review focuses on the synthesis of plant-mediated zinc oxide nanoparticles (ZnO NPs) and their applications for antibacterial and photocatalytic degradation of dyes, thereby addressing the need for sustainable and eco-friendly methods for the preparation of NPs. Driven by the significant rise in antibiotic resistance and environmental pollution from dye pollution, there is a need for more effective antibacterial agents and photocatalysts. Therefore, this review explores the synthesis of plant-mediated ZnO NPs, and the influence of reaction parameters such as pH, annealing temperature, plant extract concentration, etc. Additionally, it also looks at the application of plant-mediated ZnO NPs for antibacterial and photodegradation of dyes, focusing on the influence of the properties of the plant-mediated ZnO NPs such as size, shape, and bandgap on the antibacterial and photocatalytic activity. The findings suggest that properties such as shape and size are influenced by reaction parameters and these properties also influence the antibacterial and photocatalytic activity of plant-mediated ZnO NPs. This review concludes that plant-mediated ZnO NPs have the potential to advance green and sustainable materials in antibacterial and photocatalysis applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| | - Raymond Tichaona Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
10
|
Guerra RO, do Carmo Neto JR, da Silva PEF, Franco PIR, Barbosa RM, de Albuquerque Martins T, Costa-Madeira J, de Assunção TSF, de Oliveira CJF, Machado JR, Silva Teixeira LDA, Rodrigues WF, Júnior VR, Silva ACA, da Silva MV. Metallic nanoparticles and treatment of cutaneous leishmaniasis: A systematic review. J Trace Elem Med Biol 2024; 83:127404. [PMID: 38364464 DOI: 10.1016/j.jtemb.2024.127404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| | - Priscilla Elias Ferreira da Silva
- Post Graduation Course of Tropical Medicine and Infectology, Institute of Healthy Science´s, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Rafaela Miranda Barbosa
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tarcísio de Albuquerque Martins
- Post-Graduation Course of Healthy Science, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thais Soares Farnesi de Assunção
- Post Graduation Course of Tropical Medicine and Infectology, Institute of Healthy Science´s, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luciana de Almeida Silva Teixeira
- Department of Internal Medicine, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Post-Graduation Course of Healthy Science, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Brazil
| | - Anielle Christine Almeida Silva
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Brazil.
| |
Collapse
|
11
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
12
|
Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, Li S, Zhao M. Recent developments in the use of nanocrystals to improve bioavailability of APIs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1958. [PMID: 38629192 DOI: 10.1002/wnan.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yidan Ding
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Tongyi Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jianing Fang
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiexin Song
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Haobo Dong
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiarui Liu
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Sijin Li
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
13
|
Beytür S, Essiz S, Özuğur Uysal B. Investigation of Structural and Antibacterial Properties of WS 2-Doped ZnO Nanoparticles. ACS OMEGA 2024; 9:4037-4049. [PMID: 38284036 PMCID: PMC10809239 DOI: 10.1021/acsomega.3c09041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
ZnO nanoparticles, well-known for their structural, optical, and antibacterial properties, are widely applied in diverse fields. The doping of different materials to ZnO, such as metals or metal oxides, is known to ameliorate its properties. Here, nanofilms composed of ZnO doped with WS2 at 5, 15, and 25% ratios are synthesized, and their properties are investigated. Supported by molecular docking analyses, the enhancement of the bactericidal properties after the addition of WS2 at different ratios is highlighted and supported by the inhibitory interaction of residues playing a crucial role in the bacterial survival through the targeting of proteins of interest.
Collapse
Affiliation(s)
- Sercan Beytür
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Sebnem Essiz
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Bengü Özuğur Uysal
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| |
Collapse
|
14
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
15
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
16
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
17
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
18
|
Mohammed RS, Aadim KA, Ahmed KA. Histological, haematological, and thyroid hormones toxicity of female rats orally exposed to CuO/ZnO core/shell nanoparticles synthesized by Ar plasma jets. Arch Toxicol 2023; 97:1017-1031. [PMID: 36847821 PMCID: PMC9969385 DOI: 10.1007/s00204-023-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Advancements in nanomedicine helped scientists design a new class of nanoparticles known as hybrid nanoparticles (core/shell) for diagnostic and therapeutic purposes. An essential requirement for the successful use of nanoparticles in biomedical applications is their low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of nanoparticles. The current study aimed to assess the toxicological potential of CuO/ZnO core/shell nanoparticles with a size of 32 nm in Albino female rats. In vivo toxicity was evaluated by oral administration of 0, 5, 10, 20, and 40 (mg/L) of CuO/ZnO core/shell nanoparticles to a female rate for 30 consecutive days. During the time of treatment, no deaths were observed. The toxicological evaluation revealed significant (p < 0.01) alteration in white blood cells (WBC) at a 5 (mg/L) dose. Also, increase in red blood cells (RBC) at 5, 10 (mg/L) doses, while hemoglobin (Hb) levels and hematocrit (HCT) increased at all doses. This maybe indicates that the CuO/ZnO core/shell nanoparticles stimulated the rate of blood corpuscle generation. The anaemia diagnostic indices (mean corpuscular volume MCV and mean corpuscular haemoglobin MCH) remained unchanged throughout the experiment for all the doses tested 5, 10, 20, and 40 (mg/L). According to the results of this study, exposure to CuO/ZnO core/shell NPs deteriorates the Triiodothyronine hormone (T3) and a Thyroxine hormone (T4) activated by Thyroid-Stimulating Hormone (TSH), which is generated and secreted from the pituitary gland. There is possibly related to an increase in free radicals and a decrease in antioxidant activity. Significant (p < 0.01) growth retardation in all groups treated due to rats' infection by Hyperthyroidism induced by thyroxine (T4) level increase. Hyperthyroidism is a catabolic state related to increased energy consumption, protein turnover, and lipolysis. Usually, these metabolic effects result in weight reduction and a decrease in fat storage and lean body mass. The histological examination indicates that the low concentrations of CuO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Collapse
Affiliation(s)
- Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | - Kadhim A Aadim
- Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
| | - Khalid A Ahmed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
19
|
Xu K, Li S, Zhou Y, Gao X, Mei J, Liu Y. Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery. Pharmaceutics 2023; 15:1064. [PMID: 37111551 PMCID: PMC10144056 DOI: 10.3390/pharmaceutics15041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023] Open
Abstract
Research and development (R&D) of nanodrugs is a long, complex and uncertain process. Since the 1960s, computing has been used as an auxiliary tool in the field of drug discovery. Many cases have proven the practicability and efficiency of computing in drug discovery. Over the past decade, computing, especially model prediction and molecular simulation, has been gradually applied to nanodrug R&D, providing substantive solutions to many problems. Computing has made important contributions to promoting data-driven decision-making and reducing failure rates and time costs in discovery and development of nanodrugs. However, there are still a few articles to examine, and it is necessary to summarize the development of the research direction. In the review, we summarize application of computing in various stages of nanodrug R&D, including physicochemical properties and biological activities prediction, pharmacokinetics analysis, toxicological assessment and other related applications. Moreover, current challenges and future perspectives of the computing methods are also discussed, with a view to help computing become a high-practicability and -efficiency auxiliary tool in nanodrugs discovery and development.
Collapse
Affiliation(s)
- Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkai Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
20
|
Alhar MSO, Muhammad D, Tahir K, Zaki MEA, Urooj M, Nazir S, Albalawi K, Al-Shehri HS, Saleh EAM, Khan AU. An Eco-Benign Biomimetic Approach for the Synthesis of Ni/ZnO Nanocomposite: Photocatalytic and Antioxidant Activities. Molecules 2023; 28:molecules28041705. [PMID: 36838692 PMCID: PMC9964592 DOI: 10.3390/molecules28041705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
With the increasing demand for wastewater treatment and multidrug resistance among pathogens, it was necessary to develop an efficient catalyst with enhanced photocatalytic and antibacterial applications. The present study proposes a facile and green strategy for synthesizing zinc oxide (ZnO) decorated nickel (Ni) nanomaterials. The synthesized Ni/ZnO nanocomposite displays a high crystallinity and spherical morphology, which was systematically characterized by XRD, SEM, FT-IR, UV-visible spectroscopy, EDX, HRTEM, and XPS techniques. In addition, the bacteriological tests indicated that Ni/ZnO nanocomposite exhibits potent antibacterial activity against human pathogens, i.e., Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The inhibition zone observed in light and dark conditions for E. coli was 16 (±0.3) mm and 8 (±0.4) mm, respectively, which confirms the high efficacy of the nanocomposite in the presence of light compared to dark conditions. The detailed inhibition mechanism of said bacterium and damage were also studied through fluorescence spectroscopy and SEM analysis, respectively. Evaluation of antioxidant activity based on free radical scavenging activity revealed that the Ni/ZnO nanocomposite effectively scavenges DPPH. In the photocatalytic performance, the Ni/ZnO nanocomposite exhibited a remarkable degradation ability under the optimized condition, which was attributed to their controllable size, high surface area, and exceptional morphology. Good selectivity, high photodegradation, and antibacterial activities and satisfactory hemolytic behavior of the as-prepared nanocomposite make them able to become a potential candidate for superior biological performance and environmental remediation.
Collapse
Affiliation(s)
| | - Dost Muhammad
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Correspondence: (M.E.A.Z.); (A.U.K.)
| | - Muniba Urooj
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamza S. Al-Shehri
- Chemistry Division, King Khalid Military Academy, SANG, Riyadh 11495, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Chemistry Department, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 18371, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (M.E.A.Z.); (A.U.K.)
| |
Collapse
|
21
|
Liu L, Wang J, Zhang J, Huang C, Yang Z, Cao Y. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biol Toxicol 2023; 39:259-275. [PMID: 34766255 DOI: 10.1007/s10565-021-09678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 μg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 μg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 μg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 μg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Junkang Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Zhaogang Yang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
22
|
Aljohar AY, Muteeb G, Zia Q, Siddiqui S, Aatif M, Farhan M, Khan MF, Alsultan A, Jamal A, Alshoaibi A, Ahmad E, Alam MW, Arshad M, Ahamed MI. Anticancer effect of zinc oxide nanoparticles prepared by varying entry time of ion carriers against A431 skin cancer cells in vitro. Front Chem 2022; 10:1069450. [PMID: 36531331 PMCID: PMC9751667 DOI: 10.3389/fchem.2022.1069450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 09/19/2023] Open
Abstract
Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 μM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 μM) than that for ZRT-1 (8 μM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.
Collapse
Affiliation(s)
- Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd. Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, India
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Azfar Jamal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Department of Biology, College of Science, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Md Arshad
- Molecular Endocrinology Laboratory, Zoology Department, Lucknow University, Lucknow, India
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Du H, Yue M, Huang X, Duan G, Yang Z, Huang W, Shen W, Yin X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3953. [PMID: 36432239 PMCID: PMC9699395 DOI: 10.3390/nano12223953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, ZnO nanoparticles were prepared by a hydrothermal method with varying the reaction times, material ratios and reaction temperatures. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Fourier infrared spectroscopy (FTIR). It was shown that the material ratio significantly affected the structure and morphology of the synthesized ZnO nanoparticles, and then the uneven nano-octahedral structure, uniform nano-octahedral structure, nano-tubular structure, and nano-sheet structure could be obtained successively. The synthesized ZnO nanoparticles as mordant were used for the dyeing of silk fabrics with different natural dyes (tea polyphenols and hematoxylin). Moreover, they could improve the dyeing properties and fastness (wash and light) on silk fabrics to a certain extent.
Collapse
Affiliation(s)
- Haijuan Du
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mengyuan Yue
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xin Huang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihui Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Weihan Huang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Wenjie Shen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiangfeng Yin
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
24
|
Zhu X, Wang J, Cai L, Wu Y, Ji M, Jiang H, Chen J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128436. [PMID: 35158241 DOI: 10.1016/j.jhazmat.2022.128436] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Despite the extensive uses of ZnO nanoparticles as promising antimicrobial agents to tackle the severe microbial infections, the systematic antibacterial studies on ZnO nanoparticles with manipulable nanoscale morphologies at the genetic expression level remain ill-defined. In this study, via a controllable thermal decomposition, ZnO nanoparticles of different morphologies were facilely prepared. Additionally, the surface PEGylation of ZnO was conducted to obtain the nanoparticles of low biotoxicity. While all the prepared ZnO nanoparticles exhibited the significantly chemical activities, the pronounced antibacterial effect of obtained ZnO nanoparticles was also identified, in which the ultra-small ones (~5 nm) showed the best performance. Moreover, the antibacterial activities of ZnO nanoparticles were studied by bacterial nucleic acid leakage, alkaline phosphatase, biofilm and reactive oxygen species (ROS) assays. Furthermore, the transcriptome analysis of ZnO nanoparticles with different morphologies against Escherichia coli (E. coli) revealed the underlying antibacterial mechanism involved the signal transduction, material transport, energy metabolism and other biological processes. Therefore, the cost-effective preparation of ZnO nanoparticles with distinct morphological features provides insights for the development of application specific antibacterial agents.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
25
|
Al-Mohaimeed AM, Al-Onazi WA, El-Tohamy MF. Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications. Molecules 2022; 27:579. [PMID: 35056891 PMCID: PMC8780092 DOI: 10.3390/molecules27020579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as Escherichia coli (16 mm), Pseudomonas aeruginosa (17 mm), Staphylococcus aureus (12 mm) and Bacillus subtilis (11 mm) using a 30-µg mL-1 sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC50 value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC50 value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.
Collapse
Affiliation(s)
- Amal Mohamed Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (W.A.A.-O.); (M.F.E.-T.)
| | | | | |
Collapse
|
26
|
Yao Y, Tang M. Advances in endocrine toxicity of nanomaterials and mechanism in hormone secretion disorders. J Appl Toxicol 2021; 42:1098-1120. [PMID: 34935166 DOI: 10.1002/jat.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The size of nanoparticles is about 1-100 nm. People are exposed to nanoparticles in environmental pollutants from ancient times to the present. With the maturity of nanotechnology in the past two decades, the production of manufactured nanomaterials is rapidly increasing and they are used in a wide range of aerospace, medicine, food, and industrial applications. However, both natural and manufactured nanomaterials have been proved to pose a threat to diverse organs and systems. The endocrine system is critical to maintaining homeostasis. Endocrine disorders are associated with many diseases, including cancer, reduced fertility, and metabolic diseases. Therefore, we review the literatures dealing with the endocrine toxicity of nanomaterial. This review provides an exhaustive description of toxic effects of several common nanomaterials in the endocrine system; more involved are reproductive endocrinology. Then physicochemical factors that determine the endocrine toxicity of nanomaterials are discussed. Furthermore, oxidative stress, changes in steroid production and metabolic enzymes, organelle disruption, and alterations in signal pathways are introduced as potential mechanisms that may cause changes in hormone levels. Finally, we suggest that a risk assessment of endocrine toxicity based on standard procedures and consideration of endocrine disrupting effects of nanomaterials in the field and its environmental and population effects could be future research directions for endocrine toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2021; 27:1156-1166. [PMID: 34839040 DOI: 10.1016/j.drudis.2021.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a chronic disease characterized by increased blood glucose levels, leading to damage of the nerves blood vessels, subsequently manifesting as organ failures, wounds, or ulcerations. Wounds in patients with diabetes are further complicated because of reduced cytokine responses, infection, poor vascularization, and delayed healing processes. Surface-functionalized and bioengineered nanoparticles (NPs) have recently gained attention as emerging treatment modalities for wound healing in diabetes. Here, we review emerging therapeutic NPs to treat diabetic wounds and highlight their discrete delivery mechanisms and sites of action. We further critically assess the current challenges of these nanoengineered materials for successful clinical translation and discuss their potential for growth in the clinical marketplace.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada; School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
28
|
Munir N, Hanif M, Dias DA, Abideen Z. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60383-60405. [PMID: 34532807 DOI: 10.1007/s11356-021-16139-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Salinity is one of the major causes of abiotic stress that leads to a reduction in crop yield. One strategy to alleviate and improve crop yield is to use halophytes. These types of plants naturally produce bioactive secondary metabolites, proteins, carbohydrates, and biopolymers that are involved in specialized physiological adaptation mechanisms to alleviate soil salinity. These traits could be leveraged and, in turn, be the focus of future breeding programs aimed to improve salinity resistance in traditional crops. Recently, the field of nanotechnology has gained the attention of researchers involved in agricultural science and associated disciplines. However, information on salinity tolerance mechanisms of halophytes, based on nanoparticles in agricultural crop plants, is limited. Recently, the use of selected halophytic-based nanoparticles has shown to improve crop performance by enhancing the plants' ion flux, improving water efficiency, root hydraulic movement in the favor of plant photosynthesis, the production of proteins involved in oxidation-reduction reactions, reactive oxygen species (ROS) detoxification, and hormonal signaling pathways under stress. Therefore, the aim of this review is to highlight the application of halophytic nanoparticles in alleviating salt stress in plants by understanding the mechanisms of plant growth, water relation, ion flux, photosynthesis, and the antioxidant defense system. This review also addresses uncertainties, ecotoxicological concerns, and associated drawbacks of nanoparticles on the environment. Future research perspectives with respect to the sustainable usage of nanoparticles in saline agriculture have also been presented.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
29
|
Pino P, Ronchetti S, Mollea C, Sangermano M, Onida B, Bosco F. Whey Proteins-Zinc Oxide Bionanocomposite as Antibacterial Films. Pharmaceutics 2021; 13:1426. [PMID: 34575502 PMCID: PMC8466345 DOI: 10.3390/pharmaceutics13091426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The use of toxic crosslinking agents and reagents in the fabrication of hydrogels is a frequent issue which is particularly concerning for biomedical or food packaging applications. In this study, novel antibacterial bionanocomposite films were obtained through a simple solvent casting technique without using any crosslinking substance. Films were made from a flexible and transparent whey protein matrix containing zinc oxide nanoparticles synthesised via a wet chemical precipitation route. The physicochemical and functional properties of the ZnO nanoparticles and of the composite films were characterised, and their antibacterial activity was tested against S. epidermidis and E. coli. The synthesised ZnO nanoparticles had an average size of about 30 nm and a specific surface area of 49.5 m2/g. The swelling ratio of the bionanocomposite films increased at basic pH, which is an appealing feature in relation to the absorption of chronic wound exudate. A n-ZnO concentration-dependent antibacterial effect was observed for composite films. In particular, marked antibacterial activity was observed against S. epidermidis. Overall, these findings suggest that this novel material can be a promising and sustainable alternative in the design of advanced solutions for wound dressing or food packaging.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (P.P.); (S.R.); (C.M.); (M.S.); (F.B.)
| | | |
Collapse
|
30
|
do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem 2021; 29:2127-2141. [PMID: 34254904 DOI: 10.2174/0929867328666210709105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450 Goiania, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
31
|
Csakvari AC, Moisa C, Radu DG, Olariu LM, Lupitu AI, Panda AO, Pop G, Chambre D, Socoliuc V, Copolovici L, Copolovici DM. Green Synthesis, Characterization, and Antibacterial Properties of Silver Nanoparticles Obtained by Using Diverse Varieties of Cannabis sativa Leaf Extracts. Molecules 2021; 26:4041. [PMID: 34279380 PMCID: PMC8271394 DOI: 10.3390/molecules26134041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L-1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV-VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Adriana Cecilia Csakvari
- Biomedical Sciences Doctoral School, University of Oradea, 1 University St., 410087 Oradea, Romania
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Dana G Radu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Leonard M Olariu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Andreea I Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Anca Ofelia Panda
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael 1st of Romania from Timisoara, 119 Calea Aradului St., 300645 Timisoara, Romania
| | - Georgeta Pop
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael 1st of Romania from Timisoara, 119 Calea Aradului St., 300645 Timisoara, Romania
| | - Dorina Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Vlad Socoliuc
- Center for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| |
Collapse
|
32
|
Gliadin-mediated green preparation of hybrid zinc oxide nanospheres with antibacterial activity and low toxicity. Sci Rep 2021; 11:10373. [PMID: 33990672 PMCID: PMC8121786 DOI: 10.1038/s41598-021-89813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
The development of inorganic antibacterial agents that impart antibacterial properties to biomaterials has attracted wide attention. The paper introduced a kind of hybrid nanosphere antibacterial agent composed of wheat gliadin (WG) and zinc oxide (ZnO), with antibacterial efficacy and low toxicity. The ZnO/WG hybrid nanospheres were environment-friendly integrated by molecular self-assembly co-precipitating and freeze-drying transformation, and were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic absorption spectroscopy (AAS), specific surface and pore size analysis, bacteriostasis test, reactive oxygen species (ROS) determination and safety evaluation. It was found that the prepared hybrid nanospheres were composed of two components, WG and ZnO, with a diameter scope of 100–200 nm; the content of ZnO in the hybrid nanospheres can reach 46.9–70.2% (w/w); the bacteriostasis tests proved that the prepared ZnO/WG nanospheres generating ROS, have a significant inhibitory effect on E. coli and S. aureus; furthermore, the ZnO/WG nanospheres are relatively safe and highly biocompatible in cells and mice. Therefore, the prepared novel ZnO/WG hybrid nanospheres were supposed to apply in the preparation of anti-infective wound dressings, tissue engineering skin scaffold materials, food, and cosmetics preservatives, and so on.
Collapse
|
33
|
Yadav V, Arif N, Chauhan DK. A comparative study of the effective response of di-potassium phosphate (K 2HPO 4) on physiological, biochemical and anatomical aspects of crops dwelling with zinc oxide nanoparticles toxicity. Toxicol Res (Camb) 2021; 10:214-222. [PMID: 33884172 DOI: 10.1093/toxres/tfab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
The dipotassium phosphate (K2HPO4) is a source of phosphorus (P), which is an essential micronutrient for plant growth and reproduction and also acts as a stress alleviator against abiotic stresses. Therefore, it could also become a potential mineral to cope up with zinc oxide nanoparticles' (ZnONPs) toxicity in crops. This study primarily includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plantsThis study includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plants, i.e. Triticum aestivum and Solanum lycopersicum, as well as assuage the toxic impacts of ZnONPs through nutrient management approach implied via supplementation of P. The growth and physiological changes under toxic doses of ZnONPs and ameliorative potential of P in crop plants were examined by analysing growth, intracellular Zn accumulation, photosynthetic pigment contents, the kinetics of photosystem II (PS II) photochemistry, root cell anatomy and cell viability via histochemical staining 4',6-diamidino-2-phenylindole and propidium iodide. ZnONPs at 500 and 1000 μM concentrations significantly affected the growth, photosynthetic pigment and PS II photochemistry and cell death in both the plants. It also caused deformation in root anatomy of T. aestivum and S. lycopersicum. Whereas supplementation of P caused significant improvement against ZnONPs stress by causing remarkable enhancement in growth, photosynthetic pigments and activity of PS II photochemistry and decreased cell death. Moreover, the study also discloses the tolerant nature of S. lycopersicum comparing with T. aestivum seedlings. Thus, P is comparatively more effective in managing the ZnONPs toxicity in S. lycopersicum than in T. aestivum.
Collapse
Affiliation(s)
- Vaishali Yadav
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
34
|
Biomimetic Synthesis, Characterization, and Evaluation of Fluorescence Resonance Energy Transfer, Photoluminescence, and Photocatalytic Activity of Zinc Oxide Nanoparticles. SUSTAINABILITY 2021. [DOI: 10.3390/su13042004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to the development of nanotechnology, biosynthesis of nanoparticles (NPs) is gaining considerable attention as a cost-effective and eco-friendly approach that minimizes the effects of toxic chemicals used in NP fabrication. The present work reports low-cost phytofabrication of zinc oxide (ZnO) NPs employing aqueous extracts of various parts (leaves, stems, and inflorescences) of Tephrosia purpurea (T. purpurea). The formation, structure, morphology, and other physicochemical properties of ZnO NPs were characterized by ultraviolet–visible (UV–Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). UV–Vis spectral analysis revealed sharp surface plasmon resonance (SPR) at around 250–280 nm, while the XRD patterns confirmed distinctive peaks indices to the crystalline planes of hexagonal wurtzite ZnO NPs. TEM analysis confirmed the presence of spherical-shaped ZnO NPs with average particle sizes (PS) between 25–35 nm, which was in agreement with the XRD results. FTIR analysis revealed that phenolics, flavonoids, amides, alkaloids, and amines present in the plant extract are responsible for the stabilization of the ZnO NPs. Further, the hydrodynamic diameter in the range of 85–150 nm was measured using the DLS technique. The fluorescence resonance energy transfer (FRET) ability of biogenic ZnO NPs was evaluated, and the highest efficiency was found in ZnO NPs synthesized via T. purpurea inflorescences extract. Photoluminescence (PL) spectra of biogenic ZnO NPs showed three emission peaks consisting of a UV–Vis region with high-intensity compared to that of chemically synthesized ZnO NPs. The biosynthesized ZnO NPs showed photocatalytic activity under solar irradiation by enhancing the degradation rate of methylene blue (MB). Among the prepared biogenic ZnO NPs, T. purpurea leaves mediated with NPs acted as the most effective photocatalyst, with a maximum degradation efficiency of 98.86% and a half-life of 84.7 min. This is the first report related to the synthesis of multifunctional ZnO NPs using T. purpurea, with interesting characteristics for various potential applications in the future.
Collapse
|
35
|
Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:460. [PMID: 33670161 PMCID: PMC7916858 DOI: 10.3390/nano11020460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
In the past few decades, curcumin, a natural polyphenolic phytochemical, has been studied for treating a wide variety of diseases. It has shown promising results as a potential curative agent for a variety of diseases. However, its inherent limitations, such as poor aqueous solubility, poor absorbability, fast metabolic rate, and quick elimination from the body, have limited its application beyond preclinical studies. A huge number of studies have been made to address the issues of curcumin and to maximally utilize its potentials. Many review articles have tried to assess and summarize different nanocarriers, especially organic nanocarriers, for nanoformulations with curcumin. Nevertheless, few exclusive reviews on the progress in nanoformulation of curcumin with inorganic nanomaterials have been made. In this review, we present an exclusive summary of the progress in nanoformulation of curcumin with metal oxide nanoparticles. The beneficial feature of the metal oxide nanoparticles used in the curcumin nanoformulation, the different approaches followed in formulating curcumin with the metal oxides, and the corresponding results, protective effect of curcumin from different metal oxide caused toxicities, and concluding remarks are presented in the review.
Collapse
Affiliation(s)
- Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
- School of Chemical and Bioengineering, Addis Ababa Institute of Technology (AAiT), King George VI St., Addis Ababa 1000, Ethiopia
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| |
Collapse
|
36
|
Multiscale Metal Oxide Particles to Enhance Photocatalytic Antimicrobial Activity against Escherichia coli and M13 Bacteriophage under Dual Ultraviolet Irradiation. Pharmaceutics 2021; 13:pharmaceutics13020222. [PMID: 33561936 PMCID: PMC7914579 DOI: 10.3390/pharmaceutics13020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial activity of multiscale metal oxide (MO) particles against Escherichia coli (E. coli) and M13 bacteriophage (phage) was investigated under dual ultraviolet (UV) irradiation. Zinc oxide (ZnO), magnesium oxide (MgO), cuprous oxide (Cu2O), and cupric oxide (CuO) were selected as photocatalytic antimicrobials in MO particles. Physicochemical properties including morphology, particle size/particle size distribution, atomic composition, crystallinity, and porosity were evaluated. Under UV-A and UV-C irradiation with differential UV-C intensities, the antimicrobial activity of MO particles was monitored in E. coli and phage. MO particles had nano-, micro- and nano- to microscale sizes with irregular shapes, composed of atoms as ratios of chemical formulae and presented crystallinity as pure materials. They had wide-range specific surface area levels of 0.40–46.34 m2/g. MO particles themselves showed antibacterial activity against E. coli, which was the highest among the ZnO particles. However, no viral inactivation by MO particles occurred in phage. Under dual UV irradiation, multiscale ZnO and CuO particles had superior antimicrobial activities against E. coli and phage, as mixtures of nano- and microparticles for enhanced photocatalytic antimicrobials. The results showed that the dual UV-multiscale MO particle hybrids exhibit enhanced antibiotic potentials. It can also be applied as a next-generation antibiotic tool in industrial and clinical fields.
Collapse
|
37
|
Jin SE, Jin HE. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:263. [PMID: 33498491 PMCID: PMC7922830 DOI: 10.3390/nano11020263] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/31/2022]
Abstract
Zinc oxide (ZnO) nano/microparticles (NPs/MPs) have been studied as antibiotics to enhance antimicrobial activity against pathogenic bacteria and viruses with or without antibiotic resistance. They have unique physicochemical characteristics that can affect biological and toxicological responses in microorganisms. Metal ion release, particle adsorption, and reactive oxygen species generation are the main mechanisms underlying their antimicrobial action. In this review, we describe the physicochemical characteristics of ZnO NPs/MPs related to biological and toxicological effects and discuss the recent findings of the antimicrobial activity of ZnO NPs/MPs and their combinations with other materials against pathogenic microorganisms. Current biomedical applications of ZnO NPs/MPs and combinations with other materials are also presented. This review will provide the better understanding of ZnO NPs/MPs as antibiotic alternatives and aid in further development of antibiotic agents for industrial and clinical applications.
Collapse
Affiliation(s)
- Su-Eon Jin
- Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea
| |
Collapse
|
38
|
Abd-Elsalam KA. Zinc-based nanostructures for sustainable applications in agroecology: A note from the editor. ZINC-BASED NANOSTRUCTURES FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS 2021:1-10. [DOI: 10.1016/b978-0-12-822836-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Patrón-Romero L, Luque P, Soto-Robles C, Nava O, Vilchis-Nestor A, Barajas-Carrillo V, Martínez-Ramírez C, Chávez Méndez J, Alvelais Palacios J, Leal Ávila M, Almanza-Reyes H. Synthesis, characterization and cytotoxicity of zinc oxide nanoparticles by green synthesis method. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
AlSalhi MS, Devanesan S, Atif M, AlQahtani WS, Nicoletti M, Serrone PD. Therapeutic Potential Assessment of Green Synthesized Zinc Oxide Nanoparticles Derived from Fennel Seeds Extract. Int J Nanomedicine 2020; 15:8045-8057. [PMID: 33116517 PMCID: PMC7585823 DOI: 10.2147/ijn.s272734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To study the cytotoxic evaluation, antimicrobial and confocal analysis of zinc oxide nanoparticles (ZnO NPs) obtained from a novel plant product fennel (Foeniculum vulgare Mill.) seed extract (FSE). METHODS ZnO NPs were analyzed using UV-Vis spectroscopy, XRD, FTIR, TEM and EDX techniques. The MTT cell cytotoxicity assay measured the proliferation and survival of MCF-7 cells treated at different concentrations of FSE-derived ZnO NPs. The antimicrobial activity towards pathogenic bacteria and yeast strains was investigated. RESULTS The UV-Vis spectra showed two peaks at 438 nm and 446 nm, confirming nanoparticle formation. The SEM morphology results showed porous ranging from 23-51 nm. The antitumor activity value (IC50) was at 50 µg/mL and 100 µg/mL. Besides, morphological changes of MCF-7, cells treated at different concentrations of FSE of ZnO NPs were observed in cell cultures transfected with a transient pCMV6-XL4-GFP-expressing vector containing C-terminal domain GFP-tagged proteins, which resulted in an apoptotic effect. Antimicrobial IZ ranged up No Inhibition to 18.00 ± 0.4. The IZ revealed at the highest concentration was E. faecium VRE and yeast Cryptococcus sp. (18.00 ± 0.4. mm), followed by S. aureus (17.00 ± 0.2 mm) and P. aeruginosa and the yeast C. parapsilosis (16 ± 0.4 mm). The IZ was equal to that caused by the nystatin to Cryptococcus sp., which was significantly highest than ampicillin treatments of S. aureus, P. aeruginosa, C. albicans, and C. parapsilosis. The MIC value of the FSE-derived ZnO NPs tested against E.faecium and C.albicans was 6.00 µg/mL (E. faecium and C. albicans). It was 32.00 µg/mL (S. aureus, S. typhimurium and Cryptococcus sp.), 64.00 µg/mL (P. aeruginosa), and 128 µg/mL (C. parapsilosis). CONCLUSION As far as it is to our knowledge, this study established, for the first time, the biological activities of biosynthesized ZnO NPs from FSE and their synergistic therapeutic potential.
Collapse
Affiliation(s)
- Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Kingdom of Saudi Arabia
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Kingdom of Saudi Arabia
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Atif
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Kingdom of Saudi Arabia
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Wedad S AlQahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome00185, Italy
| | - Paola Del Serrone
- Council for Agricultural Research and Economics, Research Center for Zootechnic and Aquaculture, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
41
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
42
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
43
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|
44
|
Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1362104. [PMID: 32566073 PMCID: PMC7275957 DOI: 10.1155/2020/1362104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer, as a group, represents the most important cause of death worldwide. Unfortunately, the available therapeutic approaches of cancer including surgery, chemotherapy, radiotherapy, and immunotherapy are unsatisfactory and represent a great challenge as many patients have cancer recurrence and severe side effects. Methotrexate (MTX) is a well-established (antineoplastic or cytotoxic) chemotherapy and immunosuppressant drug used to treat different types of cancer, but its usage requires high doses causing severe side effects. Therefore, we need a novel drug with high antitumor efficacy in addition to safety. The aim of this study was the evaluation of the antitumor efficacy of zinc oxide nanoparticle (ZnO-NPs) and sorafenib alone or in combination on solid Ehrlich carcinoma (SEC) in mice. Sixty adult female Swiss-albino mice were divided equally into 6 groups as follows: control, SEC, MTX, ZnO-NPs, sorafenib, and ZnO-NPs+sorafenib; all treatments continued for 4 weeks. ZnO-NPs were characterized by TEM, zeta potential, and SEM mapping. Data showed that ZnO-NPs synergized with sorafenib as a combination therapy to execute more effective and safer anticancer activity compared to monotherapy as showed by a significant reduction (P < 0.001) in tumor weight, tumor cell viability, and cancer tissue glutathione amount as well as by significant increase (P < 0.001) in tumor growth inhibition rate, DNA fragmentation, reactive oxygen species generation, the release of cytochrome c, and expression of the apoptotic gene caspase-3 in the tumor tissues with minimal changes in the liver, renal, and hematological parameters. Therefore, we suggest that ZnO-NPs might be a safe candidate in combination with sorafenib as a more potent anticancer. The safety of this combined treatment may allow its use in clinical trials.
Collapse
|
45
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
46
|
Edis Z, Haj Bloukh S, Ibrahim MR, Abu Sara H. "Smart" Antimicrobial Nanocomplexes with Potential to Decrease Surgical Site Infections (SSI). Pharmaceutics 2020; 12:E361. [PMID: 32326601 PMCID: PMC7238257 DOI: 10.3390/pharmaceutics12040361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of resistant pathogens is a burden on mankind and threatens the existence of our species. Natural and plant-derived antimicrobial agents need to be developed in the race against antibiotic resistance. Nanotechnology is a promising approach with a variety of products. Biosynthesized silver nanoparticles (AgNP) have good antimicrobial activity. We prepared AgNPs with trans-cinnamic acid (TCA) and povidone-iodine (PI) with increased antimicrobial activity. We synthesized also AgNPs with natural cinnamon bark extract (Cinn) in combination with PI and coated biodegradable Polyglycolic Acid (PGA) sutures with the new materials separately. These compounds (TCA-AgNP, TCA-AgNP-PI, Cinn-AgNP, and Cinn-AgNP-PI) and their dip-coated PGA sutures were tested against 10 reference strains of microorganisms and five antibiotics by zone inhibition with disc- and agar-well-diffusion methods. The new compounds TCA-AgNP-PI and Cinn-AgNP-PI are broad spectrum microbicidal agents and therefore potential coating materials for sutures to prevent Surgical Site Infections (SSI). TCA-AgNP-PI inhibits the studied pathogens stronger than Cinn-AgNP-PI in-vitro and on coated sutures. Dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier Transform infrared spectroscopy (FT-IR), Raman, x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the composition of TCA-AgNP-PI and Cinn-AgNP-PI. Smart solutions involving hybrid materials based on synergistic antimicrobial action have promising future perspectives to combat resistant microorganisms.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE;
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE; (S.H.B.); (H.A.S.)
| | - May Reda Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE;
| | - Hamed Abu Sara
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE; (S.H.B.); (H.A.S.)
| |
Collapse
|
47
|
Bhushan M, Jha R, Sharma R, Bhardwaj R. Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance. NANOTECHNOLOGY 2020; 31:235602. [PMID: 32053814 DOI: 10.1088/1361-6528/ab7604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, much interest has been raised by materials with multi-purpose characteristics as the performance of electrochemical energy devices such as supercapacitors and photocatalytic activities depend strongly on the properties of materials. This study delineates various parameters like morphology, energy band gap, charge transfer resistance, different defect states, diffusion coefficient and functional groups adsorbed on the surface of material to assess the performance of supercapacitor electrodes and photocatalytic degradation efficiency of synthesised multi-dimensional ZnS nanostructures. Ethylenediamine (EN)-mediated multi-dimensional ZnS nanostructures were grown by the solvothermal route. One-dimensional (1D), 2D and 3D morphologies were obtained by varying the ratio of de-ionised water and EN, taken as 1:3, 1:2 and 1:1, respectively. The EN molecules effectively capped most of the surfaces of the ZnS nanoparticles formed, preventing agglomeration of nanoparticles due to the decrement in surface energy. The oriented attachment of these clusters resulted in the formation of 1D, 2D and 3D morphologies. The plausible chemistry in the formation of 1D, 2D and 3D nanostructures has been elaborated. Charge transfer properties of prepared electrodes have been examined using the electrochemical impedance spectroscopy (EIS) technique because better charge transfer causes diminishing electron/hole recombination and hence better photodegradation efficiency. Among the synthesised materials, the 2D nanostructure degraded the eosin Y dye to maximum 90.71% efficiency with rate constant 34 × 10-3 min-1. 2D nanostructures possess better charge transfer and hence better photodegradation efficiency. Various studies using methods of UV-vis, Fourier-transform infrared, Brunauer-Emmett-Teller, x-ray photoelectron spectroscopy and photoluminescence spectra are in good agreement with the obtained photodegradation results. After analysing cyclic voltammetry curves and EIS, a higher diffusion coefficient is obtained for 1D nanostructure material, hence a higher specific capacitance and higher energy density of 159.12 F g-1 and 22.75 KWh kg-1 are found in this case. Only 9% loss of specific capacitance is found after 1000 cycles, showing a relatively high cycling stability in 3D nanostructures. The excellent supercapacitive property can be attributed to the porous structure and high specific surface area. Thus, the synthesised multi-dimensional ZnS nanostructures are proved to be a potential candidate for both photocatalytic and supercapacitor electrode performance.
Collapse
Affiliation(s)
- Medha Bhushan
- Research Lab for Energy Systems, Department of Physics, N.S.I.T., University of Delhi, Azad Hind Fauj Marg, Sector-3, Dwarka, New Delhi-110078, India
| | | | | | | |
Collapse
|
48
|
Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E140. [PMID: 31941021 PMCID: PMC7022934 DOI: 10.3390/nano10010140] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Many investigations have pointed out widespread use of medical nanosystems in various domains of dentistry such as prevention, prognosis, care, tissue regeneration, and restoration. The progress of oral medicine nanosystems for individual prophylaxis is significant for ensuring bacterial symbiosis and high-quality oral health. Nanomaterials in oral cosmetics are used in toothpaste and other mouthwash to improve oral healthcare performance. These processes cover nanoparticles and nanoparticle-based materials, especially domains of application related to biofilm management in cariology and periodontology. Likewise, nanoparticles have been integrated in diverse cosmetic produces for the care of enamel remineralization and dental hypersensitivity. This review summarizes the indications and applications of several widely employed nanoparticles in oral cosmetics, and describes the potential clinical implementation of nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in the prevention of dental caries, hypersensitivity, and periodontitis.
Collapse
Affiliation(s)
- Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Stephane Viennot
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Livia Ottolenghi
- Department of Oral and Maxillo-facial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Cedric Gaillard
- Institut national de Recherche en Agriculture, Alimentation et Environnement (INRAE), Unité de Recherche 1268 Biopolymères Interactions Assemblages (BIA), 44316 Nantes, France;
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| |
Collapse
|