1
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. From conception to consumption: Applications of semi-solid extrusion 3D printing in oral drug delivery. Int J Pharm 2025; 674:125436. [PMID: 40097055 DOI: 10.1016/j.ijpharm.2025.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Semi-Solid Extrusion 3D printing (SSE 3DP) has emerged as a promising technology for fabricating oral drug formulations, offering significant opportunities for personalized medicine and tailored therapeutic outcomes. SSE 3DP is particularly advantageous for producing soft and chewable drug products and is well-suited for formulations containing thermosensitive drugs due to its low-temperature printing process. Among various 3D printing techniques, SSE 3DP holds considerable potential for point-of-care applications, enabling the on-demand production of patient-specific dosage forms. Despite these advantages, SSE 3DP faces certain limitations that affect its overall development and widespread adoption. This review provides a comprehensive overview of SSE 3DP's fundamental principles, current applications, and future prospects in oral drug delivery. It also addresses the challenges and limitations associated with SSE 3DP and examines the current outlook of this technique in oral drug delivery applications. An example of such a challenge is the lack of a harmonized method for evaluating rheological properties. To address this issue, the review describes a methodology for obtaining information related to extrudability and shape fidelity from rheological properties. Overall, this review aims to highlight the transformative potential of SSE 3DP in the pharmaceutical landscape, paving the way for tailored, and patient-centric therapies.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France.
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| |
Collapse
|
2
|
Białek A, Krysztofiak J, Hozakowska A, Wojszel Z, Osmałek T, Wojtyłko M, Froelich A. Novel Soft Dosage Forms for Paediatric Applications: Can We 3D-Print Them or Not? Gels 2025; 11:187. [PMID: 40136892 PMCID: PMC11942176 DOI: 10.3390/gels11030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Over the past years, numerous novel dosage forms, including gels, have been investigated for paediatric treatment due to the need to provide flexible dose adjustment possibilities, as well as a patient-friendly approach to drug delivery. Simultaneously, 3D printing technology is continuously advancing and gaining interest as a tool for personalised formulation development. Multiple additive manufacturing methods, including the semi-solid extrusion, especially used in gel printing, provide flexibility regarding the dose of active ingredients and the adjustment of the design of soft dosage forms. 3D printing techniques can be considered as a possible answer to the demand for medicines tailored to small patients' needs. This review intends to present an overview of the current possibilities, comparing gel-like and non-gel-formulated dosage forms and crucial aspects of developing those cutting-edge dosage forms by 3D printing. This paper discusses soft formulations such as chewing gums, which still require extensive evaluation, and explores the question of the three-dimensional printing process. Furthermore, it highlights soft dosage forms, such as gel-based gummies and hydrogels, for which 3D fabrication has been intensively studied in previous years. However, the research still needs to advance.
Collapse
Affiliation(s)
- Antoni Białek
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Julia Krysztofiak
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Aleksandra Hozakowska
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Zuzanna Wojszel
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
3
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
4
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
5
|
Tegegne AM, Ayenew KD, Selam MN. Review on Recent Advance of 3DP-Based Pediatric Drug Formulations. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4875984. [PMID: 39364267 PMCID: PMC11449557 DOI: 10.1155/2024/4875984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a game-changing technology in the pharmaceutical industry, providing novel formulation development in the pharmaceutical sector as a whole, which improved patients' individualized therapy. The pediatric population is among the key targets for individualized therapy. Children are a diverse group that includes neonates, infants, and toddlers, each with unique physiological characteristics. Treatment adherence has a significant impact on safe and effective pharmacotherapy in the pediatric population. Improvement of therapeutic dosage forms that provide for the special demands of the pediatric population is a significant challenge for the pharmaceutical industry. Scientists have actively explored 3DP, a quick prototype manufacturing method that has emerged in recent years from many occupations due to its benefits of modest operation, excellent reproducibility, and vast adaptability. This review illuminates the most widely used 3DP technology and its application in the development of pediatric-friendly drug formulations. This 3DP technology allows optimization of pediatric dosage regimens and cases that require individualized treatment, such as geriatrics, renal impairment, liver impairment, critically ill, pregnancy populations, and drugs with nonlinear pharmacokinetics. The fast evolution of 3DP expertise, in addition to the introduction of pharmaceutical inks, has enormous promise for patient dosage form customization.
Collapse
Affiliation(s)
- Aychew Mekuriaw Tegegne
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Kassahun Dires Ayenew
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Muluken Nigatu Selam
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
7
|
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V, Li Y, Ozbolat IT. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2313088. [PMID: 38952568 PMCID: PMC11216718 DOI: 10.1002/adfm.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/03/2024]
Abstract
Embedded bioprinting overcomes the barriers associated with the conventional extrusion-based bioprinting process as it enables the direct deposition of bioinks in 3D inside a support bath by providing in situ self-support for deposited bioinks during bioprinting to prevent their collapse and deformation. Embedded bioprinting improves the shape quality of bioprinted constructs made up of soft materials and low-viscosity bioinks, leading to a promising strategy for better anatomical mimicry of tissues or organs. Herein, the interplay mechanism among the printing process parameters toward improved shape quality is critically reviewed. The impact of material properties of the support bath and bioink, printing conditions, cross-linking mechanisms, and post-printing treatment methods, on the printing fidelity, stability, and resolution of the structures is meticulously dissected and thoroughly discussed. Further, the potential scope and applications of this technology in the fields of bioprinting and regenerative medicine are presented. Finally, outstanding challenges and opportunities of embedded bioprinting as well as its promise for fabricating functional solid organs in the future are discussed.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
- Ceyhan Engineering Faculty, Mechanical Engineering Department, Cukurova University, Adana 01330, Turkey
- Institute of Natural and Applied Sciences, Tissue Engineering Department, Cukurova University, Adana 01130, Turkey
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
9
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
10
|
Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B 2023; 12:131-144. [PMID: 38050731 DOI: 10.1039/d3tb01868g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Semi-solid extrusion (SSE) 3D printing has recently attracted increased attention for its pharmaceutical application as a potential method for small-batch manufacturing of personalised solid dosage forms. It has the advantage of allowing ambient temperature printing, which is especially beneficial for the 3D printing of thermosensitive drugs. In this study, the effects of polymeric compositions (single hydroxypropyl methylcellulose (HPMC) system and binary HPMC + polyvinylpyrrolidone (PVP) system), disintegrant (silicon oxide (SiO2)), and active pharmaceutical ingredients (tranexamic acid (TXA) and paracetamol (PAC)) on the printability of semisolid inks and the qualities of SSE printed drug-loaded tablets were investigated. Printability is defined by the suitability of the material for the process in terms of its physical properties during extrusions and post-extrusion, including rheology, solidification time, avoiding slumping, etc. The rheological properties of the inks were investigated as a function of polymeric compositions and drug concentrations and further correlated with the printability of the inks. The SSE 3D printed tablets were subjected to a series of physicochemical properties characterisations and in vitro drug release performance evaluations. The results indicated that an addition of SiO2 would improve 3D printing shape fidelity (e.g., pore area and porosity) by altering the ink rheology. The pores of HPMC + PVP + 5PAC prints completely disappeared after 12 hours of drying (pore area = 0 mm2). An addition of SiO2 significantly improved the pore area of the prints which are 3.5 ± 0.1 mm2. It was noted that the drug release profile of PAC significantly increased (p < 0.05) when additive SiO2 was incorporated in the formulation. This could be due to a significantly higher porosity of HPMC + PVP + SiO2 + PAC (70.3 ± 0.2%) compared to HPMC + PVP + PAC (47.6 ± 2.1%). It was also likely that SiO2 acted as a disintegrant speeding up the drug release process. Besides, the incorporation of APIs with different aqueous solubilities, as well as levels of interaction with the polymeric system showed significant impacts on the structural fidelity and subsequently the drug release performance of 3D printed tablets.
Collapse
Affiliation(s)
- Bin Zhang
- School of Pharmacy, University of East Anglia, Norwich, UK.
- Department of Mechanical and Aerospace Engineering, Brunel University London, London, UK.
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Xin Yi Teoh
- School of Pharmacy, University of East Anglia, Norwich, UK.
- School of Pharmacy, University College London, London, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Richard Bibb
- Nottingham School of Art & Design, Nottingham Trent University, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, UK.
| |
Collapse
|
11
|
Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children's personalized medicine. Int J Pharm 2023:123131. [PMID: 37321464 DOI: 10.1016/j.ijpharm.2023.123131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Hydrocortisone is mainly used in the substitution treatment of adrenal insufficiency which results in a dysregulation of cortisol. Compounding of hydrocortisone capsules remains the only low-dose oral treatment suitable for the pediatric population. However, capsules often show non-compliance in mass and content uniformity. Three-dimensional printing offers the prospect of practising personalized medicine for vulnerable patients like children. The goal of this work is to develop low-dose solid oral forms containing hydrocortisone by hot-melt extrusion coupled with fused deposition modeling for the pediatric population. Formulation, design and processes temperatures were optimized to produce printed forms with the desired characteristics. Red mini-waffle shapes containing drug loads of 2, 5 and 8 mg were successfully printed. This new 3D design allow to release more than 80% of the drug in 45 minutes indicating a conventional release like the one obtained with capsules. Mass and content uniformity, hardness and friability tests complied with European Pharmacopeia specifications, despite the considerable challenge of the small dimensions of the forms. This study demonstrates that FDM can be used to produce innovative pediatric-friendly printed shapes of an advanced pharmaceutical quality to practice personalize medicine.
Collapse
Affiliation(s)
- Chloé Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Laure-Anne Bya
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Justine Goebel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
12
|
Yang TL, Stogiannari M, Janeczko S, Khoshan M, Lin Y, Isreb A, Habashy R, Giebułtowic J, Peak M, Alhnan MA. Towards Point-of-Care Manufacturing and Analysis of Immediate-Release 3D Printed Hydrocortisone Tablets for The Treatment of Congenital Adrenal Hyperplasia. Int J Pharm 2023:123072. [PMID: 37230368 DOI: 10.1016/j.ijpharm.2023.123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Hydrocortisone (HC) is the preferred drug in children with congenital adrenal hyperplasia due to its lower potency as well as fewer reports of side effects. Fused deposition modelling (FDM) 3D printing holds the potential to produce low-cost personalised doses for children at the point of care. However, the compatibility of the thermal process to produce immediate-release bespoke tablets for this thermally labile active is yet to be established. This work aims to develop immediate-release HC tablets using FDM 3D printing and assess drug contents as a critical quality attribute (CQA) using a compact, low-cost near-infrared (NIR) spectroscopy as a process analytical technology (PAT). The FDM 3D printing temperature (140 °C) and drug concentration in the filament (10%-15% w/w) were critical parameters to meet the compendial criteria for drug contents and impurities. Using a compact low-cost NIR spectral device over a wavelength of 900-1700 nm, the drug contents of 3D printed tablets were assessed. Partial least squares (PLS) regression was used to develop individual calibration models to detect HC content in 3D printed tablets of lower drug contents, small caplet design, and relatively complex formula. The models demonstrated the ability to predict HC concentrations over a wide concentration range (0-15% w/w), which was confirmed by HPLC as a reference method. Ultimately, the capability of the NIR model had preceding dose verification performance on HC tablets, with linearity (R2 = 0.981) and accuracy (RMSECV = 0.46%). In the future, the integration of 3DP technology with non-destructive PAT techniques will accelerate the adoption of on-demand, individualised dosing in a clinical setting.
Collapse
Affiliation(s)
- Tzuyi L Yang
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Melpomeni Stogiannari
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Sylwia Janeczko
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Marva Khoshan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Yueyuan Lin
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Joanna Giebułtowic
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| |
Collapse
|
13
|
Elbl J, Veselý M, Blaháčková D, Ondruš J, Kulich P, Mašková E, Mašek J, Gajdziok J. Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing. Pharmaceutics 2023; 15:pharmaceutics15020714. [PMID: 36840036 PMCID: PMC9961792 DOI: 10.3390/pharmaceutics15020714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties. In contrast, the top layer provides a porous structure for ink entrapment. Hydroxypropyl methylcellulose and polyvinyl alcohol were utilized as film-forming polymers, glycerol as a plasticizer, and sodium starch glycolate as a disintegrant in the bottom matrix. Several porogen agents (Aeroperl® 300, Fujisil®, Syloid® 244 FP, Syloid® XDP 3050, Neusilin® S2, Neusilin® US2, and Neusilin® UFL2) acted as porosity enhancers in the two types of top layer. ODFs with satisfactory disintegration time were prepared. The correlation between the porogen content and the mechanical properties was proved. A porous ODF structure was detected in most samples and linked to the porogen content. SSE 3D printing represents a promising preparation method for the production of porous ODFs as substrates for subsequent drug deposition by 2D printing, avoiding the difficulties arising in casting or printing medicated ODFs directly.
Collapse
Affiliation(s)
- Jan Elbl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Martin Veselý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Dagmar Blaháčková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jaroslav Ondruš
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Eliška Mašková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
14
|
Tabriz AG, Mithu MS, Antonijevic MD, Vilain L, Derrar Y, Grau C, Morales A, Katsamenis OL, Douroumis D. 3D printing of LEGO® like designs with tailored release profiles for treatment of sleep disorder. Int J Pharm 2023; 632:122574. [PMID: 36603670 DOI: 10.1016/j.ijpharm.2022.122574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
3D printed LEGO®-like designs are an attractive approach for the development of compartmental delivery systems due to their potential for dose personalisation through the customisation of drug release profiles. Additive manufacturing technologies such as Fused Deposition Modelling (FDM) are ideal for the printing of structures with complex geometries and various sizes. This study is a paradigm for the fabrication of 3D printed LEGO® -like tablets by altering the design of the modular units and the filament composition for the delivery of different drug substances. By using a combination of placebo and drug loaded compartments comprising of immediate release (hydroxypropyl cellulose) and pH dependant polymers (hypromellose acetate succinate) we were able to customise the release kinetics of melatonin and caffeine that can potentially be used for the treatment of sleep disorders. The LEGO® -like compartments were designed to achieve immediate release of melatonin followed by variable lag times and controlled release of caffeine.
Collapse
Affiliation(s)
| | - Md Sadeque Mithu
- Cubi-Tech Extrusion Ltd, 3 Sextant Park, Neptune Close, Rochester, Chatham, Kent ME2 4LU, UK
| | - Milan D Antonijevic
- University of Greenwich, Faculty of Engineering and Science, School of Science, Chatham Maritime, Chatham, Kent ME4 4TB, UK
| | - Lilian Vilain
- Aix Marseille Université, Polytech Marseille, School of Engineering, 3 Avenue of Luminy, 13009 Marseille, France
| | - Youri Derrar
- Aix Marseille Université, Polytech Marseille, School of Engineering, 3 Avenue of Luminy, 13009 Marseille, France
| | - Clara Grau
- University of Haute-Alsace (UHA), School of Chemistry of Mulhouse (ENSCMu), 3 Street Alfred Werner, 68093 Mulhouse, France
| | - Anaïs Morales
- University of Haute-Alsace (UHA), School of Chemistry of Mulhouse (ENSCMu), 3 Street Alfred Werner, 68093 Mulhouse, France
| | - Orestis L Katsamenis
- University of Southampton, μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, Southampton SO17 1BJ, UK
| | - Dennis Douroumis
- Delta Pharmaceutics Ltd, 20 Steven Close, Chatham, Kent ME4 5NG, UK; University of Greenwich, Faculty of Engineering and Science, School of Science, Chatham Maritime, Chatham, Kent ME4 4TB, UK.
| |
Collapse
|
15
|
Gorkem Buyukgoz G, Kossor CG, Ji S, Guvendiren M, Davé RN. Dose Titration of Solid Dosage Forms via FDM 3D-Printed Mini-Tablets. Pharmaceutics 2022; 14:2305. [PMID: 36365124 PMCID: PMC9695869 DOI: 10.3390/pharmaceutics14112305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 07/27/2024] Open
Abstract
The robustness of 3D-printed mini-tablets as a platform to administer milligram dosages, intended for age-specific therapy, without the need of tablet splitting while maintaining similar release profiles, was investigated. Griseofulvin, as a model poorly water-soluble drug, and hydroxypropyl cellulose along with Kollicoat Protect as polymers were used to prepare filaments at 1-20% drug concentrations via hot-melt extrusion (HME). Higher drug concentrations served for testing the feasibility of a reduced number of mini-tablets to be administered. A reliable dose titration in the range 0.19-3.91 mg at a high accuracy (R2 of 0.999) was achieved through composite unit (multi-unit) mini-tablets. All mini-tablets produced had excellent content uniformity and their label claim values were within the acceptable range, proving that HME processing followed by 3D printing promotes content uniformity even for mini-tablets containing low drug doses (0.19 mg). Remarkably, the proposed approach allowed achieving similar drug release profiles via composite unit mini-tablets as well as single mini-tablets at high drug concentrations. In contrast, split tablets demonstrated different release behaviors, attributed to their size and shape differences. Overall, the distinct advantages of mini-tablets to provide dose flexibility while maintaining similar release profiles was demonstrated.
Collapse
Affiliation(s)
- Guluzar Gorkem Buyukgoz
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ 07102, USA
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher G. Kossor
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ 07102, USA
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shen Ji
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N. Davé
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ 07102, USA
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
16
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
17
|
Ghanizadeh Tabriz A, Nandi U, Scoutaris N, Sanfo K, Alexander B, Gong Y, Hui HW, Kumar S, Douroumis D. Personalised Paediatric Chewable Ibuprofen Tablets Fabricated Using 3D Micro-extrusion Printing Technology. Int J Pharm 2022; 626:122135. [PMID: 36028083 DOI: 10.1016/j.ijpharm.2022.122135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Three-dimensional (3D) printing is becoming an attractive technology for the design and development of personalized paediatric dosage forms with improved palatability. In this work micro-extrusion based printing was implemented for the fabrication of chewable paediatric ibuprofen (IBU) tablets by assessing a range of front runner polymers in taste masking. Due to the drug-polymer miscibility and the IBU plasticization effect, micro-extrusion was proved to be an ideal technology for processing the drug/polymer powder blends for the printing of paediatric dosage forms. The printed tablets presented high printing quality with reproducible layer thickness and a smooth surface. Due to the drug-polymer interactions induced during printing processing, IBU was found to form a glass solution confirmed by differential calorimetry (DSC) while H-bonding interactions were identified by confocal Raman mapping. IBU was also found to be uniformly distributed within the polymer matrices at molecular level. The tablet palatability was assessed by panellists and revealed excellent taste masking of the IBU's bitter taste. Overall micro-extrusion demonstrated promising processing capabilities of powder blends for rapid printing and development of personalised dosage forms.
Collapse
Affiliation(s)
- Atabak Ghanizadeh Tabriz
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent, ME4 4TB, UK
| | - Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent, ME4 4TB, UK
| | - Nicolaos Scoutaris
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent, ME4 4TB, UK
| | - Karifa Sanfo
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK
| | - Bruce Alexander
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK
| | - Yuchuan Gong
- Drug Product Development, Bristol Myers Squibb (formerly Celgene Corporation), 556 Morris Avenue, Summit, NJ 07901, USA.
| | - Ho-Wah Hui
- Drug Product Development, Bristol Myers Squibb (formerly Celgene Corporation), 556 Morris Avenue, Summit, NJ 07901, USA
| | - Sumit Kumar
- Drug Product Development, Bristol Myers Squibb (formerly Celgene Corporation), 556 Morris Avenue, Summit, NJ 07901, USA.
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent, ME4 4TB, UK.
| |
Collapse
|
18
|
Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022; 14:1732. [PMID: 36015355 PMCID: PMC9412656 DOI: 10.3390/pharmaceutics14081732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. This review provides an overview of the latest advancements in chewable dosage forms for human and veterinary use, highlighting the motivations behind their use and covering formulation considerations, as well as regulatory aspects.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
19
|
Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D. Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 2022; 220:115006. [PMID: 36007307 DOI: 10.1016/j.jpba.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lele Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
20
|
Preferences of Healthcare Professionals on 3D-Printed Tablets: A Pilot Study. Pharmaceutics 2022; 14:pharmaceutics14071521. [PMID: 35890417 PMCID: PMC9319202 DOI: 10.3390/pharmaceutics14071521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Highlights Abstract An inaugural study was performed to understand the perceptions of healthcare professionals toward the potential benefits of 3D printing in Singapore. This study sought to increase awareness of 3D printing applications for viable clinical applications and to elucidate the current gaps in therapy where 3D printing could play a role. A common example would be the use of 3D printing to manufacture polypills, thereby reducing the daily pill burden of patients and possibly improving medication adherence. A qualitative descriptive survey with a single-centered cross-sectional design was performed at Tan Tock Seng Hospital, a tertiary referral hospital with 1700 beds. This study had a total of 55 respondents comprising doctors and pharmacists. Most of the respondents viewed the 3D printing of oral dosage forms favorably and agreed about the potential advantages this technology could offer. More than 60% of the respondents were also willing to prescribe 3D printed tablets to patients. Respondents’ concerns were grouped into three main categories: formulation considerations, manufacturing processes, and administrative issues. Viewed in its entirety, this study provides a valuable starting point for understanding the perceptions of healthcare professionals in adopting 3D printing technology.
Collapse
|
21
|
Chachlioutaki K, Karavasili C, Mavrokefalou EE, Gioumouxouzis CI, Ritzoulis C, Fatouros DG. Quality control evaluation of paediatric chocolate-based dosage forms: 3D printing vs mold-casting method. Int J Pharm 2022; 624:121991. [PMID: 35809833 DOI: 10.1016/j.ijpharm.2022.121991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Pharmaceutical compounding is a core activity in the preparation of patient-specific dosage forms. In the current study we aimed to investigate whether 3D printing could be employed for the preparation of pediatric-friendly personalized dosage forms that fulfil the acceptance criteria specified in the pharmacopoeias for conventional dosage forms. We then compared the 3D printed dosage forms with the same formulations prepared with mold-casting, a method frequently applied during pharmaceutical compounding. The molded dosage forms failed to pass most of the quality control tests, including the mass uniformity and content uniformity tests, as well as dose accuracy, contrary to the 3D printed, which not only passed all tests but also enabled precision overdose adjustment. Hence, 3D printing of chocolate-based dosage forms may effectively serve as an acceptable alternative method to mold casting in compounding patient-specific medication at the point-of-care.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christina Karavasili
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece.
| | - Eleftheria-Eleni Mavrokefalou
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christos I Gioumouxouzis
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| |
Collapse
|
22
|
Zhu C, Tian Y, Zhang E, Gao X, Zhang H, Liu N, Han X, Sun Y, Wang Z, Zheng A. Semisolid Extrusion 3D Printing of Propranolol Hydrochloride Gummy Chewable Tablets: an Innovative Approach to Prepare Personalized Medicine for Pediatrics. AAPS PharmSciTech 2022; 23:166. [PMID: 35705726 DOI: 10.1208/s12249-022-02304-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/02/2022] [Indexed: 01/17/2023] Open
Abstract
The demand for personalized medicine has received extensive attention, especially in pediatric preparations. An emerging technology, extrusion-based 3D printing, is highly attractive in the field of personalized medicine. In this study, we prepared propranolol hydrochloride (PR) gummy chewable tablets tailored for children by semisolid extrusion (SSE) 3D printing technology to meet personalized medicine needs in pediatrics. In this study, the effects of critical formulation variables on the rheological properties and printability of gum materials were investigated by constructing a full-factorial design. In addition, the masticatory properties, thermal stability, and disintegration time of the preparations were evaluated. Bitterness inhibitors were used to mask the bitterness of the preparations. The results of the full-factorial design showed that the amount of gelatin and carrageenan were the key factors in the formulation. Gelatin can improve printability and masticatory properties, carrageenan can improve thermal stability, and accelerate the disintegration of preparations; therefore, a reasonable combination of both could satisfactorily meet the demand for high-quality 3D printing. γ-Aminobutyric acid can reduce the bitterness of gummy chewable tablets to improve medication compliance and the determined formulation (F7) met the quality requirements. In conclusion, the gum material has excellent potential as an extrusion material for 3D printing. The dosage can be adjusted flexibly by the model shape and size. 3D printing has broad prospects in pediatric preparations.
Collapse
Affiliation(s)
- Chunxiao Zhu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, 308th Ningxia Road, Shinan District, Qingdao, 266073, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Enhui Zhang
- Pharmacy Department, the 967th Hospital of the Joint Logistic Support Force, DaLian, 116000, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, 308th Ningxia Road, Shinan District, Qingdao, 266073, China.
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| |
Collapse
|
23
|
Teoh XY, Zhang B, Belton P, Chan SY, Qi S. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Pharm Res 2022; 39:1267-1279. [PMID: 35661083 PMCID: PMC9197916 DOI: 10.1007/s11095-022-03299-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Purpose Semi-solid extrusion (SSE) 3D printing has potential pharmaceutical applications for producing personalised medicine. However, the effects of ink properties and drug incorporation on the quality of printed medication have not been thoroughly studied, particularly for porous geometries. This study aimed to investigate the effects of the presence of solid drug particles in SSE inks on the printing quality of porous structures. Method The rheological behaviour of model inks of paracetamol (PCM)-hypromellose (HPMC) with different drug loadings were investigated and correlated to their printing qualities. Results For the inks with PCM loading above the drug solubility in which suspended solid drug particulates were present, the results confirmed that PCM loading and particle size significantly affected the ink viscosities at a low shear rate. At a low shear rate, the highest viscosity was identified when the highest drug loading and the smallest PCM particles were incorporated into the inks. However, the results indicated that the SSE printing parameters and printing quality of porous structures (with less porous structural deformation) have no clear correlation with the shear viscosity data, but a strong correlation with the dynamic oscillatory rheology of the inks. Conclusion The key rheological parameters including storage modulus, loss modulus and complex viscosity of the ink increased with increasing drug loading for the inks containing solid drug particles. However, decreasing the particle size did not have a clear effect on the oscillatory rheology of the inks which can be potentially used for optimising the SSE 3D printing quality of porous geometries. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03299-7.
Collapse
Affiliation(s)
- Xin-Yi Teoh
- School of Pharmacy, University of East Anglia, Norwich, UK.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Bin Zhang
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Siok-Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, UK.
| |
Collapse
|
24
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
25
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
26
|
Sjöholm E, Mathiyalagan R, Lindfors L, Wang X, Ojala S, Sandler N. Semi-Solid Extrusion 3D Printing of Tailored ChewTs for Veterinary Use - A Focus on Spectrophotometric Quantification of Gabapentin. Eur J Pharm Sci 2022; 174:106190. [DOI: 10.1016/j.ejps.2022.106190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
|
27
|
The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics 2022; 14:pharmaceutics14030609. [PMID: 35335984 PMCID: PMC8952205 DOI: 10.3390/pharmaceutics14030609] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The technological revolution has physically affected all manufacturing domains, at the gateway of the fourth industrial revolution. Three-dimensional (3D) printing has already shown its potential in this new reality, exhibiting remarkable applications in the production of drug delivery systems. As part of this concept, personalization of the dosage form by means of individualized drug dose or improved formulation functionalities has concentrated global research efforts. Beyond the manufacturing level, significant parameters must be considered to promote the real-time manufacturing of pharmaceutical products in distributed areas. The majority of current research activities is focused on formulating 3D-printed drug delivery systems while showcasing different scenarios of installing 3D printers in patients' houses, hospitals, and community pharmacies, as well as in pharmaceutical industries. Such research presents an array of parameters that must be considered to integrate 3D printing in a future healthcare system, with special focus on regulatory issues, drug shortages, quality assurance of the product, and acceptability of these scenarios by healthcare professionals and public parties. The objective of this review is to critically present the spectrum of possible scenarios of 3D printing implementation in future healthcare and to discuss the inevitable issues that must be addressed.
Collapse
|
28
|
Bracken L, Habashy R, McDonough E, Wilson F, Shakeshaft J, Ohia U, Garcia-Sorribes T, Isreb A, Alhnan MA, Peak M. Creating Acceptable Tablets 3D (CAT 3D): A Feasibility Study to Evaluate the Acceptability of 3D Printed Tablets in Children and Young People. Pharmaceutics 2022; 14:pharmaceutics14030516. [PMID: 35335892 PMCID: PMC8954179 DOI: 10.3390/pharmaceutics14030516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
3D printing (3DP) has been proposed as a novel approach for personalising dosage forms for children and young people (CYP). Owing to its low cost and the lack of need for finishing steps, fused deposing modelling (FDM) 3DP has been heavily researched in solid dosage forms (SDFs) manufacturing. However, the swallowability and overall acceptability of 3D printed dosage forms are yet to be established. This work is the first to evaluate the acceptability of different sized 3D printed placebo SDFs in CYP (aged 4–12 years). All participants had previously participated in a feasibility study (CAT study) that assessed the swallowability and acceptability of different sized GMP manufactured placebo conventional film-coated tablets, and therefore only attempted to swallow one 3D printed tablet. The participants assessed the swallowability, acceptability, mouthfeel, volume of water consumed, and taste of the sample using a 5-point hedonic facial scale on a participant questionnaire. A total of 30 participants were recruited, 87% of whom successfully swallowed the 3D printed tablet that they attempted to take. Attributes of the 3D printed tablets were scored as acceptable by the following percentage of participants—swallowability (80%), mouthfeel/texture (87%), the volume of water consumed (80%), taste (93%), and overall acceptability (83%). Overall, 77% of children reported they would be happy to take the tablet every day if it was a medicine. Participants were also asked which tablets felt better in the mouth—the film-coated tablets or the 3D printed tablets, and the most popular response (43%) was that both were acceptable. This study shows that FDM-based 3D printed SDFs may be a suitable dosage form for children aged 4–12 years. The results from this feasibility study will be used to inform a larger, definitive study looking at the acceptability of 3D printed tablets in children.
Collapse
Affiliation(s)
- Louise Bracken
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Rober Habashy
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Emma McDonough
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Fiona Wilson
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
| | - Joanne Shakeshaft
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Udeme Ohia
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
| | - Tamar Garcia-Sorribes
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Abdullah Isreb
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Mohamed A. Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King’s College, London SE1 9NH, UK
- Correspondence: (M.A.A.); (M.P.); Tel.: +44-(0)20-7848-7265 (M.A.A.)
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
- Correspondence: (M.A.A.); (M.P.); Tel.: +44-(0)20-7848-7265 (M.A.A.)
| |
Collapse
|
29
|
Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D Printing of Pediatric Medication: The End of Bad Tasting Oral Liquids?-A Scoping Review. Pharmaceutics 2022; 14:416. [PMID: 35214148 PMCID: PMC8880000 DOI: 10.3390/pharmaceutics14020416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
3D printing of pediatric-centered drug formulations can provide suitable alternatives to current treatment options, though further research is still warranted for successful clinical implementation of these innovative drug products. Extensive research has been conducted on the compliance of 3D-printed drug products to a pediatric quality target product profile. The 3D-printed tablets were of particular interest in providing superior dosing and release profile similarity compared to conventional drug manipulation and compounding methods, such as oral liquids. In the future, acceptance of 3D-printed tablets in the pediatric patient population might be better than current treatments due to improved palatability. Further research should focus on expanding clinical knowledge, providing regulatory guidance and expansion of the product range, including dosage form possibilities. Moreover, it should enable the use of diverse good manufacturing practice (GMP)-ready 3D printing techniques for the production of various drug products for the pediatric patient population.
Collapse
Affiliation(s)
- Iris Lafeber
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Elisabeth J. Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC—Sophia Children’s Hospital, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Kirsten J. M. Schimmel
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| |
Collapse
|
30
|
Zuccari G, Alfei S, Marimpietri D, Iurilli V, Barabino P, Marchitto L. Mini-Tablets: A Valid Strategy to Combine Efficacy and Safety in Pediatrics. Pharmaceuticals (Basel) 2022; 15:108. [PMID: 35056165 PMCID: PMC8779937 DOI: 10.3390/ph15010108] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
In the treatment of pediatric diseases, mass-produced dosage forms are often not suitable for children. Commercially available medicines are commonly manipulated and mixed with food by caregivers at home, or extemporaneous medications are routinely compounded in the hospital pharmacies to treat hospitalized children. Despite considerable efforts by regulatory agencies, the pediatric population is still exposed to questionable and potentially harmful practices. When designing medicines for children, the ability to fine-tune the dosage while ensuring the safety of the ingredients is of paramount importance. For these purposes solid formulations may represent a valid alternative to liquid formulations for their simpler formula and more stability, and, to overcome the problem of swelling ability, mini-tablets could be a practicable option. This review deals with the different approaches that may be applied to develop mini-tablets intended for pediatrics with a focus on the safety of excipients. Alongside the conventional method of compression, 3D printing appeared particularly appealing, as it allows to reduce the number of ingredients and to avoid both the mixing of powders and intermediate steps such as granulation. Therefore, this technique could be well adaptable to the daily galenic preparations of a hospital pharmacy, thus leading to a reduction of the common practice of off-label preparations.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Valentina Iurilli
- Pharmacy, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (V.I.); (P.B.)
| | - Paola Barabino
- Pharmacy, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (V.I.); (P.B.)
| | - Leonardo Marchitto
- Department of Sciences for the Quality of Life, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
31
|
Rao RR, Pandey A, Hegde AR, Kulkarni VI, Chincholi C, Rao V, Bhushan I, Mutalik S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2021; 23:24. [PMID: 34907508 PMCID: PMC8816530 DOI: 10.1208/s12249-021-02173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
In order to be at pace with the market requirements of solid dosage forms and regulatory standards, a transformation towards systematic processing using continuous manufacturing (CM) and automated model-based control is being thought through for its fundamental advantages over conventional batch manufacturing. CM eliminates the key gaps through the integration of various processes while preserving quality attributes via the use of process analytical technology (PAT). The twin screw extruder (TSE) is one such equipment adopted by the pharmaceutical industry as a substitute for the traditional batch granulation process. Various types of granulation techniques using twin screw extrusion technology have been explored in the article. Furthermore, individual components of a TSE and their conjugation with PAT tools and the advancements and applications in the field of nutraceuticals and nanotechnology have also been discussed. Thus, the future of granulation lies on the shoulders of continuous TSE, where it can be coupled with computational mathematical studies to mitigate its complications.
Collapse
|
32
|
Melnyk LA, Oyewumi MO. Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
34
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
35
|
Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13091421. [PMID: 34575497 PMCID: PMC8464872 DOI: 10.3390/pharmaceutics13091421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical characteristics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house flow rig model that mimics the subconjunctival space. The results showed sustained release of dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than 21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics for ocular administration.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| |
Collapse
|
36
|
Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Adv Drug Deliv Rev 2021; 176:113858. [PMID: 34237405 DOI: 10.1016/j.addr.2021.113858] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitive advantages over conventional dosage forms, aiming to entice innovation in drug formulation with special focus on sensitive patient populations.
Collapse
|
37
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
38
|
Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev 2021; 174:369-386. [PMID: 33895213 DOI: 10.1016/j.addr.2021.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/09/2023]
Abstract
3D printing is an innovative manufacturing technology with great potential to revolutionise solid dosage forms. Novel features of 3D printing technology confer advantage over conventional solid dosage form manufacturing technologies, including rapid prototyping and an unparalleled capability to fabricate complex geometries with spatially separated conformations. Such a novel technology could transform the pharmaceutical industry, enabling the production of highly personalised dosage forms with well-defined release profiles. In this work, we review the current state of the art of using additive manufacturing for predicting and understanding drug release from 3D printed novel structures. Furthermore, we describe a wide spectrum of 3D printing technologies, materials, procedure, and processing parameters used to fabricate fundamentally different matrices with different drug releases. The different methods to manipulate drug release patterns including the surface area-to-mass ratio, infill pattern, geometry, and composition, are critically evaluated. Moreover, the drug release mechanisms and models that could aid exploiting the release profile are also covered. Finally, this review also covers the design opportunities alongside the technical and regulatory challenges that these rapidly evolving technologies present.
Collapse
|
39
|
Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev 2021; 173:349-373. [PMID: 33831477 DOI: 10.1016/j.addr.2021.03.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Additive manufacturing (AM) is gaining interests in drug delivery applications, offering innovative opportunities for the design and development of systems with complex geometry and programmed controlled release profile. In addition, polymer-based drug delivery systems can improve drug safety, efficacy, patient compliance, and are the key materials in AM. Therefore, combining AM and polymers can be beneficial to overcome the existing limitations in the development of controlled release drug delivery systems. Considering these advantages, here we are focusing on the recent developments in the field of polymeric drug delivery systems prepared by AM. This review provides a comprehensive overview on a holistic polymer-AM perspective for drug delivery systems with discussion on the materials, properties, design and fabrication techniques and the mechanisms used to achieve a controlled release system. The current challenges and future perspectives for personalized medicine and clinical use of these systems are also briefly discussed.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Bas van Bochove
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland.
| |
Collapse
|
40
|
Rahman J, Quodbach J. Versatility on demand - The case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev 2021; 172:104-126. [PMID: 33705878 DOI: 10.1016/j.addr.2021.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.
Collapse
|
41
|
Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control Release 2021; 332:367-389. [PMID: 33652114 DOI: 10.1016/j.jconrel.2021.02.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) printing is an innovative additive manufacturing technology, capable of fabricating unique structures in a layer-by-layer manner. Semi-solid extrusion (SSE) is a subset of material extrusion 3D printing, and through the sequential deposition of layers of gel or paste creates objects of any desired size and shape. In comparison to other extrusion-based technologies, SSE 3D printing employs low printing temperatures which makes it suitable for drug delivery and biomedical applications, and the use of disposable syringes provides benefits in meeting critical quality requirements for pharmaceutical use. Besides pharmaceutical manufacturing, SSE 3D printing has attracted increasing attention in the field of bioelectronics, particularly in the manufacture of biosensors capable of measuring physiological parameters or as a means to trigger drug release from medical devices. This review begins by highlighting the major printing process parameters and material properties that influence the feasibility of transforming a 3D design into a 3D object, and follows with a discussion on the current SSE 3D printing developments and their applications in the fields of pharmaceutics, bioprinting and bioelectronics. Finally, the advantages and limitations of this technology are explored, before focusing on its potential clinical applications and suitability for preparing personalised medicines.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group, Faculty of Pharmacy, University of Santiago de Compostela (USC), and Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15782, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
42
|
Fanous M, Bitar M, Gold S, Sobczuk A, Hirsch S, Ogorka J, Imanidis G. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution. Int J Pharm 2021; 599:120417. [PMID: 33647418 DOI: 10.1016/j.ijpharm.2021.120417] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
3D-printing technologies such as Fused Deposition Modeling (FDM) bring a unique opportunity for personalized and flexible near-patient production of pharmaceuticals, potentially improving safety and efficacy for some medications. However, FDM-printed tablets often exhibit tendency for slow dissolution due to polymer erosion-based dissolution mechanisms. Development of immediate release (IR) 3D-printed dosage with poorly water-soluble compounds is even more challenging but necessary to ensure wide applicability of the technology within pharmaceutical development portfolios. In this work, process and morphology were considered to achieve IR of BCS class IV compound lumefantrine as model active pharmaceutical ingredient (API) using basic butylated methacrylate copolymer (Eudragit EPO) as matrix former, as well as hydrophilic plasticizer xylitol and pore former maltodextrin. Grid-designed tablets with size acceptable for children from 6 years old and varying programmed infill density were successfully 3D-printed with 5% lumefantrine while higher drug load led to increased brittleness which is incompatible with 3D-printing. Lumefantrine assay was 92 to 97.5% of theoretical content depending on drug load and process parameters. 3D-printed tablets with 65% infill density met rapid release criteria, while 80% and 100% showed slower dissolution. Structural characteristics of 3D-printed tablets with non-continuous surface such as accessible porosity and specific surface area by weight and by volume were quantified by a non-destructive automated µCT-based methodology and were found to correlate with dissolution rate. Increase in accessible porosity, total surface area, specific surface area and decrease in relative density were statistically significant critical factors for modification of lumefantrine dissolution rate. Crystallinity in manufactured tablets and filaments was explored by highly sensitive Raman mapping technique. Lumefantrine was present in the fully amorphous state in the tablets exhibiting adequate stability for on-site manufacturing. The study demonstrates feasibility of immediate release FDM-3D-printed tablets with BCS class IV API and illustrates the correlation of FDM design parameters with morphological and dissolution characteristics of manufactured tablets.
Collapse
Affiliation(s)
- Marina Fanous
- Novartis Pharma AG, Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Georgios Imanidis
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
43
|
3D Printing of Mini Tablets for Pediatric Use. Pharmaceuticals (Basel) 2021; 14:ph14020143. [PMID: 33670158 PMCID: PMC7916857 DOI: 10.3390/ph14020143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.
Collapse
|
44
|
V S S, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr 2021; 180:323-332. [PMID: 33025224 DOI: 10.1007/s00431-020-03819-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Neonates and pediatric populations are vulnerable subjects in terms of health. Proper screening and early optimal treatment would reduce infant and child mortality, improving the quality of life. Researchers and clinicians all over the world are in pursuit of innovations to improve the medical care delivery system. Infant morphometrics changes drastically due to the rapid somatic growth in infancy and childhood, demanding for patient-specific customization of treatment intervention accordingly. 3D printing is a radical technology that allows the generation of physical 3D products from digital images and addresses the patient-specific requirement. The combination of cost-effective and on-demand customization offers a boundless opportunity for the enhancement of neonates and pediatric health.Conclusion: The advanced technology of 3D printing proposes a pioneering breakthrough in bringing physiologically and anatomically appropriate treatment strategies addressing the unmet needs of child health problems. What is Known: • The potential application of 3D printing is observed across a multitude of fields within medicine and surgery. • The unprecedented effect of this technology on pediatric healthcare is still very much a work in progress. What is New: • The recent clinical applications of 3D printing provide better treatment modalities to infants and children. • The review provides an overview of the comparison between conventional treatment methods and 3DP regarding specific applications.
Collapse
Affiliation(s)
- Sukanya V S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India
| | | | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India.
| |
Collapse
|
45
|
Shahbazi M, Jäger H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS APPLIED BIO MATERIALS 2021; 4:325-369. [PMID: 35014287 DOI: 10.1021/acsabm.0c01379] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary additive manufacturing technique that allows rapid prototyping of objects with intricate architectures. This Review covers the recent state-of-the-art of biopolymers (protein and carbohydrate-based materials) application in pharmaceutical, bioengineering, and food printing and main reinforcement approaches of biomacromolecular structure for the development of 3D constructs. Some perspectives and main important limitations with the biomaterials utilization for advanced 3D printing procedures are also provided. Because of the improved the ink's flow behavior and enhance the mechanical strength of resulting printed architectures, biopolymers are the most used materials for 3D printing applications. Biobased polymers by taking advantage of modifying the ink viscosity could improve the resolution of deposited layers, printing precision, and consequently, develop well-defined geometries. In this regard, the rheological properties of printable biopolymeric-based inks and factors affecting ink flow behavior related to structural properties of printed constructs are discussed. On the basis of successful applications of biopolymers in 3D printing, it is suggested that other biomacromolecules and nanoparticles combined with the matrix can be introduced into the ink dispersions to enhance the multifunctionality of 3D structures. Furthermore, tuning the biopolymer's structural properties offers the most common and essential approach to attain the printed architectures with precisely tailored geometry. We finish the Review by giving a viewpoint of the upcoming 3D printing process and recognize some of the existing bottlenecks facing the blossoming 3D pharmaceutical, bioengineering, and food printing applications.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
46
|
Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm 2020; 594:120118. [PMID: 33326827 DOI: 10.1016/j.ijpharm.2020.120118] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
The 3D printing of drug formulations is a promising method for preparing tailored medicines following the approval of 3D printed tablets by the US FDA in 2015. Appropriate dosage forms for pediatric patients are deficient because drugs have been developed for mainly adult patients. Here, we fabricated gummy drug formulations for pediatric patients using a 3D bioprinter compatible with semi-solid materials such as hydrogels and pastes. The gummy drug formulations were composed of gelatin, HPMC, reduced syrup, water and the antiepileptic drug lamotrigine. The formulations were extruded from the nozzle of the 3D bioprinter under air pressure and laminated from the bottom in a layer-by-layer process. The incorporation of HPMC aided smooth printing at room temperature, and gelatin and HPMC affected the viscosity of the drug formulation and the printability of the formulations. The strength of the gummy formulations was remarkably influenced by the gelatin concentration. Dissolution tests showed 85% drug release within 15 min from most formulations. The results suggest that 3D printing is an effective method for preparing gummy drug formulations with various shapes in different colors, and that the methodology may improve drug adherence of pediatric patients in future clinical settings.
Collapse
Affiliation(s)
- Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Erina Ito
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Risako Kida
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kiyomi Hirose
- Department of Hospital Pharmacy, Nagoya University Hospital, 65-banchi, Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Takehiro Noda
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
47
|
Januskaite P, Xu X, Ranmal SR, Gaisford S, Basit AW, Tuleu C, Goyanes A. I Spy with My Little Eye: A Paediatric Visual Preferences Survey of 3D Printed Tablets. Pharmaceutics 2020; 12:E1100. [PMID: 33212847 PMCID: PMC7698452 DOI: 10.3390/pharmaceutics12111100] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
3D printing (3DP) in the pharmaceutical field is a disruptive technology that allows the preparation of personalised medicines at the point of dispensing. The paediatric population presents a variety of pharmaceutical formulation challenges such as dose flexibility, patient compliance, taste masking and the fear or difficulty to swallow tablets, all factors that could be overcome using the adaptable nature of 3DP. User acceptability studies of 3D printed formulations have been previously carried out in adults; however, feedback from children themselves is essential in establishing the quality target product profile towards the development of age-appropriate medicines. The aim of this study was to investigate the preference of children for different 3D printed tablets (Printlets™) as an important precursor to patient acceptability studies. Four different 3DP technologies; digital light processing (DLP), selective laser sintering (SLS), semi-solid extrusion (SSE) and fused deposition modeling (FDM) were used to prepare placebo printlets with similar physical attributes including size and shape. A single-site, two-part survey was completed with participants aged 4-11 years to determine their preference and opinions based on visual inspection of the printlets. A total of 368 participants completed an individual open questionnaire to visually select the best and worst printlet, and 310 participants completed further non-compulsory open questions to elaborate on their choices. Overall, the DLP printlets were the most visually appealing to the children (61.7%) followed by the SLS printlets (21.2%), and with both the FDM (5.4%) and SSE (11.7%) printlets receiving the lowest scores. However, after being informed that the SSE printlets were chewable, the majority of participants changed their selection and favoured this printlet, despite their original choice, in line with children's preference towards chewable dosage forms. Participant age and sex displayed no significant differences in printlet selection. Printlet descriptions were grouped into four distinct categories; appearance, perceived taste, texture and familiarity, and were found to be equally important when creating a quality target product profile for paediatric 3D printed formulations. This study is the first to investigate children's perceptions of printlets, and the findings aim to provide guidance for further development of paediatric-appropriate medicines using different 3DP technologies.
Collapse
Affiliation(s)
- Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
| | - Sejal R. Ranmal
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Catherine Tuleu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (P.J.); (X.X.); (S.R.R.); (S.G.)
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma Group (GI-1645), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
48
|
Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release 2020; 329:743-757. [PMID: 33031881 DOI: 10.1016/j.jconrel.2020.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided. The challenges and drawbacks presented by this technology are also discussed. It is forecast that the adoption of 3D printing could pave the way for a personalised health system, advancing from traditional treatments pathways towards digital healthcare.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pamela Robles-Martinez
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
49
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field. J Pharm Sci 2020; 109:2943-2957. [DOI: 10.1016/j.xphs.2020.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
|
50
|
Fina F, Goyanes A, Rowland M, Gaisford S, W. Basit A. 3D Printing of Tunable Zero-Order Release Printlets. Polymers (Basel) 2020; 12:polym12081769. [PMID: 32784645 PMCID: PMC7465712 DOI: 10.3390/polym12081769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023] Open
Abstract
Zero-order release formulations are designed to release a drug at a constant rate over a prolonged time, thus reducing systemic side effects and improving patience adherence to the therapy. Such formulations are traditionally complex to manufacture, requiring multiple steps. In this work, fused deposition modeling (FDM) 3D printing was explored to prepare on-demand printlets (3D printed tablets). The design includes a prolonged release core surrounded by an insoluble shell able to provide zero-order release profiles. The effect of drug loading (10, 25, and 40% w/w paracetamol) on the mechanical and physical properties of the hot melt extruded filaments and 3D printed formulations was evaluated. Two different shell 3D designs (6 mm and 8 mm diameter apertures) together with three different core infills (100, 50, and 25%) were prepared. The formulations showed a range of zero-order release profiles spanning 16 to 48 h. The work has shown that with simple formulation design modifications, it is possible to print extended release formulations with tunable, zero-order release kinetics. Moreover, by using different infill percentages, the dose contained in the printlet can be infinitely adjusted, providing an additive manufacturing route for personalizing medicines to a patient.
Collapse
Affiliation(s)
- Fabrizio Fina
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (F.F.); (A.G.); (S.G.)
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (F.F.); (A.G.); (S.G.)
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martin Rowland
- Pfizer Ltd., Drug Product Design, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, UK;
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (F.F.); (A.G.); (S.G.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (F.F.); (A.G.); (S.G.)
- Correspondence: ; Tel.: +44-020-7753-5865
| |
Collapse
|