1
|
Zheng Z, Wang M, Ren A, Cheng Z, Li X, Guo C. 3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse. ACS Biomater Sci Eng 2025; 11:2367-2377. [PMID: 40036493 DOI: 10.1021/acsbiomaterials.5c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
Collapse
Affiliation(s)
- Zili Zheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Min Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - An Ren
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Zhangyuan Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Xiangjuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
3
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
4
|
Patel R, Patel S, Shah N, Shah S, Momin I, Shah S. 3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2723-2766. [PMID: 39102337 DOI: 10.1080/09205063.2024.2386222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.
Collapse
Affiliation(s)
- Riya Patel
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Shivani Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Nehal Shah
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Sakshi Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Ilyas Momin
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Shreeraj Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Narala S, Ali Youssef AA, Munnangi SR, Narala N, Lakkala P, Vemula SK, Repka M. 3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing. Expert Opin Drug Deliv 2024; 21:1543-1557. [PMID: 38236621 DOI: 10.1080/17425247.2024.2306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| |
Collapse
|
6
|
Govender M, Indermun S, Choonara YE. 3D bioprinted microneedles: merging drug delivery and scaffold science for tissue-specific applications. Expert Opin Drug Deliv 2024; 21:1559-1572. [PMID: 38722022 DOI: 10.1080/17425247.2024.2351928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 11/10/2024]
Abstract
INTRODUCTION Three-Dimensional (3D) microneedles have recently gained significant attention due to their versatility, biocompatibility, enhanced permeation, and predictable behavior. The incorporation of biological agents into these 3D constructs has advanced the traditional microneedle into an effective platform for wide-ranging applications. AREAS COVERED This review discusses the current state of microneedle fabrication as well as the developed 3D printed microneedles incorporating labile pharmaceutical agents and biological materials for potential biomedical applications. The mechanical and processing considerations for the preparation of microneedles and the barriers to effective 3D printing of microneedle constructs have additionally been reviewed along with their therapeutic applications and potential for tissue engineering and regenerative applications. Additionally, the regulatory considerations for microneedle approval have been discussed as well as the current clinical trial and patent landscapes. EXPERT OPINION The fields of tissue engineering and regenerative medicine are evolving at a significant pace with researchers constantly focused on incorporating advanced manufacturing techniques for the development of versatile, complex, and biologically specific platforms. 3D bioprinted microneedles, fabricated using conventional 3D printing techniques, have resultantly provided an alternative to 2D bioscaffolds through the incorporation of biological materials within 3D constructs while providing further mechanical stability, increased bioactive permeation and improved innervation into surrounding tissues. This advancement therefore potentially allows for a more effective biomimetic construct with improved tissue-specific cellular growth for the enhanced treatment of physiological conditions requiring tissue regeneration and replacement.
Collapse
Affiliation(s)
- Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Sunaina Indermun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
7
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
8
|
Chen YP, Lo TS, Chien YH, Kuo YH, Liu SJ. In Vitro and In Vivo Drug Release from a Nano-Hydroxyapatite Reinforced Resorbable Nanofibrous Scaffold for Treating Female Pelvic Organ Prolapse. Polymers (Basel) 2024; 16:1667. [PMID: 38932015 PMCID: PMC11207985 DOI: 10.3390/polym16121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Pelvic prolapse stands as a substantial medical concern, notably impacting a significant segment of the population, predominantly women. This condition, characterized by the descent of pelvic organs, such as the uterus, bladder, or rectum, from their normal positions, can lead to a range of distressing symptoms, including pelvic pressure, urinary incontinence, and discomfort during intercourse. Clinical challenges abound in the treatment landscape of pelvic prolapse, stemming from its multifactorial etiology and the diverse array of symptoms experienced by affected individuals. Current treatment options, while offering relief to some extent, often fall short in addressing the full spectrum of symptoms and may pose risks of complications or recurrence. Consequently, there exists a palpable need for innovative solutions that can provide more effective, durable, and patient-tailored interventions for pelvic prolapse. We manufactured an integrated polycaprolactone (PCL) mesh, reinforced with nano-hydroxyapatite (nHA), along with drug-eluting poly(lactic-co-glycolic acid) (PLGA) nanofibers for a prolapse scaffold. This aims to offer a promising avenue for enhanced treatment outcomes and improved quality of life for individuals grappling with pelvic prolapse. Solution extrusion additive manufacturing and electrospinning methods were utilized to prepare the nHA filled PCL mesh and drug-incorporated PLGA nanofibers, respectively. The pharmaceuticals employed included metronidazole, ketorolac, bleomycin, and estrone. Properties of fabricated resorbable scaffolds were assessed. The in vitro release characteristics of various pharmaceuticals from the meshes/nanofibers were evaluated. Furthermore, the in vivo drug elution pattern was also estimated on a rat model. The empirical data show that nHA reinforced PCL mesh exhibited superior mechanical strength to virgin PCL mesh. Electrospun resorbable nanofibers possessed diameters ranging from 85 to 540 nm, and released effective metronidazole, ketorolac, bleomycin, and estradiol, respectively, for 9, 30, 3, and over 30 days in vitro. Further, the mesh/nanofiber scaffolds also liberated high drug levels at the target site for more than 28 days in vivo, while the drug concentrations in blood remained low. This discovery suggests that resorbable scaffold can serve as a viable option for treating female pelvic organ prolapse.
Collapse
Affiliation(s)
- Yi-Pin Chen
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsia-Shu Lo
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
| | - Yu-Han Chien
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
| | - Yi-Hua Kuo
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
9
|
Abraham AM, Anjani QK, Adhami M, Hutton ARJ, Larrañeta E, Donnelly RF. Novel SmartReservoirs for hydrogel-forming microneedles to improve the transdermal delivery of rifampicin. J Mater Chem B 2024; 12:4375-4388. [PMID: 38477350 DOI: 10.1039/d4tb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Hydrogel-forming microneedles (HF-MNs) are composed of unique cross-linked polymers that are devoid of the active pharmaceutical ingredient (API) within the microneedle array. Instead, the API is housed in a reservoir affixed on the top of the baseplate of the HF-MNs. To date, various types of drug-reservoirs and multiple solubility-enhancing approaches have been employed to deliver hydrophobic molecules combined with HF-MNs. These strategies are not without drawbacks, as they require multiple manufacturing steps, from solubility enhancement to reservoir production. However, this current study challenges this trend and focuses on the delivery of the hydrophobic antibiotic rifampicin using SmartFilm-technology as a solubility-enhancing strategy. In contrast to previous techniques, smart drug-reservoirs (SmartReservoirs) for hydrophobic compounds can be manufactured using a one step process. In this study, HF-MNs and three different concentrations of rifampicin SmartFilms (SFs) were produced. Following this, both HF-MNs and SFs were fully characterised regarding their physicochemical and mechanical properties, morphology, Raman surface mapping, the interaction with the cellulose matrix and maintenance of the loaded drug in the amorphous form. In addition, their drug loading and transdermal permeation efficacy were studied. The resulting SFs showed that the API was intact inside the cellulose matrix within the SFs, with the majority of the drug in the amorphous state. SFs alone demonstrated no transdermal penetration and less than 20 ± 4 μg of rifampicin deposited in the skin layers. In contrast, the transdermal permeation profile using SFs combined with HF-MNs (i.e. SmartReservoirs) demonstrated a 4-fold increase in rifampicin deposition (80 ± 7 μg) in the skin layers and a permeation of approx. 500 ± 22 μg. Results therefore illustrate that SFs can be viewed as novel drug-reservoirs (i.e. SmartReservoirs) for HF-MNs, achieving highly efficient loading and diffusion properties through the hydrogel matrix.
Collapse
Affiliation(s)
- Abraham M Abraham
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
11
|
Utomo E, Domínguez-Robles J, Anjani QK, Picco CJ, Korelidou A, Magee E, Donnelly RF, Larrañeta E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X 2023; 5:100142. [PMID: 36531743 PMCID: PMC9755236 DOI: 10.1016/j.ijpx.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is an abnormal condition caused by the change of microbiota in the vagina. One of the most common bacteria found in the case of BV is Gardnerella vaginalis, which is categorised as anaerobic facultative bacteria. Currently, the available treatment for BV is the use of antibiotics, such as metronidazole (MTZ), in topical and oral dosage forms. The limitation of the currently available treatment is that multiple administration is required and thus, the patient needs to apply the drug frequently to maintain the drug efficacy. To address these limitations, this research proposed prolonged delivery of MTZ in the form of intravaginal devices made from biodegradable and biocompatible polymers. Semi-solid extrusion (SSE) 3D printing was used to prepare the intravaginal devices. The ratio of high and low molecular weight poly(caprolactone) (PCL) was varied to evaluate the effect of polymer composition on the drug release. The versatility of SSE 3D printer was used to print the intravaginal devices into two different shapes (meshes and discs) and containing two different polymer layers made from PCL and a copolymer of methyl vinyl ether and maleic anhydride (Gantrez™-AN119), which provided mucoadhesive properties. Indeed, this layer made from Gantrez™-AN119 increased ca. 5 times the mucoadhesive properties of the final 3D-printed devices (from 0.52 to 2.57 N). Furthermore, MTZ was homogenously dispersed within the polymer matrix as evidenced by scanning electron microscopy analysis. Additionally, in vitro drug release, and antibacterial activity of the MTZ-loaded intravaginal devices were evaluated. Disc formulations were able to sustain the release of MTZ for 72 h for formulations containing 70/30 and 60/40 ratio of high molecular weight/low molecular weight PCL. On the other hand, the discs containing a 50/50 ratio of high molecular weight/low molecular weight PCL showed up to 9 days of release. However, no significant differences in the MTZ release from the MTZ-loaded meshes (60/40 and 50/50 ratio of high molecular weight/low molecular weight PCL) were found after 24 h. The results showed that the different ratios of high and low molecular weight PCL did not significantly affect the MTZ release. However, the shape of the devices did influence the release of MTZ, showing that larger surface area of the meshes provided a faster MTZ release. Moreover, MTZ loaded 3D-printed discs (5% w/w) were capable of inhibiting the growth of Gardnerella vaginalis. These materials showed clear antimicrobial properties, exhibiting a zone of inhibition of 19.0 ± 1.3 mm. Based on these findings, the manufactured represent a valuable alternative approach to the current available treatment, as they were able to provide sustained release of MTZ, reducing the frequency of administration and thus improving patient compliance.
Collapse
Affiliation(s)
| | | | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J. Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
12
|
Aguilar-de-Leyva Á, Linares V, Domínguez-Robles J, Casas M, Caraballo I. Extrusion-based technologies for 3D printing: a comparative study of the processability of thermoplastic polyurethane-based formulations. Pharm Dev Technol 2023; 28:939-947. [PMID: 37878535 DOI: 10.1080/10837450.2023.2274945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Thermoplastic polyurethanes (TPU) offer excellent properties for a wide range of dosage forms. These polymers have been successfully utilized in personalized medicine production using fused deposition modeling (FDM) 3D printing (3DP). However, direct powder extrusion (DPE) has been introduced recently as a challenging technique since it eliminates filament production before 3DP, reducing thermal stress, production time, and costs. This study compares DPE and single-screw extrusion for binary (drug-TPU) and ternary (drug-TPU-magnesium stearate [MS]) mixtures containing from 20 to 60% w/w of theophylline. Powder flow, mechanical properties, fractal analysis, and percolation theory were utilized to analyze critical properties of the extrudates. All the mixtures could be processed at a temperature range between 130 and 160 °C. Extrudates containing up to 50% w/w of drug (up to 30% w/w of drug in the case of single-screw extrusion binary filaments) showed toughness values above the critical threshold of 80 kg/mm2. MS improved flow in mixtures where the drug is the only percolating component, reduced until 25 °C the DPE temperature and decreased the extrudate roughness in high drug content systems. The potential of DPE as an efficient one-step additive manufacturing technique in healthcare environments to produce TPU-based tailored on-demand medicines has been demonstrated.
Collapse
Affiliation(s)
- Ángela Aguilar-de-Leyva
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Vicente Linares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
14
|
Mrówka M, Lenża-Czempik J, Dawicka A, Skonieczna M. Polyurethane-Based Nanocomposites for Regenerative Therapies of Cancer Skin Surgery with Low Inflammatory Potential to Healthy Fibroblasts and Keratinocytes In Vitro. ACS OMEGA 2023; 8:37769-37780. [PMID: 37867722 PMCID: PMC10586018 DOI: 10.1021/acsomega.3c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Nanocomposites based on thermoplastic polyurethanes (TPUs) filled with halloysite nanotubes (HNTs) were studied for their physicochemical and biological properties. Nanocomposites containing halloysite nanotube filler contents of 1 and 2% (E+1 and E+2), respectively, were obtained by extrusion. The newly formed E+1 and E+2 nanomaterials exhibited better flexibility and similar thermal properties compared to neat polyurethane. The use of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) thermogram analysis showed that the distribution of halloysite nanotubes in the polymer matrix is more evenly dispersed in the E+1 nanomaterial, where the grains in the E+2 nanomaterial have a greater tendency to form agglomerates. Mechanical tests have shown that nanocomposites with the addition of HNT are characterized by a higher stress at break and elongation at break compared to neat TPU. The results of cytotoxicity tests suggest that the nanocomposite materials express lower toxicity to normal HaCaT and NHDF than to cancer Me45 cells. Further studies showed that the tested materials induced the expression of proinflammatory interleukins IL6 and IL8 in normal cells, but their overexpression in the cancer cell line resulted in cytostatic effects and proliferation reduction. Such a conclusion suggests the possible application of tested materials for regenerative therapies in cancer surgeries.
Collapse
Affiliation(s)
- Maciej Mrówka
- Department
of Material Technologies, Faculty of Material Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
- Material
Innovations Laboratory, Silesian University
of Technology, Krasińskiego
8, 40-019 Katowice, Poland
| | | | - Anahit Dawicka
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Department
of Systems Biology and Engineering, Silesian
University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Department
of Systems Biology and Engineering, Silesian
University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Teworte S, Aleandri S, Weber JR, Carone M, Luciani P. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci 2023; 188:106501. [PMID: 37339708 DOI: 10.1016/j.ejps.2023.106501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Gynaecological health is a neglected field of research that includes conditions such as endometriosis, uterine fibroids, infertility, viral and bacterial infections, and cancers. There is a clinical need to develop dosage forms for gynecological diseases that increase efficacy and reduce side effects and explore new materials with properties tailored to the vaginal mucosa and milieu. Here, we developed a 3D printed semisolid vaginal ovule containing pirfenidone, a repurposed drug candidate for endometriosis. Vaginal drug delivery allows direct targeting of the reproductive organs via the first uterine pass effect, but vaginal dosage forms can be challenging to self-administer and retain in situ for periods of more than 1-3 h. We show that a semisoft alginate-based vaginal suppository manufactured using semisolid extrusion additive manufacturing is superior to vaginal ovules made using standard excipients. The 3D-printed ovule showed a controlled release profile of pirfenidone in vitro in standard and biorelevant release tests, as well as better mucoadhesive properties ex vivo. An exposure time of 24 h of pirfenidone to a monolayer culture of an endometriotic epithelial cell line, 12Z, is necessary to reduce the cells' metabolic activity, which demonstrates the need for a sustained release formulation of pirfenidone. 3D printing allowed us to formulate mucoadhesive polymers into a semisolid ovule with controlled release of pirfenidone. This work enables further preclinical and clinical studies into vaginally administered pirfenidone to assess its efficacy as a repurposed endometriosis treatment.
Collapse
Affiliation(s)
- Sarah Teworte
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Jessica R Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
16
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
17
|
Doganay MT, Chelliah CJ, Tozluyurt A, Hujer AM, Obaro SK, Gurkan U, Patel R, Bonomo RA, Draz M. 3D Printed Materials for Combating Antimicrobial Resistance. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 67:371-398. [PMID: 37790286 PMCID: PMC10545363 DOI: 10.1016/j.mattod.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Three-dimensional (3D) printing is a rapidly growing technology with a significant capacity for translational applications in both biology and medicine. 3D-printed living and non-living materials are being widely tested as a potential replacement for conventional solutions for testing and combating antimicrobial resistance (AMR). The precise control of cells and their microenvironment, while simulating the complexity and dynamics of an in vivo environment, provides an excellent opportunity to advance the modeling and treatment of challenging infections and other health conditions. 3D-printing models the complicated niches of microbes and host-pathogen interactions, and most importantly, how microbes develop resistance to antibiotics. In addition, 3D-printed materials can be applied to testing and delivering antibiotics. Here, we provide an overview of 3D printed materials and biosystems and their biomedical applications, focusing on ever increasing AMR. Recent applications of 3D printing to alleviate the impact of AMR, including developed bioprinted systems, targeted bacterial infections, and tested antibiotics are presented.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cyril John Chelliah
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Abdullah Tozluyurt
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | - Umut Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Public Health, Infectious Diseases, and Occupational medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - Mohamed Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Kyser AJ, Mahmoud MY, Herold SE, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm 2023; 641:123054. [PMID: 37207856 PMCID: PMC10330500 DOI: 10.1016/j.ijpharm.2023.123054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 μg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Sydney E Herold
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
19
|
Herold SE, Kyser AJ, Orr MG, Mahmoud MY, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Release Kinetics of Metronidazole from 3D Printed Silicone Scaffolds for Sustained Application to the Female Reproductive Tract. BIOMEDICAL ENGINEERING ADVANCES 2023; 5:100078. [PMID: 37123989 PMCID: PMC10136949 DOI: 10.1016/j.bea.2023.100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Sustained vaginal administration of antibiotics or probiotics has been proposed to improve treatment efficacy for bacterial vaginosis. 3D printing has shown promise for development of systems for local agent delivery. In contrast to oral ingestion, agent release kinetics can be fine-tuned by the 3D printing of specialized scaffold designs tailored for particular treatments while enhancing dosage effectiveness via localized sustained release. It has been challenging to establish scaffold properties as a function of fabrication parameters to obtain sustained release. In particular, the relationships between scaffold curing conditions, compressive strength, and drug release kinetics remain poorly understood. This study evaluates 3D printed scaffold formulation and feasibility to sustain the release of metronidazole, a commonly used antibiotic for BV. Cylindrical silicone scaffolds were printed and cured using three different conditions relevant to potential future incorporation of temperature-sensitive labile biologics. Compressive strength and drug release were monitored for 14d in simulated vaginal fluid to assess long-term effects of fabrication conditions on mechanical integrity and release kinetics. Scaffolds were mechanically evaluated to determine compressive and tensile strength, and elastic modulus. Release profiles were fitted to previous kinetic models to differentiate potential release mechanisms. The Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin models best described the release, indicating similarity to release from insoluble or polymeric matrices. This study shows the feasibility of 3D printed silicone scaffolds to provide sustained metronidazole release over 14d, with compressive strength and drug release kinetics tuned by the fabrication parameters.
Collapse
Affiliation(s)
- Sydney E. Herold
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Anthony J. Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Margaret G. Orr
- Department of Chemical Engineering, Bucknell University, Lewisburg, PA, USA
| | - Mohamed Y. Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Warren G. Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California USA
| | - Amanda L. Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California USA
| | - Jill M. Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- UofL Health – Brown Cancer Center, University of Louisville, KY, USA
| |
Collapse
|
20
|
Domsta V, Hänsch C, Lenz S, Gao Z, Matin-Mann F, Scheper V, Lenarz T, Seidlitz A. The Influence of Shape Parameters on Unidirectional Drug Release from 3D Printed Implants and Prediction of Release from Implants with Individualized Shapes. Pharmaceutics 2023; 15:1276. [PMID: 37111760 PMCID: PMC10143641 DOI: 10.3390/pharmaceutics15041276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.
Collapse
Affiliation(s)
- Vanessa Domsta
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Christin Hänsch
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Stine Lenz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Farnaz Matin-Mann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
22
|
Desai SM, Sonawane RY, More AP. Thermoplastic polyurethane for three‐dimensional printing applications: A review. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules 2023; 28:2766. [PMID: 36985738 PMCID: PMC10058016 DOI: 10.3390/molecules28062766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Over the last decade, efforts have been oriented toward the development of suitable gels for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions. As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing of biomimetic materials with structural fidelity after their fabrication. Among some requirements imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the nondamaging processability represents a critical issue for the stability and functioning of the 3D constructs. The major challenges in the field of printable gels are to mimic at different length scales the structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful investigation of the rheological characteristics allows a fine-tuning of the material properties that are manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions similar to those encountered in additive manufacturing can be monitored through the viscoelastic parameters determined in different shear conditions. The network strength, shear-thinning, yield point, and thixotropy govern bioprintability. An assessment of these rheological features provides significant insights for the design and characterization of printable gels. This review focuses on the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward developing printed materials for additive manufacturing.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
24
|
Picco CJ, Utomo E, McClean A, Domínguez-Robles J, Anjani QK, Volpe-Zanutto F, McKenna PE, Acheson JG, Malinova D, Donnelly RF, Larrañeta E. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions. Int J Pharm 2023; 631:122477. [PMID: 36509226 DOI: 10.1016/j.ijpharm.2022.122477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea McClean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Jonathan G Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
25
|
Thermomechanical response of thermoplastic polyurethane used in MEX additive manufacturing over repetitive mechanical recycling courses. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Sikdar P, Dip TM, Dhar AK, Bhattacharjee M, Hoque MS, Ali SB. Polyurethane (
PU
) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Partha Sikdar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Avik K. Dhar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Md. Saiful Hoque
- Department of Human Ecology University of Alberta Edmonton Alberta Canada
- Department of Textile Engineering Daffodil International University 102 Shukrabad, Dhanmondi Dhaka Bangladesh
| | | |
Collapse
|
27
|
Mohd Sabee MMS, Ahmad Tajuddin NNI, Ku Ishak KM, Rusli A, Abdullah MK, Shafiq MD, Shuib RK, Abdul Hamid ZA. Comparison of physical and mechanical properties of biodegradable polybutylene adipate terephthalate, polycaprolactone, and poly(lactic acid) fabricated via fused deposition modeling and conventional molding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Nurul Nabilah Izzah Ahmad Tajuddin
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Ku Marsila Ku Ishak
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Arjulizan Rusli
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Muhammad Khalil Abdullah
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Mohamad Danial Shafiq
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Raa Khimi Shuib
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Zuratul Ain Abdul Hamid
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
28
|
Korelidou A, Domínguez-Robles J, Magill ER, Eleftheriadou M, Cornelius VA, Donnelly RF, Margariti A, Larrañeta E. 3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. BIOMATERIALS ADVANCES 2022; 139:213024. [PMID: 35908473 DOI: 10.1016/j.bioadv.2022.213024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/22/2022]
Abstract
Implantable drug delivery systems are an interesting alternative to conventional drug delivery systems to achieve local or systemic drug delivery. In this work, we investigated the potential of fused-deposition modelling to prepare reservoir-type implantable devices for sustained drug delivery. An antibiotic was chosen as a model molecule to evaluate the potential of this type of technology to prepare implants on-demand to provide prophylactic antimicrobial treatment after surgery. The first step was to prepare and characterize biodegradable rate-controlling porous membranes based on poly(lactic acid) (PLA) and poly(caprolactone) (PCL). These membranes were prepared using a solvent casting method. The resulting materials contained different PLA/PCL ratios. Cylindrical implants were 3D-printed vertically on top of the membranes. Tetracycline (TC) was loaded inside the implants and drug release was evaluated. The results suggested that membranes containing a PLA/PCL ratio of 50/50 provided drug release over periods of up to 25 days. On the other hand, membranes containing lower PCL content did not show a porous structure and accordingly the drug could not permeate to the same extent. The influence of different parameters on drug release was evaluated. It was established that film thickness, drug content and implant size are critical parameters as they have a direct influence on drug release kinetics. In all cases the implants were capable of providing drug release for at least 25 days. The antimicrobial properties of the implants were evaluated against E. coli and S. aureus. The resulting implants showed antimicrobial properties at day 0 and even after 21 days against both type of microorganisms. Finally, the biocompatibility of the implants was evaluated using endothelial cells. Cells exposed to implants were compared with a control group. There were no differences between both groups in terms of cell proliferation and morphology.
Collapse
Affiliation(s)
- Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elizabeth R Magill
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
29
|
Olmos-Juste R, Olza S, Gabilondo N, Eceiza A. Tailor-Made 3D Printed Meshes of Alginate-Waterborne Polyurethane as Suitable Implants for Hernia Repair. Macromol Biosci 2022; 22:e2200124. [PMID: 35766012 DOI: 10.1002/mabi.202200124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Indexed: 11/10/2022]
Abstract
Hernia injuries are the main condition where mesh implants are needed to provide a suitable reinforcement of the damaged tissue. Mesh implants made of polypropylene (PP) are widely used for this application, however complications related to lack of flexibility, elasticity, and mesh infection have been reported. The development of mesh implants from safer materials adaptable to patient necessities can suppose an alternative for conventional PP meshes. In this work, personalized mesh implants made of alginate and waterborne-polyurethane (A-WBPU) are developed using 3D printing technology. For that purpose, five waterborne polyurethane ink formulations with different amounts of alginate are developed and rheologically characterized. All ink formulations are 3D printed showing good printability, manufacturing surgical mesh implants with suitable morphological characteristics customizable to patient injury through computer-aided design (CAD) mesh model adaptation. A calcium chloride (CaCl2 ) coating is applied after 3D printing as mesh reinforcement. Mechanical analysis revealed that CaCl2 coated meshes containing 6 wt % of alginate in their formulation are the most suitable to be used as implants for small and groin hernias under physiological tensile strength value of 16 N cm-1 , and presenting proper elasticity to cover physiological corporal movements (42.57 %). Moreover, an antibiotic-loaded A-WBPU formulation suitable for 3D printing of meshes are developed as strategy to avoid possible mesh infection.
Collapse
Affiliation(s)
- Raquel Olmos-Juste
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain
| | - Sheila Olza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Nagore Gabilondo
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain
| | - Arantxa Eceiza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain
| |
Collapse
|
30
|
Screening of the Supercritical Impregnation of Olea europaea Leaves Extract into Filaments of Thermoplastic Polyurethane (TPU) and Polylactic Acid (PLA) Intended for Biomedical Applications. Antioxidants (Basel) 2022; 11:antiox11061170. [PMID: 35740066 PMCID: PMC9219857 DOI: 10.3390/antiox11061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The leaves of Olea europaea as agricultural waste represent a convenient source of antioxidants. In combination with supercritical CO2 (scCO2), assisted impregnation is an interesting strategy for the preparation of biomedical devices with specific bioactivity. For this purpose, 3D-printable filaments of thermoplastic polyurethane (TPU) and polylactic acid (PLA) were employed for the supercritical impregnation of ethanolic olive leaves extract (OLE) for biomedical application. The extraction of OLE was performed using pressurized liquids. The effect of pressure (100-400 bar), temperature (35-55 °C), and the polymer type on the OLE impregnation and the swelling degree were studied including a morphological analysis and the measurement of the final antioxidant activity. All the studied variables as well as their interactions showed significant effects on the OLE loading. Higher temperatures favored the OLE loading while the pressure presented opposite effects at values higher than 250 bar. Thus, the highest OLE loadings were achieved at 250 bar and 55 °C for both polymers. However, TPU showed c.a. 4 times higher OLE loading and antioxidant activity in comparison with PLA at the optimal conditions. To the best of our knowledge, this is the first report using TPU for the supercritical impregnation of a natural extract with bioactivity.
Collapse
|
31
|
Tidau M, Finke JH. Modified Release Kinetics in Dual Filament 3D Printed Individualized Oral Dosage Forms. Eur J Pharm Sci 2022; 175:106221. [PMID: 35662635 DOI: 10.1016/j.ejps.2022.106221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
On demand production of totally customizable combinative preparations is a central goal of a patient-centric pharmaceutical supply chain. Additive manufacturing techniques like fused deposition modeling (FDM) could be key technologies towards such individualized dosage forms. As so far only a limited number of studies on 3D printed combinative preparations applying FDM have been reported, a core-shell dosage form was the focus of the present study. Dosage forms with an initial and a sustained release part with theophylline as model API were successfully produced applying a dual nozzle FDM 3D printer. Investigations identified microstructural defects at the interface between the two formulations by means of µCT analysis. Dissolution testing proved the achievement of the intended release profile. In combination with additionally characterized release profile of single material prints of different shapes, the combinative release profiles could be predicted by developing model equations and taking into account the geometric composition. As these model approaches can accordingly facilitate the prediction of API release from 3D printed combinative preparations with only data from single material release. This is a first step towards a truly individualized and reliable patient-centric pharmaceutical supply via 3D printing.
Collapse
Affiliation(s)
- Marius Tidau
- TU Braunschweig, Institut für Partikeltechnik (iPAT); Volkmaroder Str. 5, 38104 Braunschweig, Germany; TU Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Str. 35A, 38106 Braunschweig, Germany.
| | - Jan Henrik Finke
- TU Braunschweig, Institut für Partikeltechnik (iPAT); Volkmaroder Str. 5, 38104 Braunschweig, Germany; TU Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Str. 35A, 38106 Braunschweig, Germany
| |
Collapse
|
32
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
33
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
34
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
35
|
Development and Validation of a Novel Tool for Assessing the Environmental Impact of 3D Printing Technologies: A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14050933. [PMID: 35631519 PMCID: PMC9146618 DOI: 10.3390/pharmaceutics14050933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Technological advancements have created infinite opportunities and rendered our life easier at several fronts. Nonetheless, the environment has suffered the aftermaths of modernization. Ironically, the pharmaceutical industry was found to be a significant contributor to environmental deterioration. To tackle this issue, continuous eco-evaluation of newly introduced technologies is crucial. Three-dimensional printing (3DP) is rapidly establishing its routes in different industries. Interestingly, 3DP is revolutionising the production of pharmaceuticals and is regarded as a promising approach for the fabrication of patient-centric formulations. Despite the increasing applications in the pharmaceutical field, tools that evaluate the environmental impacts of 3DP are lacking. Energy and solvent consumption, waste generation, and disposal are the main associated factors that present major concerns. For the first time, we are proposing a quantitative tool, the index of Greenness Assessment of Printed Pharmaceuticals (iGAPP), that evaluates the greenness of the different 3DP technologies used in the pharmaceutical industry. The tool provides a colour-coded pictogram and a numerical score indicating the overall greenness of the employed printing method. Validation was performed by constructing the greenness profile of selected formulations produced using the different 3DP techniques. This tool is simple to use and indicates the greenness level of the procedures involved, thereby creating an opportunity to modify the processes for more sustainable practices.
Collapse
|
36
|
Malekpour A, Chen X. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. J Funct Biomater 2022; 13:jfb13020040. [PMID: 35466222 PMCID: PMC9036289 DOI: 10.3390/jfb13020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Extrusion bioprinting is an emerging technology to apply biomaterials precisely with living cells (referred to as bioink) layer by layer to create three-dimensional (3D) functional constructs for tissue engineering. Printability and cell viability are two critical issues in the extrusion bioprinting process; printability refers to the capacity to form and maintain reproducible 3D structure and cell viability characterizes the amount or percentage of survival cells during printing. Research reveals that both printability and cell viability can be affected by various parameters associated with the construct design, bioinks, and bioprinting process. This paper briefly reviews the literature with the aim to identify the affecting parameters and highlight the methods or strategies for rigorously determining or optimizing them for improved printability and cell viability. This paper presents the review and discussion mainly from experimental, computational, and machine learning (ML) views, given their promising in this field. It is envisioned that ML will be a powerful tool to advance bioprinting for tissue engineering.
Collapse
Affiliation(s)
- Ali Malekpour
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Correspondence: (A.M.); (X.C.)
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Correspondence: (A.M.); (X.C.)
| |
Collapse
|
37
|
Eder S, Wiltschko L, Koutsamanis I, Alberto Afonso Urich J, Arbeiter F, Roblegg E, Spoerk M. Toward a new generation of vaginal pessaries via 3D-printing: concomitant mechanical support and drug delivery. Eur J Pharm Biopharm 2022; 174:77-89. [PMID: 35390451 DOI: 10.1016/j.ejpb.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
To improve patient adherence, vaginal pessaries - polymeric structures providing mechanical support to treat stress urinary incontinence (SUI) - greatly benefit from 3D-printing through customization of their mechanics, e.g. infill modifications. However, currently only limited polymers provide both flawless printability and controlled drug release. The current study closes this gap by exploring 3D-printing, more specifically fused filament fabrication, of pharmaceutical grade thermoplastic polyurethanes (TPU) of different hardness and hydrophilicity into complex pessary structures. Next to the pessary mechanics, drug incorporation into such a device was addressed for the first time. Mechanically, the soft hydrophobic TPU was the most promising candidate for pessary customization, as pessaries made thereof covered a broad range of the key mechanical parameter, while allowing self-insertion. From the drug release point of view, the hydrophobic TPUs were superior over the hydrophilic one, as the release levels of the model drug acyclovir were closer to the target value. Summarizing, the fabrication of TPU-based pessaries via 3D-printing is an innovative strategy to create a customized pessary combination product that simultaneously provides mechanical support and pharmacological therapy.
Collapse
Affiliation(s)
- Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| | - Laura Wiltschko
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | | | - Florian Arbeiter
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Universitätsplatz 1, 8010 Graz
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
38
|
Picco CJ, Domínguez-Robles J, Utomo E, Paredes AJ, Volpe-Zanutto F, Malinova D, Donnelly RF, Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv 2022; 29:1038-1048. [PMID: 35363100 PMCID: PMC8979538 DOI: 10.1080/10717544.2022.2057620] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantable drug delivery systems offer an alternative for the treatments of long-term conditions (i.e. schizophrenia, HIV, or Parkinson’s disease among many others). The objective of the present work was to formulate implantable devices loaded with the model hydrophobic drug olanzapine (OLZ) using robocasting 3D-printing combined with a pre-formed rate controlling membrane. OLZ was selected as a model molecule due to its hydrophobic nature and because is a good example of a molecule used to treat a chronic condition schizophrenia. The resulting implants consisted of a poly(ethylene oxide) (PEO) implant coated with a poly(caprolactone) (PCL)-based membrane. The implants were loaded with 50 and 80% (w/w) of OLZ. They were prepared using an extrusion-based 3D-printer from aqueous pastes containing 36–38% (w/w) of water. The printing process was carried out at room temperature. The resulting implants were characterized by using infrared spectroscopy, scanning electron microscopy, thermal analysis, and X-ray diffraction. Crystals of OLZ were present in the implant after the printing process. In vitro release studies showed that implants containing 50% and 80% (w/w) of OLZ were capable of providing drug release for up to 190 days. On the other hand, implants containing 80% (w/w) of OLZ presented a slower release kinetics. After 190 days, total drug release was ca. 77% and ca. 64% for implants containing 50% and 80% (w/w) of OLZ, respectively. The higher PEO content within implants containing 50% (w/w) of OLZ allows a faster release as this polymer acts as a co-solvent of the drug.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
39
|
Anwar-Fadzil AFB, Yuan Y, Wang L, Kochhar JS, Kachouie NN, Kang L. Recent progress in three-dimensionally-printed dosage forms from a pharmacist perspective. J Pharm Pharmacol 2022; 74:1367-1390. [PMID: 35191505 DOI: 10.1093/jpp/rgab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Additive manufacturing (AM), commonly known as 3D printing (3DP), has opened new frontiers in pharmaceutical applications. This review is aimed to summarise the recent development of 3D-printed dosage forms, from a pharmacists' perspective. METHODS Keywords including additive manufacturing, 3D printing and drug delivery were used for literature search in PubMed, Excerpta Medica Database (EMBASE) and Web of Science, to identify articles published in the year 2020. RESULTS For each 3DP study, the active pharmaceutical ingredients, 3D printers and materials used for the printing were tabulated and discussed. 3DP has found its applications in various dosage forms for oral delivery, transdermal delivery, rectal delivery, vaginal delivery, implant and bone scaffolding. Several topics were discussed in detail, namely patient-specific dosing, customisable drug administration, multidrug approach, varying drug release, compounding pharmacy, regulatory progress and future perspectives. AM is expected to become a common tool in compounding pharmacies to make polypills and personalised medications. CONCLUSION 3DP is an enabling tool to fabricate dosage forms with intricate structure designs, tailored dosing, drug combinations and controlled release, all of which lend it to be highly conducive to personalisation, thereby revolutionising the future of pharmacy practice.
Collapse
Affiliation(s)
| | - Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lingxin Wang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jaspreet S Kochhar
- Personal Health Care, Procter & Gamble, Singapore, Republic of Singapore
| | - Nezamoddin N Kachouie
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Triacca A, Pitzanti G, Mathew E, Conti B, Dorati R, Lamprou DA. Stereolithography 3D printed implants: A preliminary investigation as potential local drug delivery systems to the ear. Int J Pharm 2022; 616:121529. [PMID: 35114311 DOI: 10.1016/j.ijpharm.2022.121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
The current study is a preliminary investigation on the use of stereolithography 3D printing technology in the field of personalized medicines and specifically for delivering drugs locally, which can for example usefully be applied to ear infections. The main aim is the development of drug-loaded implants for the treatment of ear diseases, to improve patient compliance and to overcome the limitations of current delivery approaches. Multiple prototypes of implant geometries have been created and printed using a flexible resin containing 0.5% w/v of Levofloxacin. Physicochemical characterization of the printed implants was carried out using a variety of techniques (e.g., microscopic, spectroscopic, and mechanical analysis). Finally, preliminary in vitro tests were performed to evaluate the release profile of Levofloxacin, the prototype implant's stability, and their antimicrobial property. The results obtained show that there is no interaction between the resin and the drug, which is perfectly solubilized in the device. In addition, the results of the mechanical tests show that the material used resists compression without compromising the design itself, and the diffusion test has shown that the drug diffused through the matrix prototype at 50% over 3 weeks. The selected designs showed higher antimicrobial activity on E. coli than on S. aureus.
Collapse
Affiliation(s)
- Alessandro Triacca
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
41
|
Wang W, Sun S, Hu S, Yang B, He S, Wang R, Zhang L. Unprecedented Strength Polysiloxane-Based Polyurethane for 3D Printing and Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3324-3333. [PMID: 34984903 DOI: 10.1021/acsami.1c22353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermoplastic polysiloxane-based polyurethane (Si-TPU) has been attracting a great deal of attention because of the dual advantages of polysiloxane and polyurethane. However, the strength of Si-TPU with a traditional structure is low, and improvement is urgently needed for diverse applications. Herein, we design a polysiloxane-based soft segment (SS) with two urethane groups at the end of the polysiloxane chain, and then we prepare a series of Si-TPUs through a designed SS, isophorone diisocyanate and 1,4-butanediol. Such structural design improves the polarity of the SS and endows more regular hydrogen bonds to the polymer molecular chain. As a result, the prepared Si-TPUs exhibit a good microphase separation structure, unprecedentedly high strength, repeatable processing, noncytotoxicity, shape memory properties, and three-dimensional printing capabilities. Moreover, a maximum tensile strength of Si-TPUs can reach 20.3 MPa, exceeding that of other existing Si-based polymer materials. Si-TPUs show great potential for biomedical applications.
Collapse
Affiliation(s)
- Wencai Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Siao Sun
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Bin Yang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoyun He
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runguo Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| |
Collapse
|
42
|
Mardina Z, Venezuela J, Maher C, Shi Z, Dargusch M, Atrens A. Design, mechanical and degradation requirements of biodegradable metal mesh for pelvic floor reconstruction. Biomater Sci 2022; 10:3371-3392. [DOI: 10.1039/d2bm00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pelvic organ prolapse (POP) is the herniation of surrounding tissue and organs into the vagina and or rectum, and is a result of weakening of pelvic floor muscles, connective tissue,...
Collapse
|
43
|
Corduas F, Mathew E, McGlynn R, Mariotti D, Lamprou DA, Mancuso E. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112523. [PMID: 34857302 DOI: 10.1016/j.msec.2021.112523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Current surgical strategies for the treatment of pelvic floor dysfunctions involve the placement of a polypropylene mesh into the pelvic cavity. However, polypropylene meshes have proven to have inadequate mechanical properties and have been associated to the arising of severe complications, such as infections. Furthermore, currently employed manufacturing strategies are unable to produce compliant and customisable devices. In this work, polycaprolactone has been used to produce resorbable levofloxacin-loaded meshes in two different designs (90° and 45°) via melt-extrusion 3D printing. Drug-loaded meshes were produced using a levofloxacin concentration of 0.5% w/w. Drug loaded meshes were successfully produced with highly reproducible mechanical and physico-chemical properties. Tensile test results showed that drug-loaded 45° meshes possessed a mechanical behaviour close to that of the vaginal tissue (E ≃ 8.32 ± 1.85 MPa), even after 4 weeks of accelerated degradation. Meshes released 80% of the loaded levofloxacin in the first 3 days and were capable of producing an inhibitory effect against S. Aureus and E. coli bacterial strains with an inhibition zone equal to 12.8 ± 0.45 mm and 15.8 ± 0.45 mm respectively. Thus, the strategy adopted in this work holds great promise for the manufacturing of custom-made surgical meshes with antibacterial properties.
Collapse
Affiliation(s)
- Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruairi McGlynn
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | - Davide Mariotti
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | | | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK.
| |
Collapse
|
44
|
Teoh JH, Tay SM, Fuh J, Wang CH. Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. J Control Release 2021; 341:80-94. [PMID: 34793918 DOI: 10.1016/j.jconrel.2021.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
In recent times, 3D printing has been gaining traction as a fabrication platform for customizable drug dosages as a form of personalized medicine. While this has been recently demonstrated as oral dosages, there is potential to provide the same customizability and personalization as topical applications for wound healing. In this paper, the application of 3D printing to fabricate hydrogel wound dressings with customizable architectures and drug dosages was investigated. Chitosan methacrylate was synthesized and mixed with Lidocaine Hydrochloride and Levofloxacin respectively along with a photoinitiator before being used to print wound dressings of various designs. These designs were then investigated for their effect on drug release rates and profiles. Our results show the ability of 3D printing to customize drug dosages and drug release rates through co-loading different drugs at various positions and varying the thickness of drug-free layers over drug-loaded layers in the wound dressing respectively. Two scale-up approaches were also investigated for their effects on drug release rates from the wound dressing. The influence that each wound dressing design has on the release profile of drugs was also shown by fitting them with drug release kinetic models. This study thus shows the feasibility of utilizing 3D printing to fabricate wound dressings with customizable shapes, drug dosage and drug release rates that can be tuned according to the patient's requirements.
Collapse
Affiliation(s)
- Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Sook Muay Tay
- Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Jerry Fuh
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
45
|
Peng K, Vora LK, Tekko IA, Permana AD, Domínguez-Robles J, Ramadon D, Chambers P, McCarthy HO, Larrañeta E, Donnelly RF. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. J Control Release 2021; 339:361-380. [PMID: 34619227 DOI: 10.1016/j.jconrel.2021.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Fungal infections affect millions of people globally and are often unreceptive to conventional topical or oral preparations because of low drug bioavailability at the infection site, lack of sustained therapeutic effect, and the development of drug resistance. Amphotericin B (AmB) is one of the most potent antifungal agents. It is increasingly important since fungal co-infections associated with COVID-19 are frequently reported. AmB is only administered via injections (IV) and restricted to life-threatening infections due to its nephrotoxicity and administration-related side effects. In this work, we introduce, for the first time, dissolving microneedle patches (DMP) loaded with micronised particles of AmB to achieve localised and long-acting intradermal delivery of AmB for treatment of cutaneous fungal infections. AmB was pulverised with poly (vinyl alcohol) and poly (vinyl pyrrolidone) to form micronised particles-loaded gels, which were then cast into DMP moulds to form the tips. The mean particle size of AmB in AmB DMP tips after pulverisation was 1.67 ± 0.01 μm. This is an easy way to fabricate and load microparticles into DMP, as few steps are required, and no organic solvents are needed. AmB had no covalent chemical interaction with the excipients, but the crystallinity of AmB was reduced in the tips. AmB was completely released from the tips within 4 days in vitro. AmB DMP presented inhibition of Candida albicans (CA) and the killing rate of AmB DMP against CA biofilm inside porcine skin reached 100% within 24 h. AmB DMP were able to pierce excised neonatal porcine skin at an insertion depth of 301.34 ± 46.86 μm. Ex vivo dermatokinetic and drug deposition studies showed that AmB was mainly deposited in the dermis. An in vivo dermatokinetic study revealed that the area under curve (AUC0-inf) values of AmB DMP and IV (Fungizone® bolus injection 1 mg/kg) groups were 8823.0 d∙μg/g and 33.4 d∙μg/g, respectively (264-fold higher). AmB remained at high levels (219.07 ± 102.81 μg/g or more) in the skin until 7 days after the application of AmB DMP. Pharmacokinetic and biodistribution studies showed that AmB concentration in plasma, kidney, liver, and spleen in the AmB DMP group was significantly lower than that in the IV group. Accordingly, this system addressed the systemic side effects of intravenous injection of AmB and localised the drug inside the skin for a week. This work establishes a novel, easy and effective method for long-acting and localised intradermal drug delivery.
Collapse
Affiliation(s)
- Ke Peng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ismaiel A Tekko
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Philip Chambers
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
46
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
47
|
Haddow O, Mathew E, Lamprou DA. Fused deposition modelling 3D printing proof-of-concept study for personalised inner ear therapy. J Pharm Pharmacol 2021; 74:1489-1497. [PMID: 34665264 DOI: 10.1093/jpp/rgab147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES There is a requirement within ear therapeutics for a delivery system capable of safely delivering controlled doses to the inner ear. However, the anatomy and sensitivity of the inner ear make current delivery systems problematic and often ineffective. Therefore, a new delivery system is required to overcome these issues and provide a more efficacious system in the treatment of inner ear disease. This study assesses the potential of 3D printing (3DP) as a fabrication method for an implantable drug delivery system (DDS) to the inner ear. KEY FINDINGS Three implantable designs of varying geometry were produced with fused deposition modelling (FDM) 3DP, each loaded with 0.25%, 0.5% and 1% levofloxacin; filaments prepared by hot-melt extrusion. Each implant was effective in providing sustained, therapeutic release of levofloxacin for at least 4 days and as such would be effective in therapeutic treatment of many common inner ear diseases, such as otitis media or Ménière's disease. CONCLUSIONS This proof-of-concept research was successful in utilising FDM as a fabrication method for a DDS capable of providing prolonged release directly to the inner ear and highlights the viability of 3DP in the fabrication of an inner ear DDS.
Collapse
Affiliation(s)
- Oisin Haddow
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
48
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
49
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Yahaya BH. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers (Basel) 2021; 13:polym13183087. [PMID: 34577988 PMCID: PMC8472949 DOI: 10.3390/polym13183087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Correspondence:
| |
Collapse
|
50
|
Domínguez-Robles J, Diaz-Gomez L, Utomo E, Shen T, Picco CJ, Alvarez-Lorenzo C, Concheiro A, Donnelly RF, Larrañeta E. Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals (Basel) 2021; 14:921. [PMID: 34577621 PMCID: PMC8466262 DOI: 10.3390/ph14090921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Small-diameter synthetic vascular grafts are required for surgical bypass grafting when there is a lack of suitable autologous vessels due to different reasons, such as previous operations. Thrombosis is the main cause of failure of small-diameter synthetic vascular grafts when used for this revascularization technique. Therefore, the development of biodegradable vascular grafts capable of providing a localized and sustained antithrombotic drug release mark a major step forward in the fight against cardiovascular diseases, which are the leading cause of death globally. The present paper describes the use of an extrusion-based 3D printing technology for the production of biodegradable antiplatelet tubular grafts for cardiovascular applications. For this purpose, acetylsalicylic acid (ASA) was chosen as a model molecule due to its antiplatelet activity. Poly(caprolactone) and ASA were combined for the fabrication and characterization of ASA-loaded tubular grafts. Moreover, rifampicin (RIF) was added to the formulation containing the higher ASA loading, as a model molecule that can be used to prevent vascular prosthesis infections. The produced tubular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet and antimicrobial activity and cytocompatibility. The results suggested that these materials were capable of providing a sustained ASA release for periods of up to 2 weeks. Tubular grafts containing 10% (w/w) of ASA showed lower platelet adhesion onto the surface than the blank and grafts containing 5% (w/w) of ASA. Moreover, tubular grafts scaffolds containing 1% (w/w) of RIF were capable of inhibiting the growth of Staphylococcus aureus. Finally, the evaluation of the cytocompatibility of the scaffold samples revealed that the incorporation of ASA or RIF into the composition did not compromise cell viability and proliferation at short incubation periods (24 h).
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Emilia Utomo
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Tingjun Shen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Camila J. Picco
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| |
Collapse
|