1
|
Akhtar M, Javed A, Tariq A, Mirza R, Abdur Rahman A, Khan H, Khan A. Mirtazapine Loaded NLCs‑Based Hydrogel for Topical Delivery in Pruritus: Statistical Optimization, In vitro and Skin Irritation Evaluation. Drug Dev Ind Pharm 2025:1-13. [PMID: 40262557 DOI: 10.1080/03639045.2025.2495846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Systemic mirtazapine (MRT) delivery for the treatment of pruritus exhibits severe side effects which needs to be addressed. For this purpose, topical nanostructured lipid carriers (NLCs) containing MRT were developed to minimize side effects and enhance therapeutic efficacy. The microemulsion method was utilized for the preparation of MRT loaded NLCs and the final optimized formulation was loaded in the gel for effective topical application. The formulation was optimized in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), and percentage entrapment efficiency (% EE) by keeping in view the quantity of drug, tween 80 and lipids ratio. Optimized nano formulation exhibited the PS of 186.3 ± 1.2 nm, with 0.217 ± 0.03 PDI, ZP of -26.0 ± 0.2 mV and %EE of 86.3 ± 0.3%. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis confirmed the compatibility of components of nano formulation and encapsulation of drug inside lipid matrix, respectively. Further, the gel-based optimized MRT-loaded NLCs dispersion was analyzed for rheology and textural characterization. The prepared hydrogel (MRT-loaded NLCs gel) had a transparent appearance, non-gritty texture, pH, and spreadability of 322.33 ± 0.25%, respectively. MRT loaded NLCs gel exhibited a drug release of 81% in 24 h and followed Korsmeyer-Peppas model. Ex vivo skin permeation depicted only 6.20 µg/cm2 drug permeation across the skin after 24 h. Skin irritation study showed no signs of erythema and edema in nano formulation-treated group. MRT-loaded NLCs gel was formulated successfully and may be used as a promising vehicle for topical delivery of pruritus.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqeedat Javed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abeer Tariq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rashna Mirza
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Hamid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Sheng Y, Zhao K, Liu Y, Zhang P, Sun Y, Zhang R. Preparation of protoporphyrin IX loaded nanostructured lipid carriers for anticancer photodynamic therapy. J Biomater Appl 2025:8853282251336557. [PMID: 40237190 DOI: 10.1177/08853282251336557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, the poor hydrophilicity of most photosensitizers makes them difficult to enter the cells and also susceptible to aggregation-induced quenching in aqueous environment. In this study, we encapsulated protoporphyrin IX (PPIX) by nanostructured lipid carrier to obtain a water-soluble PPIX delivery system (NLC-PPIX). The nanoparticles exhibited high colloidal stability and good fluorescence emission. The generation of 1O2 from the NLC-PPIX was verified using 9,10-anthracenediyl-bis(methylene)dicarboxylic acid (ABDA) as 1O2 indicator. The 1O2 quantum yield of the NLC-PPIX in aqueous solution was calculated to be ∼9%. The flow cytometry and fluorescence imaging confirmed the uptake of NLC-PPIX by the A2058 cells and the generation of 1O2 inside the cells under light excitation. The in vitro cytotoxicity assay showed that the NLC-PPIX exerted no toxicity on the A2058 cells under dark conditions, while light irradiation triggered high phototoxicity. The cell viability of the A2058 cells was significantly decreased and the inhibition rate reached approximately 96% by treating the cells with 200 μg/mL NLC-PPIX and 420 nm light irradiation. The successful cancer cell uptake and PDT effect revealed the therapeutic promise of our drug delivery system.
Collapse
Affiliation(s)
- Yang Sheng
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
- National Post-Doctoral Research Center, HOdo Group Co., Ltd. Wuxi, People's Republic of China
| | - Kangyao Zhao
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Yang Liu
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Peng Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Yixin Sun
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Rong Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| |
Collapse
|
3
|
Patel D, Wairkar S. Hyaluronate-incorporated edaravone nanostructured lipid carriers for nose-to-brain targeting- biphasic DoE optimization, pharmacokinetic, and brain distribution studies. Int J Biol Macromol 2025; 310:143236. [PMID: 40246124 DOI: 10.1016/j.ijbiomac.2025.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The present research aimed to develop nasal delivery for edaravone (EDR), a BCS class-IV neuroprotective agent. EDR nanostructured lipid carriers (EDR NLCs) were developed by melt-emulsification probe sonication using Geleol™ (solid lipid), Miglyol®812N and coconut oil (liquid lipid), Tween 20 (surfactant), Lipoid S75 (emulsifier) and sodium hyaluronate (SH) as mucoadhesive agent. A biphasic optimization approach for NLCs was implemented using the Plackett-Burman design and Box-Behnken design to comprehensively understand key formulation and process variables affecting critical attributes of NLCs. The mucoadhesive strength of optimized EDR-SH NLCs was 2.22-fold higher than EDR NLCs. Drug release of NLCs was 2-fold higher than EDR. The partial amorphous nature of EDR in the NLC matrix was evident from DSC and XRD results. A pharmacokinetic study in rats revealed that EDR-SH NLCs exhibited 4.42-fold, 1.27-fold and 8.75-fold enhanced AUC than EDR, EDR NLCs and marketed formulation. In brain distribution, drug targeting efficiency and direct transport percentage of EDR-SH NLCs were 2.4-fold, 1.17-fold higher than EDR, indicating efficient brain targeting via direct pathways. Thus, nasal delivery of EDR-SH NLCs improves brain targeting and provides a self-administration alternative for long-term use to mitigate neurological disorders.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India..
| |
Collapse
|
4
|
Ghosh D, Guin A, Kumar A, Das A, Paul S. Comprehensive insights of etiological drivers of hepatocellular carcinoma: Fostering targeted nano delivery to anti-cancer regimes. Biochim Biophys Acta Rev Cancer 2025; 1880:189318. [PMID: 40222420 DOI: 10.1016/j.bbcan.2025.189318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent and deadliest malignancies on a global scale. Its complex pathogenesis arises from multifactorial etiologies, including viral infections, metabolic syndromes, and environmental carcinogens, all of which drive genetic and molecular aberrations in hepatocytes. This intricate condition is associated with multiple causative factors, resulting in the abnormal activation of various cellular and molecular pathways. Given that HCC frequently manifests within the context of a compromised or cirrhotic liver, coupled with the tendency of late-stage diagnoses, the overall prognosis tends to be unfavorable. Systemic therapy, especially conventional cytotoxic drugs, generally proves ineffective. Despite advancements in therapeutic interventions, conventional treatments such as chemotherapy often exhibit limited efficacy and substantial systemic toxicity. In this context, nanomedicine, particularly lipid-based nanoparticles (LNPs), has emerged as a promising strategy for enhancing drug delivery specificity and reducing adverse effects. This review provides a comprehensive overview of the molecular and metabolic underpinnings of HCC. Furthermore, we explored the role of lipid-based nano-formulations including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers in targeted drug delivery for HCC. We have highlighted recent advances in LNP-based delivery approaches, FDA-approved drugs, and surface modification strategies to improve liver-specific delivery and therapeutic efficacy. It will provide a comprehensive summary of various treatment strategies, recent clinical advances, receptor-targeting strategies and the role of lipid composition in cellular uptake. The review concludes with a critical assessment of existing challenges and future prospects in nanomedicines-driven HCC therapy.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Aharna Guin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Aryan Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Amlan Das
- Department of Microbiology & Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Guwahati 781035, Assam, India.
| | - Santanu Paul
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India.
| |
Collapse
|
5
|
Ben-Haim AE, Shalev N, Amalraj AJJ, Zelinger E, Mani KA, Belausov E, Shoval I, Nativ-Roth E, Maria R, Atkins A, Sadashiva R, Koltai H, Mechrez G. Nanocarriers for cancer-targeted delivery based on Pickering emulsions stabilized by casein nanoparticles. Int J Biol Macromol 2025; 298:140822. [PMID: 39929470 DOI: 10.1016/j.ijbiomac.2025.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This study demonstrates the development of stimuli-responsive Pickering emulsions stabilized by casein nanoparticles (CNPs) for targeted drug delivery to colorectal cancer cells (CRC). Encapsulation of a fluorescent dye simulates therapeutic delivery, demonstrating biomedical potential. The oil-in-water nanoemulsions stabilized by CNPs function as nanocarriers sensitive to matrix metalloproteinase-7 (MMP-7), an enzyme overexpressed in CRC cells, enabling precise drug release. Emulsions exhibited strong stability due CNPs forming a robust layer at the oil-water interface, enhancing bioavailability and controlled release. Covalent modifications of CNPs with polyethyleneimine (PEI) or polyacrylic acid (PAA), and pH adjustments optimize the zeta potential, improving surface charge and delivery efficiency. Maximal CNP uptake occurred with PAA-modified CNPs (-20 mV), showing superior interaction with CRC cells compared to pristine (-6.7 mV) and PEI-modified (+30.5, +42.1 mV) CNPs. Confocal microscopy and imaging flow cytometry confirmed that CNP-stabilized emulsions enhance CRC inter-localization compared to dispersed CNPs. Nanoemulsions with the highest CNP uptake showed selective interaction with tumor cells, while minimizing oil droplet uptake, driven by nanoscale dimensions and targeted surface interactions. Enzymatic degradation of CNPs by MMP-7 induces phase separation and targeted release. This dual-functional system, leveraging charge modification and enzymatic responsiveness, highlights CNP-stabilized nanoemulsions as a promising CRC-targeted drug delivery platform.
Collapse
Affiliation(s)
- Avital Ella Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Nurit Shalev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Antolin Jesila Jesu Amalraj
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Einat Zelinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Irit Shoval
- The Kanbar core facility unit, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rajitha Sadashiva
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel.
| |
Collapse
|
6
|
Hussain Y, You BG, Huang L, Liu X, Dormocara A, Shah KA, Ali T, Cao QR, Lee BJ, Elbehairi SEI, Iqbal H, Cui JH. Dissolving microneedles for melanoma: Most recent updates, challenges, and future perspectives. Int J Pharm 2025; 673:125382. [PMID: 39988214 DOI: 10.1016/j.ijpharm.2025.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Skin cancer is one among the common types of cancers, affecting millions of individual globally. The conventional anticancer therapy such as chemotherapy results in worst systemic and local side effects as well as inhibit the growth of healthy cells around the tumor cells. Dissolving microneedles (DMNs) is a groundbreaking technology with less invasive and more targeted features. Physically, these tiny dissolving needles deliver the anticancer payloads drug to the tumor site after its direct application on the skin surface. Specifically, the DMNs release the anticancer drug cargoes into the cancerous cell sparing the healthy cells around the tumor, thus has provided a significant contribution in the landscape of traditional skin cancer therapy. This targeted therapeutic approach of dissolving microneedles shows a significant therapeutic outcome in decreasing the growth of cancer cells in pre-clinical studies. Dissolving microneedles (DMNs) have demonstrated effectiveness in the targeted delivery of drugs, genes, and vaccines specifically at the site of skin tumors. This method mimics the localized release of adjuvants and immunomodulators, leading to significant humoral and cellular immune responses that are beneficial for skin cancer therapy. In this review, the current trends and potential roles of dissolving microneedles in delivering therapeutic agents focused on treating skin melanoma have been highlighted, drawing insights from recent literature. This emphasizes the promising applications of DMNs in enhancing treatment outcomes for skin cancer patients. Lastly, future perspectives were identified for improving the therapeutic potential and translation of DMNs into clinic.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ben-Gang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linyu Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoyin Liu
- School of Radiation Medicine and Protection of Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Okuyucu C, Kalaycioglu GD, Ozden AK, Aydogan N. Chemosensitizer Loaded NIR-Responsive Nanostructured Lipid Carriers: A Tool for Drug-Resistant Breast Cancer Synergistic Therapy. ACS APPLIED BIO MATERIALS 2025; 8:2167-2181. [PMID: 39964065 PMCID: PMC11921034 DOI: 10.1021/acsabm.4c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 03/18/2025]
Abstract
Although numerous technical advances have been made in cancer treatment, chemotherapy is still a viable treatment option. However, it is more effective when used in combination with photothermal therapy for resistant breast cancer cells. This study introduces a smart drug delivery system, (DOX-OA+VERA+AuNRs)@NLC, which is designed for dual chemo/photothermal therapy of multiple-drug-resistant breast cancer. Type-III nanostructured lipid carriers (NLCs) were used as drug delivery systems, where nano-in-nano structures offer several advantages. Doxorubicin (DOX) was used as the antitumor agent by ion-pairing it with oleic acid (OA) to increase the DOX loading capacity, as well as to reduce the burst release of the drug. Verapamil (VERA), which was used as a chemosensitizer to overcome the multiple-drug resistance, was co-loaded with DOX-OA. Gold nanorods (AuNRs) were exploited as the photothermal therapy agent in photothermal therapy (PTT) application, which would have a synergistic relation with chemotherapy. The release of DOX-OA and VERA from NLCs was studied in vitro by triggering with NIR laser irradiation. Thus, an all-in-one drug delivery system was designed to release the active pharmaceutical ingredients (APIs) at higher concentrations in the desired region and provide both chemo/PTT. Besides, the application of a folic acid-chitosan (FA-CS) coating to NLCs has facilitated the development of systems capable of targeting and specifically releasing their cargo within cancerous tissues while preserving their surrounding environment.
Collapse
Affiliation(s)
| | | | - Ayse Kevser Ozden
- Faculty of
Medicine, Medical Biology Department, Lokman
Hekim University, Ankara 06530, Turkey
| | - Nihal Aydogan
- Department
of Chemical Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
8
|
Altuwaijri N, Fitaihi R, Alkathiri FA, Bukhari SI, Altalal AM, Alsalhi A, Alsulaiman L, Alomran AO, Aldosari NS, Alqhafi SA, Alhamdan M, Alfaraj R. Assessing the Antibacterial Potential and Biofilm Inhibition Capability of Atorvastatin-Loaded Nanostructured Lipid Carriers via Crystal Violet Assay. Pharmaceuticals (Basel) 2025; 18:417. [PMID: 40143193 PMCID: PMC11944405 DOI: 10.3390/ph18030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Atorvastatin (ATR), an antihyperlipidemic drug with a potential antibacterial effect, was investigated in this study. Like other statins, ATR has been repurposed for several uses, ranging from anti-inflammatory to antimicrobial applications, and has demonstrated successful results. However, the efficacy of ATR is limited by its low solubility, indicating an opportunity for its encapsulation in a nanotechnology-based drug delivery system. Methods: Nanostructured lipid carrier (NLC) formulations were prepared using high-pressure homogenization and ultrasonication. The formulations were characterized, including their particle size, polydispersity index, zeta potential, encapsulation efficiency, and in vitro release. Antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) was evaluated using the growth curve (bacterial growth over time) and well diffusion methods (zone of inhibition and minimum inhibitory concentration (MIC) determination). The crystal violet assay was employed to assess biofilm inhibition. Results: The NLC formulations were optimized, and the size and zeta potential of the blank nanoparticles were 130 ± 8.39 nm and -35 ± 0.5 mV, respectively. In comparison, the encapsulated NLCs had a size of 142 ± 52.20 nm and a zeta potential of -31 ± 1.41 mV. The average encapsulation efficiency was 94%, and 70% of the drug was released after 24 h. The ATR-loaded NLCs showed significantly enhanced antibacterial activity by reducing the minimum inhibitory concentration by 2.5-fold for E. coli, 1.8-fold for S. aureus, and 1.4-fold for MRSA, and promoting more effective bacterial growth inhibition. Notably, biofilm inhibition was significantly improved with ATR-NLCs, achieving 80% inhibition for S. aureus, 40% for E. coli, and 30% for MRSA, compared to free ATR (p < 0.001). These findings suggest that NLC encapsulation enhances ATR's antimicrobial efficacy and biofilm suppression. Conclusions: This study identified NLCs as successful carriers of ATR, significantly enhancing its antibacterial efficacy and biofilm inhibition capabilities. This formulation, which shows antimicrobial potential against both Gram-positive and Gram-negative bacteria, should be further studied and developed against different resistant microbial strains.
Collapse
Affiliation(s)
- Njoud Altuwaijri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Rawan Fitaihi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Alanoud M. Altalal
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Alyaa Alsalhi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Lama Alsulaiman
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Aljawhara O. Alomran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Noura S. Aldosari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Safa A. Alqhafi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Majd Alhamdan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| |
Collapse
|
9
|
Kandil SM, Soliman II, Hosni M, Salama A, Abdou EM. Assessment of therapeutic effectiveness of developed colchicine transnovasomes in treatment of recurrent aphthous ulcer as monotherapy and combination therapy with platelet-rich plasma. Pharm Dev Technol 2025; 30:323-341. [PMID: 40052372 DOI: 10.1080/10837450.2025.2475967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/12/2025]
Abstract
OBJECTIVES Transnovasomes is a new exciting class of lipid-based nanovesicles. Colchicine (COL) is a hydrophilic natural alkaloid with anti-inflammatory features having oral administration and permeation defects. Recurrent Aphthous Ulcer (RAU) is the most prevalent disease of the oral mucosa suffering from lack of a particular and final preventative therapy. So, designing a prolonged and effective specialized delivery system for ulcer treatment is important. METHODS Colchicine transnovasomes (COL-TNs) were prepared using surfactants (Span 60 & Span 80), free fatty acids (Oleic acid & Stearic acid), Cholesterol and Brij 58. COL-TNs were evaluated for their vesicle size (VS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and ex-vivo permeation after 12 h (Q12h). RESULTS Values of VS, PDI, ZP, EE% and Q12h of the optimized formulation were 256.74 ± 11.2 nm, 0.322 ± 0.08, -43.3 ± 0.62, 85.35 ± 3.7% and 72.69 ± 5.84% respectively. Drug accumulation from the optimized formulation was ninefold greater than drug solution after 8 h. In-vivo, COL-TNs formulation, alone or in combination with platelet-rich plasma (PRP), achieved complete healing of acetic-acid induced RAU restoring normal levels of assayed biomarkers and normal oral mucosa histological features. CONCLUSIONS COL-TNs can be used as a promising, safe, efficient treatment of RAU, as monotherapy or combination therapy with PRP.
Collapse
Affiliation(s)
- Soha M Kandil
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, Egypt
| | - Iman I Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Hosni
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Cairo, Egypt
| | - Ebtisam M Abdou
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
10
|
Attar M, Tash Shamsabadi F, Soltani A, Joghataei MT, Khandoozi SR, Teimourian S, Shahbazi M, Erfani-Moghadam V. MF59-based lipid nanocarriers for paclitaxel delivery: optimization and anticancer evaluation. Sci Rep 2025; 15:6583. [PMID: 39994380 PMCID: PMC11850822 DOI: 10.1038/s41598-025-91504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is the most common invasive cancer in women worldwide, necessitating innovative therapeutic strategies to enhance treatment efficacy and safety. This study focuses on the development and optimization of novel paclitaxel (PTX)-loaded nanostructured lipid carriers (NLCs) that incorporate components of MF59, an oil-in-water emulsion adjuvant approved for use in influenza vaccines and known for its safety in humans. The formulation of these NLCs is designed to overcome significant challenges in PTX delivery, particularly its poor solubility and the side effects associated with traditional formulations containing Cremophor EL. We prepared two sets of NLC formulations using different liquid-to-solid lipid ratios through hot melt ultrasonication. Characterization of the selected formulations, NLCPre and NLCLec, was conducted using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The mean diameters were 120.6 ± 36.4 nm and 112 ± 41.7 nm, with encapsulation efficiencies (EE) of 85% and 82%, and drug loading (DL) of 4.25% and 4.1%, respectively for NLCPre and NLCLec. In vitro cytotoxicity assays demonstrated that these MF59-based NLCs effectively target MCF-7 (Michigan Cancer Foundation) breast cancer cells while minimizing toxicity to normal HDF (human dermal fibroblasts) cells, thus enhancing the therapeutic index of PTX and offering promising clinical implications for breast cancer treatment.
Collapse
Affiliation(s)
- Marzieh Attar
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
| | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran
| | - Seyed Reza Khandoozi
- Cancer Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Shahram Teimourian
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran.
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran.
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
| |
Collapse
|
11
|
Radhakrishnan A, Shanmukhan NK, Samuel LC. Pharmacogenomics influence on MDR1-associated cancer resistance and innovative drug delivery approaches: advancing precision oncology. Med Oncol 2025; 42:67. [PMID: 39913003 DOI: 10.1007/s12032-025-02611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Currently, there is a growing concern surrounding the treatment of cancer, a formidable disease. Pharmacogenomics and personalized medicine have emerged as significant areas of interest in cancer management. The efficacy of many cancer drugs is hindered by resistance mechanisms, particularly P-glycoprotein (P-gp) efflux, leading to reduced therapeutic outcomes. Efforts have intensified to inhibit P-gp efflux, thereby enhancing the effectiveness of resistant drugs. P-gp, a member of the ATP-binding cassette (ABC) superfamily, specifically the multidrug resistance (MDR)/transporter associated with antigen processing (TAP) sub-family B, member 1, utilizes energy derived from ATP hydrolysis to drive efflux. This review focuses on genetic polymorphisms associated with P-gp efflux and explores various novel pharmaceutical strategies to address this challenge. These strategies encompass SEDDS/SNEDDS, liposomes, immunoliposomes, solid lipid nanoparticles, lipid core nanocapsules, microemulsions, dendrimers, hydrogels, polymer-drug conjugates, and polymeric nanoparticles. The article aims to elucidate the interplay between pharmacogenomics, P-gp-mediated drug resistance in cancer, and formulation strategies to improve cancer therapy by tailoring formulations to genetically susceptible patients.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India.
| | - Nikhitha K Shanmukhan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India
| | - Linda Christabel Samuel
- Department of Conservative Dentistry and Endodontics, JKKN Dental College and Hospitals, Kumarapalayam, 638183, India
| |
Collapse
|
12
|
Khan S, Haider MF. A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:181-195. [PMID: 39400019 DOI: 10.2174/0118715273323074241001071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.
Collapse
Affiliation(s)
- Sara Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
13
|
Naseem N, Kushwaha P, Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:449-468. [PMID: 39196394 DOI: 10.1007/s00210-024-03408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and proliferation, continues to be a major global health concern. Breast cancer, the most commonly diagnosed cancer among women, remains a leading cause of cancer-related deaths worldwide. Conventional treatment modalities such as surgery, radiation, and chemotherapy have made significant strides in improving patient outcomes. However, these approaches often face challenges such as limited efficacy, systemic toxicity, and multidrug resistance. Nanotechnology has emerged as a promising avenue for revolutionizing cancer therapy, offering targeted drug delivery, enhanced efficacy, and reduced side effects. Among the various nanocarrier systems, nanostructured lipid carriers (NLCs) have gained considerable attention for their unique advantages. Comprising a blend of solid and liquid lipids, NLCs offer improved drug loading capacity, enhanced stability, sustained release, and biocompatibility. This manuscript provides a comprehensive overview of the role of NLCs in breast cancer management, covering their formulation, methods of preparation, advantages, and disadvantages. Additionally, several studies are presented to illustrate the efficacy of NLCs in delivering anticancer drugs to breast tumors. These studies demonstrate the ability of NLCs to enhance drug cytotoxicity, improve tumor suppression, and minimize systemic toxicity. This manuscript aims to contribute to the existing literature by consolidating current knowledge and providing insights into the future directions of NLC-based therapeutics in breast cancer management.
Collapse
Affiliation(s)
- Nazish Naseem
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Faheem Haider
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| |
Collapse
|
14
|
Makhija M, Manchanda D, Sharma M. Nano-based Therapeutics for Rheumatoid Arthritis: Recent Patents and Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:56-75. [PMID: 37691226 DOI: 10.2174/1872210518666230905155459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology. Various patents and clinical trial data have been reported in relevance to RA treatment.
Collapse
Affiliation(s)
- Manish Makhija
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Deeksha Manchanda
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
| |
Collapse
|
15
|
Nosratabadi M, Rahimnia SM, Barogh RE, Abastabar M, Haghani I, Akhtari J, Hajheydari Z, Ebrahimnejad P. Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains. Sci Rep 2024; 14:30708. [PMID: 39730396 DOI: 10.1038/s41598-024-79225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024] Open
Abstract
Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains. The LCZ-NLCs were synthesized using a modified emulsification-solvent evaporation technique. Characterization involved assessing parameters such as poly-dispersity index (PDI), zeta potential, encapsulation efficiency (EE %), Field Emission Scanning Electron Microscopy (FESEM), Differential Scanning Calorimetry (DSC) analysis, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR). Furthermore, in vitro drug release experiments, analysis of release kinetics, cytotoxicity assessments, and in vitro antifungal susceptibility tests were performed as part of the study. The findings indicated that LCZ-NLCs displayed nanoscale dimensions, uniform dispersion, and a favorable zeta potential. The encapsulation efficiency of LCZ in NLCs was approximately 90%. FESEM analysis revealed spherical nanoparticles with consistent shape. ATR-FTIR analysis indicated no chemical interaction between LCZ and excipients. In vitro drug release experiments demonstrated that LCZ-NLCs notably improved the drug's dissolution rate. The stability testing confirmed consistent colloidal nanometer ranges in the LCZ-NLCs samples. Additionally, cytotoxicity tests revealed no toxicity within the tested concentration. Moreover, in vitro antifungal susceptibility tests demonstrated potent antifungal activity of LCZ-NLCs against the tested resistant fungal isolates. The study findings suggest that the LCZ-NLCs formulation developed in this research could be a promising topical treatment for superficial fungal infections, especially in cases of resistant infections. However, the study needs further ex vivo and in vivo tests to ensure safety and efficacy.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Seyyed Mobin Rahimnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
| | - Robab Ebrahimi Barogh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Hajheydari
- Department of Dermatology, Faculty of Medicine , Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
17
|
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Silibinin-loaded Nanostructured Lipid Carriers (NLCs) Ameliorated Lead-induced Acute Nephrotoxicity in Male Rats. Cell Biochem Biophys 2024; 82:3619-3628. [PMID: 39107467 DOI: 10.1007/s12013-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
As a toxic heavy metal, lead (Pb) is well known for impairment of renal function due to oxidative injuries. In contrast, the antioxidant activity of silibinin has been approved. Given the role of silibinin antioxidant activity, the present study investigated the effectiveness of silibinin-loaded nanostructured lipid carriers (Sili-NLCs) against Pb-induced acute nephrotoxicity in rats. The emulsification-solvent evaporation method was applied to prepare Sili-NLCs. Sixty male Wistar rats were divided into ten separate groups. Pb (20 mg/kg/day, i.p.) was applied to induce nephrotoxicity and in the treatment groups animals received the same concentration of silibinin and Sili-NLCs (25, 50, and 100 mg/kg/day, p.o.) for five days. After sacrificing rats, kidney tissue samples were collected to assess the oxidative stress parameters, including lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity. Also, histopathological examination using Hematoxylin-Eosin (H&E) was studied. Not only did Pb injection significantly increase the renal levels of LPO and NO, but also decreased the levels of antioxidant enzyme activity. On the other hand, Sili-NLCs were more effective than silibinin in decreasing renal oxidative damage by increasing the antioxidant defense system. Moreover, the histopathological examination correlated well with biochemical findings. Our data suggested that Sili-NLCs are potentially superior to pure silibinin for attenuating Pb-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Zheng Y, Cui L, Lu H, Liu Z, Zhai Z, Wang H, Shao L, Lu Z, Song X, Zhang Y. Nose to Brain: Exploring the Progress of Intranasal Delivery of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Int J Nanomedicine 2024; 19:12343-12368. [PMID: 39606563 PMCID: PMC11598598 DOI: 10.2147/ijn.s497480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The intranasal (IN) route of drug delivery can effectively penetrate the blood-brain barrier and deliver drugs directly to the brain for the treatment of central nervous system (CNS) disorders via intra-neuronal or extra-neuronal pathways. This approach has several advantages, including avoidance of first-pass metabolism, high bioavailability, ease of administration, and improved patient compliance. In recent years, an increasing number of studies have been conducted using drugs encapsulated in solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), and delivering them to the brain via the IN pathway. SLNs are the first-generation solid lipid nanocarriers, known for their excellent biocompatibility, high drug-loading capacity, and remarkable stability. NLCs, regarded as the second-generation SLNs, not only retain the advantages of SLNs but also exhibit enhanced stability, effectively preventing drug leakage during storage. In this review, we examined in vivo studies conducted between 2019 and 2024 that used SLNs and NLCs to address CNS disorders via the IN route. By using statistical methods to evaluate pharmacokinetic parameters, we found that IN delivery of SLNs and NLCs markedly enhanced drug accumulation and targeting within the brain. Additionally, pharmacodynamic evaluations indicated that this delivery method substantially improved the therapeutic effectiveness of the drugs in alleviating symptoms in rat models of CNS diseases. In addition, methods for enhancing the efficacy of nose-to-brain delivery of SLNs and NLCs are discussed, as well as advances in clinical trials regarding SLNs and NLCs.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Haoran Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhaoxue Zhai
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, People’s Republic of China
| | - Huikang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Liting Shao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhaoyang Lu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, People’s Republic of China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, People’s Republic of China
| |
Collapse
|
19
|
Hsu CY, Huang TH, Lin ZC, Chen CJ, Hwang E, Chen WJ, Fang JY. Synergistic Fat-Reducing Effect of Deoxycholic Acid and Rhein in Lipid-Based Nanoparticles with Reduced Toxicity for Obesity Treatment. Int J Nanomedicine 2024; 19:12129-12151. [PMID: 39583324 PMCID: PMC11585299 DOI: 10.2147/ijn.s494416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Injectable deoxycholic acid (DA) has been approved for removing excess submental fat and is off-label for local adipose tissue reduction. Conventional DA injections fail to control fat reduction and generate severe adverse effects in adjacent non-adipose tissues. We designed squarticles as lipid-based nanoparticles for DA delivery to reduce fat accumulation. Methods The liquid lipid phase of the squarticles was composed of squalene, which was previously reported to sequester the toxicity of overdosed drugs. Rhein, a natural anti-adipogenic compound, was incorporated into the squarticles for combined fat-lowering. Results The squarticles had an average diameter of 93 nm and high rhein encapsulation (96%). The nanoparticles were easily internalized into mature adipocytes and were located in the lysosomes. DA induces adipocyte death via apoptosis and necrosis; however, nanoencapsulation can decrease cell death. Compared to free DA, squarticles showed superior mitigation of cytotoxicity against non-targeted cells (skin fibroblasts). Oil Red O staining indicated that squarticles loaded with DA or rhein alone inhibited lipid droplets by 42% and 17%, respectively. DA and rhein worked together in squarticles to further suppress fat accumulation by 50%. Dual administration of DA and rhein to the nanocarriers downregulated adipokines. The intraperitoneal administration of squarticles loaded with DA and rhein significantly decreased body weight, total cholesterol, and adipokine release. Histological analysis revealed that squarticles reduced adipocyte hypertrophy in the groin and epididymis by 11% and 53%, respectively. We examined the toxicity of the combination of DA+rhein in healthy rats that received a dose three-fold higher than that used in the pharmacological assessment. The survival rate of the overdosed DA+rhein increased from 50% to 100% after nanoencapsulation. Free compounds induce ascites, liver size reduction, AST/ALT elevation (1.5-fold), and potassium imbalance in rats. Nanoencapsulation significantly reduced these adverse effects. Conclusion Our findings highlight the potential of squarticles for treating obesity.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Traditional Chinese Medicine, Xiamen Chang Gung Memorial Hospital, Xiamen, People’s Republic of China
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei-Jhang Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
20
|
Mittal P, Singla M, Smriti, Kapoor R, Kumar D, Gupta S, Gupta G, Bhattacharya T. Paclitaxel loaded Capmul MCM and tristearin based nanostructured lipid carriers (NLCs) for glioblastoma treatment: screening of formulation components by quality by design (QbD) approach. DISCOVER NANO 2024; 19:175. [PMID: 39500785 PMCID: PMC11538113 DOI: 10.1186/s11671-024-04132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Paclitaxel (PTX), a naturally occurring diterpenoid isolated from Taxus brevifolia, is a first-line drug for the treatment of glioblastoma; however, it suffers from the disadvantages of poor water solubility and nonspecific biodistribution, which cause serious side effects in the human body. The marketed formulation suffers from serious side effects, such as allergic reactions, neutropenia, and neuropathy, which require safe and effective formulations of PTX. In the present study, PTX was entrapped in a solid-liquid lipid mixture with the aid of a surfactant using a modified solvent evaporation technique. Higher entrapment of the impressive stability of the formulation was achieved by employing quality design-based strategies. Optimized levels by employing a numerical optimization technique for each factor, that is, surfactant concentration (X1), lipid concentration (X2), and amount of organic solvent (X3) were 0.3%, 0.76% & 8.3 ml respectively. The resultant formulation exhibited a particle size of 121.44 nm, entrapment efficiency of 94.27%, and zeta potential of -20.21 mV with unimodal size distribution. A reduction in the % crystalline index from 48 to 3.4% ensured the amorphous form of the entrapped drug inside the formulation, which precludes the fear of leakage and instability of the formulation. Cell line studies conducted on U87MG Cell lines also suggested that the NLC of paclitaxel are more effective than those of pure PTX. In summary, PTXNLC seem to be a superior alternative carrier system for the formulation industry to obtain higher entrapment with excellent stability.
Collapse
Affiliation(s)
- Pooja Mittal
- GITAM School of Pharmacy, GITAM (Deemed to Be) University, Rudraram, Patancheru, Hyderabad, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Dileep Kumar
- Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Near Toll Booth, Khandwa Road, Village Umrikheda, Indore, Madhya Pradesh, 452020, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
21
|
Mod Razif MRF, Chan SY, Chew YL, Hassan M, Ahmad Hisham S, Abdul Rahman S, Mai CW, Teo MYM, Kee PE, Khoo KS, Lee SK, Liew KB. Recent Developments in Luteolin-Loaded Nanoformulations for Enhanced Anti-Carcinogenic Activities: Insights from In Vitro and In Vivo Studies. SCI 2024; 6:68. [DOI: 10.3390/sci6040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
With approximately 18 million people affected by cancer in 2020 globally, scientists are exploring innovative approaches to develop effective treatments for various types of cancer. Traditional chemotherapy drugs, although effective against cancer cells, often lead to significant side effects on healthy tissues, such as hair loss, anemia, and nausea. To discover safer alternatives, researchers are investigating natural bioactive compounds found abundantly in plants. Luteolin, a flavonoid found in celery and artichokes, stands out due to its diverse anti-carcinogenic properties, including inhibiting proliferation, inducing apoptosis, activating autophagy, and inhibiting angiogenesis and metastasis. However, the therapeutic potential of luteolin is hindered by challenges related to its bioavailability and solubility. This critical review explores the specific anti-carcinogenic properties of luteolin while analyzing the impact of its limited bioavailability and solubility on effectiveness. Additionally, it investigates the outcomes of encapsulating luteolin in nanoformulations, providing insights into potential strategies for enhancing its anti-carcinogenic effects. Finally, the review compares the efficacy of luteolin with and without nanoformulations. This review provides valuable insights into the potential of utilizing luteolin-loaded nanoformulations as a safer and more effective method for treating cancer, contributing to the ongoing efforts in improving cancer care and outcomes worldwide.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Jalan Universiti, Gelugor 11700, PNG, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Universiti 1, Serdang 43400, SGR, Malaysia
| | - Shairyzah Ahmad Hisham
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Shamima Abdul Rahman
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Phei Er Kee
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, SGR, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| |
Collapse
|
22
|
Fathi F, Machado TOX, de A C Kodel H, Portugal I, Ferreira IO, Zielinska A, Oliveira MBPP, Souto EB. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods. Expert Opin Drug Deliv 2024; 21:1479-1490. [PMID: 39370828 DOI: 10.1080/17425247.2024.2410951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources. AREAS COVERED This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields. EXPERT OPINION SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Aracaju, Sergipe, Brazil
- Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, Petrolina, Pernambuco, Brazil
| | - Helena de A C Kodel
- Graduation Program of Biomedicine, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Isabella Portugal
- Department of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Inês O Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Aleksandra Zielinska
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, Poznań, Poland
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
24
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
25
|
Abou-Elnour FS, El-Habashy SE, Essawy MM, Abdallah OY. Alendronate/lactoferrin-dual decorated lipid nanocarriers for bone-homing and active targeting of ivermectin and methyl dihydrojasmonate for leukemia. BIOMATERIALS ADVANCES 2024; 162:213924. [PMID: 38875802 DOI: 10.1016/j.bioadv.2024.213924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.
Collapse
Affiliation(s)
- Fatma S Abou-Elnour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
27
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
28
|
Purushothaman JR, Rizwanullah M. Ferulic Acid: A Comprehensive Review. Cureus 2024; 16:e68063. [PMID: 39347187 PMCID: PMC11438535 DOI: 10.7759/cureus.68063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Ferulic acid (FA), a phenolic compound abundant in the cell walls of seeds, leaves, and roots of various fruits, vegetables, cereals, and grains, is renowned for its wide range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. Despite its therapeutic potential, the clinical application of FA is hindered by challenges such as poor water solubility, limited bioavailability, rapid metabolism, and instability under physiological conditions. To address these issues, nanotechnology has emerged as a transformative approach, enhancing FA's pharmacokinetic profile. Various nanoparticle-based systems, including polymer-based and lipid-based nanoparticles, have been developed to encapsulate FA. These systems have demonstrated significant improvements in FA's solubility, stability, and bioavailability, with studies showing enhanced antioxidant activity and controlled release profiles. Further, the surface engineering of these nanoparticles provides targeted drug/phytochemical delivery potential. The targeted delivery of drugs/phytochemicals significantly enhances the therapeutic efficacy and minimizes systemic side effects. This review explores the therapeutic potential of FA, the limitations in its clinical application, and the advancements in nanoparticle-based delivery systems that are paving the way for its effective therapeutic use.
Collapse
Affiliation(s)
- Jaganathan R Purushothaman
- Department of Orthopedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Md Rizwanullah
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
29
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. REVIEW APPROACH Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. KEY RESULTS The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. CONCLUSION This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
30
|
Dabiri S, Jafari S, Molavi O. Advances in nanocarrier-mediated delivery of chrysin: Enhancing solubility, bioavailability, and anticancer efficacy. BIOIMPACTS : BI 2024; 15:30269. [PMID: 40161948 PMCID: PMC11954748 DOI: 10.34172/bi.30269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 04/02/2025]
Abstract
Chrysin, a natural phytochemical compound found in various plant sources, possesses diverse pharmacological benefits, including anticancer, antioxidant, antidiabetic, neuroprotective, cardioprotective, hepatoprotective, immunoregulatory, and anti-inflammatory properties. Despite its well-documented biological activities, chrysin's low water solubility and bioavailability hinder its clinical development. This review explores the application of nanocarriers as a strategic approach to overcome these challenges and enhance the delivery of chrysin. Nanocarriers, including polymer-based nanoparticles (NPs), lipid-based NPs, and inorganic nanocarriers, have shown promise in improving the solubility, bioavailability, and tumor-targeted delivery of chrysin. The paper discusses chrysin's anticancer effects on different types of human cancers, elucidating its impact on crucial signaling pathways involved in tumorigenesis. The review categorizes and analyzes various nanocarriers, providing insights into their structural properties and drug release profiles. Among the nanocarriers, polymer-based NPs, especially those utilizing PLGA, emerge as promising strategies for chrysin encapsulation, demonstrating improvements in drug release, stability, and bioavailability. Lipid-based NPs and inorganic nanocarriers also exhibit potential in enhancing chrysin delivery. The comprehensive insights provided contribute to a deeper understanding of chrysin's pharmacological properties and its potential clinical applications, offering valuable perspectives for future research and translation into clinical settings. The review underscores the importance of selecting suitable structures for chrysin encapsulation to enhance its physicochemical properties and anticancer effects, paving the way for innovative nanomedicine approaches in cancer therapy.
Collapse
Affiliation(s)
- Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
31
|
Patil K, Gujarathi N, Sharma C, Ojha S, Goyal S, Agrawal Y. Quality-by-Design-Driven Nanostructured Lipid Scaffold of Apixaban: Optimization, Characterization, and Pharmacokinetic Evaluation. Pharmaceutics 2024; 16:910. [PMID: 39065607 PMCID: PMC11280014 DOI: 10.3390/pharmaceutics16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence of independent variables, viz., the amount of Tween 80, HPH pressure, and the number of HPH cycles, were studied using a 23 factorial design. The average particle size, PDI, zeta potential, and entrapment efficiency of the optimized NLCs were found to be 232 ± 23 nm, with 0.514 ± 0.13 PDI and zeta potential of about -21.9 ± 2.1 mV, respectively. Additionally, concerning the thermal and crystallographic properties of the drug, the NLCs showed drug entrapment without altering its potency. The in-vitro drug release studies revealed an immediate release pattern, followed by sustained release for up to 48 h. In-vivo pharmacokinetic experiments demonstrated that Apixaban-loaded NLCs exhibited higher values of t1/2 (27.76 ± 1.18 h), AUC0-∞ (19,568.7 ± 1067.6 ng·h/mL), and Cmax (585.3 ± 87.6 ng/mL) compared to free drugs, indicating improved bioavailability. Moreover, a decrease in the elimination rate constant (Kel) reflected the sustained effect of Apixaban with NLCs. NLCs offer improved oral absorption rates and enhanced therapeutic impact compared to free drugs, potentially reducing dose frequency and improving patient outcomes.
Collapse
Affiliation(s)
- Kiran Patil
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Nayan Gujarathi
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Sameer Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| |
Collapse
|
32
|
Xiao W, Geng R, Bi D, Luo Y, Zhang Z, Gan Q, Liu Y, Zhu J. pH/H 2O 2 Cascade-Responsive Nanoparticles of Lipid-Like Prodrugs through Dynamic-Covalent and Coordination Interactions for Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308790. [PMID: 38396276 DOI: 10.1002/smll.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Traditional lipid nanoparticles (LNPs) suffer from low drug loading capacity (DLC), weak stability, and lack of responsiveness. Conventional approaches to address these issues involve the synthesis of lipid-prodrug by incorporating responsive covalent linkers. However, such approaches often result in suboptimal sensitivity for drug release and undermine therapeutic effectiveness. Herein, the study reports a fundamentally different concept for designing lipid-like prodrugs through boron-nitrogen (B-N) coordination and dynamic covalent interaction. The 5-fluorouracil-based lipid-like prodrugs, featuring a borate ester consisting of a glycerophosphoryl choline head and a boronic acid-modified 5Fu/dodecanamine complex tail, are used to prepare pH/H2O2 cascade-responsive LNPs (5Fu-LNPs). The 5Fu-LNPs exhibit enhanced DLC and stability in a neutral physiological environment due to the B-N coordination and enhanced hydrophobicity. In tumors, acidic pH triggers the dissociation of B-N coordination to release prodrugs, which further responds to low H2O2 concentrations to release drugs, showcasing a potent pH/H2O2-cascade-responsive property. Importantly, 5Fu-LNPs demonstrate greater antitumor efficiency and lower toxicity compared to the commercial 5Fu. These results highlight 5Fu-LNPs as a safer and more effective alternative to chemotherapy. This work presents a unique LNP fabrication strategy that can overcome the limitations of conventional LNPs and broaden the range of intelligent nanomaterial preparation techniques.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
33
|
Pula W, Ganugula R, Esposito E, Ravi Kumar MNV, Arora M. Engineered urolithin A-laden functional polymer-lipid hybrid nanoparticles prevent cisplatin-induced proximal tubular injury in vitro. Eur J Pharm Biopharm 2024; 200:114334. [PMID: 38768764 PMCID: PMC11262884 DOI: 10.1016/j.ejpb.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κβ, and IL-β expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.
Collapse
Affiliation(s)
- W Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy; The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - E Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States; Chemical and Biological Engineering, University of Alabama, SEC 3448, Tuscaloosa, AL 35487, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
34
|
Velagacherla V, Nayak Y, Bhaskar KV, Nayak UY. A stability indicating method development and validation of a rapid and sensitive RP-HPLC method for Nintedanib and its application in quantification of nanostructured lipid carriers. F1000Res 2024; 12:1389. [PMID: 38948504 PMCID: PMC11214665 DOI: 10.12688/f1000research.138786.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Background Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated. Methods The developed method is simple, precise, reproducible, stable and accurate. The inherent stability of NTB was evaluated using the proposed analytical method approach and force degradation studies were carried out. NTB was separated chromatographically on the Shimadzu C 18 column as stationary phase (250 ×4.6 mm, 5 µm) using an isocratic elution method with 0.1% v/v triethyl amine (TEA) in HPLC grade water and acetonitrile (ACN) in the ratio 35:65% v/v. The mobile phase was pumped at a constant flow rate of 1.0 ml/min, and the eluent was detected at 390 nm wavelength. Results NTB was eluted at 6.77±0.00 min of retention time (t R) with a correlation coefficient of 0.999, the developed method was linear in the concentration range of 0.5 µg/ml to 4.5 µg/ml. The recovery rate was found to be in the range of 99.391±0.468% for 1.5 µg/ml concentration. Six replicate standards were determined to have an % RSD of 0.04. Conclusion The formulation excipients didn't interfere with the determination of NTB, demonstrating the specificity of the developed method. The proposed approach of the analytical method developed can be used to quantify the amount of NTB present in bulk drugs and pharmaceutical formulations.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
35
|
Yeo S, Wu H, Yoon I, Lee WK, Hwang SJ. Design of smart chemotherapy of doxorubicin hydrochloride using nanostructured lipid carriers and solid lipid nanoparticles for improved anticancer efficacy. Int J Pharm 2024; 657:124048. [PMID: 38537925 DOI: 10.1016/j.ijpharm.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Huiqiang Wu
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
36
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
37
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
38
|
Soliman B, Wen MM, Kandil E, El-Agamy B, Gamal-Eldeen AM, ElHefnawi M. Preparation and Optimization of MiR-375 Nano-Vector Using Two Novel Chitosan-Coated Nano-Structured Lipid Carriers as Gene Therapy for Hepatocellular Carcinoma. Pharmaceutics 2024; 16:494. [PMID: 38675155 PMCID: PMC11054685 DOI: 10.3390/pharmaceutics16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is still a lack of effective carriers with minimal side effects to deliver therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP- miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically selected, prepared by high-speed homogenization, and optimized by varying nano-formulation factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment. Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied. Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these nano-plexes exhibited physical stability after three months and protected miR-375 from degradation in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation, and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could serve as a novel and promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Bangly Soliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Ming Ming Wen
- Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt
| | - Eman Kandil
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Basma El-Agamy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
39
|
Li Y, Bian B, Tang R, Zhang K. Characterization of a Clove Essential Oil Slow-Release Microencapsulated Composite Film and Its Preservation Effects on Blueberry. ACS OMEGA 2024; 9:12643-12656. [PMID: 38524409 PMCID: PMC10955695 DOI: 10.1021/acsomega.3c07169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
In order to extend the shelf life of fruits and vegetables, a sodium alginate-sodium carboxymethyl cellulose composite film loaded with poly(vinyl alcohol) microcapsules was prepared in this paper. The optimal film substrate ratios were obtained after the response surface optimization. Poly(vinyl alcohol) microcapsules were prepared, clove essential oil was loaded into them to investigate the effects of microcapsules on the composite film properties, and the microcapsule composite film with the best overall performance was selected to be applied to blueberry preservation. The results showed that the composite film of 0.84% sodium alginate, 0.25% sodium carboxymethyl cellulose, and 0.56% glycerol presented excellent mechanical properties after adding 1.75% microcapsules. It had a good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Penicillium and had a DPPH clearance rate of 83.78%. The low-temperature bonded composite film could slow down the respiration rate of blueberry, inhibit browning and water loss, effectively maintain the quality of blueberry, and have a significant preservation effect on the anthocyanin and soluble solid content of blueberry. The clove essential oil slow-release microencapsulated composite film can be used for blueberry preservation.
Collapse
Affiliation(s)
- Yang Li
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Boya Bian
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Rongrong Tang
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Kexin Zhang
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
40
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
41
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
42
|
Zheng Y, Li Y, Ke C, Duan M, Zhu L, Zhou X, Yang M, Jiang ZX, Chen S. Jellyfish-inspired smart tetraphenylethene lipids with unique AIE fluorescence, thermal response, and cell membrane interaction. J Mater Chem B 2024; 12:2373-2383. [PMID: 38349037 DOI: 10.1039/d3tb02068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Smart lipids with fluorescence emission, thermal response, and polyethylene glycolation (PEGylation) functions can be highly valuable for formulation, image-traceable delivery, and targeted release of payloads. Herein, a series of jellyfish-shaped amphiphiles with a tetraphenylethene (TPE) core and four symmetrical amphiphilic side chains were conveniently synthesized and systematically investigated as smart lipids. Compared with regular amphiphilic TPE lipids and phospholipids, the unprecedented jellyfish-shaped molecular geometry was found to enable a series of valuable capabilities, including sensitive and responsive aggregation-induced emission of fluorescence (AIE FL) and real-time FL monitoring of drug uptake. Furthermore, the jellyfish-shaped geometry facilitated the concentration-dependent aggregation from unimolecular micelles at low concentrations to "side-by-side" spherical aggregates at high concentrations and a unique mode of AIE. In addition, the size and the arrangement of the amphiphilic side chains were found to dominate the aggregate stability, cell uptake, and thus the cytotoxicity of the amphiphiles. This study has unprecedentedly developed versatile smart TPE lipids with precise structures, and unique physicochemical and biological properties while the peculiar structure-property relationship may shed new light on the design and application of AIE fluorophores and functional lipids in biomedicine and materials science.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
43
|
Singh S, Tiwary N, Sharma N, Behl T, Antil A, Anwer MK, Ramniwas S, Sachdeva M, Elossaily GM, Gulati M, Ohja S. Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management. Pharmaceuticals (Basel) 2024; 17:248. [PMID: 38399463 PMCID: PMC10891986 DOI: 10.3390/ph17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Disease-modifying anti-rheumatic drugs (DMARDs) is a class of anti-rheumatic medicines that are frequently prescribed to patients suffering from rheumatoid arthritis (RA). Methotrexate, sulfasalazine, hydroxychloroquine, and azathioprine are examples of non-biologic DMARDs that are being used for alleviating pain and preventing disease progression. Biologic DMARDs (bDMARDs) like infliximab, rituximab, etanercept, adalimumab, tocilizumab, certolizumab pegol, and abatacept have greater effectiveness with fewer adverse effects in comparison to non-biologic DMARDs. This review article delineates the classification of DMARDs and their characteristic attributes. The poor aqueous solubility or permeability causes the limited oral bioavailability of synthetic DMARDs, while the high molecular weights along with the bulky structures of bDMARDs have posed few obstacles in their drug delivery and need to be addressed through the development of nanoformulations like cubosomes, nanospheres, nanoemulsions, solid lipid nanoparticles, nanomicelles, liposome, niosomes, and nanostructured lipid carrier. The main focus of this review article is to highlight the potential role of nanotechnology in the drug delivery of DMARDs for increasing solubility, dissolution, and bioavailability for the improved management of RA. This article also focusses on the different aspects of nanoparticles like their applications in biologics, biocompatibility, body clearance, scalability, drug loading, and stability issues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Neha Tiwary
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, Punjab, India
| | - Anita Antil
- Janta College of Pharmacy, Butana, Sonepat 131302, Haryana, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al-Ain P.O. Box 24162, United Arab Emirates;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 716666, Riyadh 11597, Saudi Arabia;
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 1444411, Punjab, India;
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Shreesh Ohja
- Department of Pharmacology and Therapeutics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
44
|
Hsu CY, Liao CC, Lin ZC, Alalaiwe A, Hwang E, Lin TW, Fang JY. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. J Nanobiotechnology 2024; 22:50. [PMID: 38317220 PMCID: PMC10845550 DOI: 10.1186/s12951-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tzu-Wei Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
45
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
46
|
Moura MLV, de Menezes AAPM, de Oliveira Filho JWG, do Nascimento MLLB, dos Reis AC, Ribeiro AB, da Silva FCC, Nunes AMV, Rolim HML, de Carvalho Melo Cavalcante AA, Sousa JMDCE. Advances in Antitumor Effects Using Liposomal Citrinin in Induced Breast Cancer Model. Pharmaceutics 2024; 16:174. [PMID: 38399235 PMCID: PMC10892831 DOI: 10.3390/pharmaceutics16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
The study aimed to evaluate the antitumor and toxicogenetic effects of liposomal nanoformulations containing citrinin in animal breast carcinoma induced by 7,12-dimethylbenzanthracene (DMBA). Mus musculus virgin females were divided into six groups treated with (1) olive oil (10 mL/kg); (2) 7,12-DMBA (6 mg/kg); (3) citrinin, CIT (2 mg/kg), (4) cyclophosphamide, CPA (25 mg/kg), (5) liposomal citrinin, LP-CIT (2 μg/kg), and (6) LP-CIT (6 µg/kg). Metabolic, behavioral, hematological, biochemical, histopathological, and toxicogenetic tests were performed. DMBA and cyclophosphamide induced behavioral changes, not observed for free and liposomal citrinin. No hematological or biochemical changes were observed for LP-CIT. However, free citrinin reduced monocytes and caused hepatotoxicity. During treatment, significant differences were observed regarding the weight of the right and left breasts treated with DMBA compared to negative controls. Treatment with CPA, CIT, and LP-CIT reduced the weight of both breasts, with better results for liposomal citrinin. Furthermore, CPA, CIT, and LP-CIT presented genotoxic effects for tumor, blood, bone marrow, and liver cells, although less DNA damage was observed for LP-CIT compared to CIT and CPA. Healthy cell damage induced by LP-CIT was repaired during treatment, unlike CPA, which caused clastogenic effects. Thus, LP-CIT showed advantages for its use as a model of nanosystems for antitumor studies.
Collapse
Affiliation(s)
- Michely Laiany Vieira Moura
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Ag-Anne Pereira Melo de Menezes
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Maria Luiza Lima Barreto do Nascimento
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Antonielly Campinho dos Reis
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems—NANOSFAR, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - João Marcelo de Castro e Sousa
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| |
Collapse
|
47
|
Tavazzani E, Spaiardi P, Contini D, Sancini G, Russo G, Masetto S. Precision medicine: a new era for inner ear diseases. Front Pharmacol 2024; 15:1328460. [PMID: 38327988 PMCID: PMC10848152 DOI: 10.3389/fphar.2024.1328460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect μl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ICS-Maugeri IRCCS, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Donatella Contini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Pucek-Kaczmarek A, Celary D, Bazylińska U. Natural-Origin Betaine Surfactants as Promising Components for the Stabilization of Lipid Carriers. Int J Mol Sci 2024; 25:955. [PMID: 38256029 PMCID: PMC10815673 DOI: 10.3390/ijms25020955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In the present work, we demonstrate studies involving the influence of the formulation composition on the physicochemical properties of nanocarriers: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Novel lipid-origin platforms were prepared using two "green" betaine-based surfactants, cocamidopropyl betaine (ROKAmina K30) and coco betaine (ROKAmina K30B), in combination with three different solid lipids, cetyl palmitate (CRODAMOL CP), trimyristin (Dynasan 114), and tristearin (Dynasan 118). Extensive optimization studies included the selection of the most appropriate lipid and surfactant concentration for effective SLN and NLC stabilization. The control parameters involving the hydrodynamic diameters of the obtained nanocarriers along with the size distribution (polydispersity index) were determined by dynamic light scattering (DLS), while shape and morphology were evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Electrophoretic light scattering (ELS) and turbidimetric method (backscattering profiles) were used to assess colloidal stability. The studied results revealed that both betaine-stabilized SLN and NLC formulations containing CRODAMOL CP as lipid matrix are the most monodisperse and colloidally stable regardless of the other components and their concentrations used, indicating them as the most promising candidates for drug delivery nanosystems with a diverse range of potential uses.
Collapse
Affiliation(s)
- Agata Pucek-Kaczmarek
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | | | - Urszula Bazylińska
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
49
|
Ahmad I, Ahmad S, Ahmad A, Zughaibi TA, Alhosin M, Tabrez S. Curcumin, its derivatives, and their nanoformulations: Revolutionizing cancer treatment. Cell Biochem Funct 2024; 42:e3911. [PMID: 38269517 DOI: 10.1002/cbf.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology & Genetics, Faculty of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Ali A, Emad NA, Sultana N, Ali H, Jahan S, Aqil M, Mujeeb M, Sultana Y. Medicinal potential of embelin and its nanoformulations: An update on the molecular mechanism and various applications. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1228-1242. [PMID: 39229578 PMCID: PMC11366951 DOI: 10.22038/ijbms.2024.77888.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/13/2024] [Indexed: 09/05/2024]
Abstract
Natural herbs have garnered significant research recently as their components target multiple disease signaling pathways, making them highly potential for various disease prevention and treatment. Embelin, a naturally occurring benzoquinone isolated from Embelia ribes, has shown promising biological activities such as antitumor, antidiabetic, anti-oxidant, and antimicrobial. Various mechanisms have been reported, including monitoring genes that synchronize the cell cycle, up-regulating multiple anti-oxidant enzymes, suppressing genes that prevent cell death, influencing transcription factors, and preventing inflammatory biomarkers. However, the hydrophobic nature of embelin leads to poor absorption and limits its therapeutic potential. This review highlights a wide range of nanocarriers used as delivery systems for embelin, including polymeric nanoparticles, liposomes, nanostructured lipid carriers, micelles, nanoemulsion, and metallic nanoparticles. These embelin nanomedicine formulations have been developed in preclinical studies as a possible treatment for many disorders and characterized using various in vitro, ex vivo, and in vivo models.
Collapse
Affiliation(s)
- Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Nasr A. Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Hamad Ali
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Mujeeb
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|