1
|
Mazzaglia C, Shery Huang YY, Shields JD. Advancing tumor microenvironment and lymphoid tissue research through 3D bioprinting and biofabrication. Adv Drug Deliv Rev 2025; 217:115485. [PMID: 39653084 DOI: 10.1016/j.addr.2024.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Cancer progression is significantly influenced by the complex interactions within the tumor microenvironment (TME). Immune cells, in particular, play a critical role by infiltrating tumors from the circulation and surrounding lymphoid tissues in an attempt to control their spread. However, they often fail in this task. Current in vivo and in vitro preclinical models struggle to fully capture these intricate interactions affecting our ability to understand immune evasion and predict drugs behaviour in the clinic. To address this challenge, biofabrication and particularly 3D bioprinting has emerged as a promising tool for modeling both tumors and the immune system. Its ability to incorporate multiple cell types into 3D matrices, enable tissue compartmentalization with high spatial accuracy, and integrate vasculature makes it a valuable approach. Nevertheless, limited research has focused on capturing the complex tumor-immune interplay in vitro. This review highlights the composition and significance of the TME, the architecture and function of lymphoid tissues, and innovative approaches to modeling their interactions in vitro, while proposing the concept of an extended TME.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Center for Life Nano, and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy.
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland
| | - Jacqueline D Shields
- Translational Medical Sciences, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, the United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Fleischmann E, Middelkamp V, van den Broek T. Deciphering the Human Germinal Center: A Review of Models to Study T-B Cell Interactions. Eur J Immunol 2025; 55:e202451460. [PMID: 39931794 PMCID: PMC11811811 DOI: 10.1002/eji.202451460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Interactions between T- and B cells in the germinal center reaction are instrumental for the initiation, maintenance, and downregulation of the human adaptive immune response, leading to the production of antigen-specific antibodies and long-lasting immunological memory. Replicating the human immune system remains challenging, with an over-reliance on animal models with limited translational accuracy. There is an increasing need for new tools that accurately model human immune function. This review evaluates existing 2D and 3D in vitro and ex vivo human models for their ability to reproduce the germinal center reaction, with a particular focus on T- and B-cell interaction. We conclude that although current models are able to replicate certain features of the germinal center reaction, no current model is able to completely replicate the complex human GC process. We outline the challenges in recreating a fully functional germinal center and suggest future directions of research to improve existing models, ultimately bringing us closer to completely reproducing the human lymph node.
Collapse
Affiliation(s)
- Elisa Fleischmann
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Vera Middelkamp
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Theo van den Broek
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
3
|
Zatorski JM, Raskovic D, Arneja A, Kiridena S, Ozulumba T, Hammel JH, Anbaei P, Ortiz-Cárdenas JE, Braciale TJ, Munson JM, Luckey CJ, Pompano RR. Initiation of primary T cell-B cell interactions and extrafollicular antibody responses in an organized microphysiological model of the human lymph node. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632545. [PMID: 39868310 PMCID: PMC11761657 DOI: 10.1101/2025.01.12.632545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Antibody production is central to protection against new pathogens and cancers, as well as to certain forms of autoimmunity. Antibodies often originate in the lymph node (LN), specifically at the extrafollicular border of B cell follicles, where T and B lymphocytes physically interact to drive B cell maturation into antibody-secreting plasmablasts. In vitro models of this process are sorely needed to predict aspects of the human immune response. Microphysiological systems (MPSs) offer the opportunity to approximate the lymphoid environment, but so far have focused primarily on memory recall responses to antigens previously encountered by donor cells. To date, no 3D culture system has replicated the engagement between T cells and B cells (T-B interaction) that leads to antibody production when starting with naïve cells. Here, we developed a LN-MPS to model early T-B interactions at the extrafollicular border built from primary, naïve human lymphocytes encapsulated within a collagen-based 3D matrix. Within the MPS, naïve T cells exhibited CCL21-dependent chemotaxis and chemokinesis as predicted. Naïve T and B cells were successfully skewed on chip to an early T follicular helper (pre-Tfh) and activated state, respectively, and co-culture of the latter cells led to CD38+ plasmablast cells and T cell dependent production of IgM. These responses required differentiation of the T cells into pre-Tfhs, physical cell-cell contact, and were sensitive to the ratio at which pre-Tfh and activated B cells were seeded on-chip. Dependence on T cell engagement was greatest at a 1:5 T:B ratio, while cell proliferation and CD38+ signal was greatest at a 1:1 T:B ratio. Furthermore, plasmablast formation was established starting from naïve T and B cells on-chip. We envision that this MPS model of primary lymphocyte physiology will enable new mechanistic analyses of human humoral immunity in vitro.
Collapse
Affiliation(s)
- Jonathan M Zatorski
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Djuro Raskovic
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Saweetha Kiridena
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Tochukwu Ozulumba
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Parastoo Anbaei
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Jennifer E Ortiz-Cárdenas
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
- Stanford University, Department of Bioengineering, 443 Via Ortega, Rm 119, Stanford, CA 94305, United States
| | - Thomas J Braciale
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Rebecca R Pompano
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Thornton Hall, 351 McCormick Rd, Charlottesville, VA 22904
| |
Collapse
|
4
|
Cook SR, Ball AG, Mohammad A, Pompano RR. A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node. LAB ON A CHIP 2025; 25:155-174. [PMID: 39661075 PMCID: PMC11633827 DOI: 10.1039/d4lc00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue ex vivo in 3D-printed mesh supports for at least 24 h. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to in vivo vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.
Collapse
Affiliation(s)
- Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | - Alexander G Ball
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | | | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Girelli A, Giantesio G, Musesti A, Penta R. Multiscale computational analysis of the steady fluid flow through a lymph node. Biomech Model Mechanobiol 2024; 23:2005-2023. [PMID: 39320689 PMCID: PMC11554713 DOI: 10.1007/s10237-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave the way to a better understanding of the mechanisms underlying the lymph node's multiscale functionalities which can be significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.
Collapse
Affiliation(s)
- Alberto Girelli
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Giulia Giantesio
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
- Mathematics for Technology, Medicine and Biosciences, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alessandro Musesti
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Raimondo Penta
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Gopallawa I, Gupta C, Jawa R, Cyril A, Jawa V, Chirmule N, Gujar V. Applications of Organoids in Advancing Drug Discovery and Development. J Pharm Sci 2024; 113:2659-2667. [PMID: 39002723 DOI: 10.1016/j.xphs.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
Organoids are small, self-organizing three-dimensional cell cultures that are derived from stem cells or primary organs. These cultures replicate the complexity of an organ, which cannot be achieved by single-cell culture systems. Organoids can be used in testing of new drugs instead of animals. Development and validation of organoids is thus important to reduce the reliance on animals for drug testing. In this review, we have discussed the developmental and regulatory aspects of organoids and highlighted their importance in drug development. We have first summarized different types of culture-based organoid systems such as submerged Matrigel, micro-fluidic 3D cultures, inducible pluripotent stem cells, and air-liquid interface cultures. These systems help us understand the intricate interplay between cells and their surrounding milieu for identifying functions of target receptors, soluble factors, and spatial interactions. Further, we have discussed the advances in humanized severe-combined immunodeficiency mouse models and their applications in the pharmacology of immune-oncology. Since regulatory aspects are important in using organoids for drug development, we have summarized FDA and EMA regulations on organoid research to support pre-clinical studies. Finally, we have included some unique studies highlighting the use of organoids in studying infectious diseases, cancer, and fundamental biology. These studies also exemplify the latest technological advances in organoid development resulting in improved efficiency. Overall, this review comprehensively summarizes the applications of organoids in early drug development during discovery and pre-clinical studies.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | | | - Rayan Jawa
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arya Cyril
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NY, USA.
| | | | - Vikramsingh Gujar
- Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
7
|
Liu J, Du H, Huang L, Xie W, Liu K, Zhang X, Chen S, Zhang Y, Li D, Pan H. AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38832-38851. [PMID: 39016521 DOI: 10.1021/acsami.4c07665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Phenotypic drug discovery (PDD), which involves harnessing biological systems directly to uncover effective drugs, has undergone a resurgence in recent years. The rapid advancement of artificial intelligence (AI) over the past few years presents numerous opportunities for augmenting phenotypic drug screening on microfluidic platforms, leveraging its predictive capabilities, data analysis, efficient data processing, etc. Microfluidics coupled with AI is poised to revolutionize the landscape of phenotypic drug discovery. By integrating advanced microfluidic platforms with AI algorithms, researchers can rapidly screen large libraries of compounds, identify novel drug candidates, and elucidate complex biological pathways with unprecedented speed and efficiency. This review provides an overview of recent advances and challenges in AI-based microfluidics and their applications in drug discovery. We discuss the synergistic combination of microfluidic systems for high-throughput screening and AI-driven analysis for phenotype characterization, drug-target interactions, and predictive modeling. In addition, we highlight the potential of AI-powered microfluidics to achieve an automated drug screening system. Overall, AI-powered microfluidics represents a promising approach to shaping the future of phenotypic drug discovery by enabling rapid, cost-effective, and accurate identification of therapeutically relevant compounds.
Collapse
Affiliation(s)
- Junchi Liu
- Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130012, China
| | - Hanze Du
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China
| | - Shi Chen
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yuan Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130012, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Huang Y, Liu T, Huang Q, Wang Y. From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. ACS Sens 2024; 9:3466-3488. [PMID: 38991227 DOI: 10.1021/acssensors.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Organ-on-a-Chip (OOC) technology, which emulates the physiological environment and functionality of human organs on a microfluidic chip, is undergoing significant technological advancements. Despite its rapid evolution, this technology is also facing notable challenges, such as the lack of vascularization, the development of multiorgan-on-a-chip systems, and the replication of the human body on a single chip. The progress of microfluidic technology has played a crucial role in steering OOC toward mimicking the human microenvironment, including vascularization, microenvironment replication, and the development of multiorgan microphysiological systems. Additionally, advancements in detection, analysis, and organoid imaging technologies have enhanced the functionality and efficiency of Organs-on-Chips (OOCs). In particular, the integration of artificial intelligence has revolutionized organoid imaging, significantly enhancing high-throughput drug screening. Consequently, this review covers the research progress of OOC toward Human-on-a-chip, the integration of sensors in OOCs, and the latest applications of organoid imaging technologies in the biomedical field.
Collapse
Affiliation(s)
- Yisha Huang
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Tong Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Huang
- School of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
10
|
Mazzaglia C, Munir H, Lei IM, Gerigk M, Huang YYS, Shields JD. Modeling Structural Elements and Functional Responses to Lymphatic-Delivered Cues in a Murine Lymph Node on a Chip. Adv Healthc Mater 2024; 13:e2303720. [PMID: 38626388 DOI: 10.1002/adhm.202303720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Hafsa Munir
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), 55131, Mainz, Germany
- Division of Dermal Oncoimmunology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Magda Gerigk
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jacqueline D Shields
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
Girelli A, Giantesio G, Musesti A, Penta R. Multiscale homogenization for dual porosity time-dependent Darcy-Brinkman/Darcy coupling and its application to the lymph node. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231983. [PMID: 39021765 PMCID: PMC11253036 DOI: 10.1098/rsos.231983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 07/20/2024]
Abstract
We study the coupling between time-dependent Darcy-Brinkman and the Darcy equations at the microscale subjected to inhomogeneous body forces and initial conditions to describe a double porosity problem. We derive the homogenized governing equations for this problem using the asymptotic homogenization technique, and as macroscopic results, we obtain a coupling between two Darcy equations, one of which with memory effects, with mass exchange between phases. The memory effects are a consequence of considering the time dependence in the Darcy-Brinkman equation, and they allow us to study in more detail the role of time in the problem under consideration. After the formulation of the model, we solve it in a simplified setting and we use it to describe the movement of fluid within a vascularized lymph node.
Collapse
Affiliation(s)
- A. Girelli
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - G. Giantesio
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
- ‘Mathematics for Technology, Medicine and Biosciences’, Università degli Studi di Ferrara, Ferrara, Italy
| | - A. Musesti
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - R. Penta
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Morrison AI, Sjoerds MJ, Vonk LA, Gibbs S, Koning JJ. In vitro immunity: an overview of immunocompetent organ-on-chip models. Front Immunol 2024; 15:1373186. [PMID: 38835750 PMCID: PMC11148285 DOI: 10.3389/fimmu.2024.1373186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Impressive advances have been made to replicate human physiology in vitro over the last few years due to the growth of the organ-on-chip (OoC) field in both industrial and academic settings. OoCs are a type of microphysiological system (MPS) that imitates functional and dynamic aspects of native human organ biology on a microfluidic device. Organoids and organotypic models, ranging in their complexity from simple single-cell to complex multi-cell type constructs, are being incorporated into OoC microfluidic devices to better mimic human physiology. OoC technology has now progressed to the stage at which it has received official recognition by the Food and Drug Administration (FDA) for use as an alternative to standard procedures in drug development, such as animal studies and traditional in vitro assays. However, an area that is still lagging behind is the incorporation of the immune system, which is a critical element required to investigate human health and disease. In this review, we summarise the progress made to integrate human immunology into various OoC systems, specifically focusing on models related to organ barriers and lymphoid organs. These models utilise microfluidic devices that are either commercially available or custom-made. This review explores the difference between the use of innate and adaptive immune cells and their role for modelling organ-specific diseases in OoCs. Immunocompetent multi-OoC models are also highlighted and the extent to which they recapitulate systemic physiology is discussed. Together, the aim of this review is to describe the current state of immune-OoCs, the limitations and the future perspectives needed to improve the field.
Collapse
Affiliation(s)
- Andrew I. Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Mirthe J. Sjoerds
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leander A. Vonk
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jasper J. Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
13
|
Wang Q, Yang Y, Chen Z, Li B, Niu Y, Li X. Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation. Pharmaceutics 2024; 16:666. [PMID: 38794327 PMCID: PMC11124897 DOI: 10.3390/pharmaceutics16050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Q.W.); (Y.Y.); (Z.C.); (B.L.); (Y.N.)
| |
Collapse
|
14
|
Hall E, Mendiola K, Lightsey NK, Hanjaya-Putra D. Mimicking blood and lymphatic vasculatures using microfluidic systems. BIOMICROFLUIDICS 2024; 18:031502. [PMID: 38726373 PMCID: PMC11081709 DOI: 10.1063/5.0175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The role of the circulatory system, containing the blood and lymphatic vasculatures, within the body, has become increasingly focused on by researchers as dysfunction of either of the systems has been linked to serious complications and disease. Currently, in vivo models are unable to provide the sufficient monitoring and level of manipulation needed to characterize the fluidic dynamics of the microcirculation in blood and lymphatic vessels; thus in vitro models have been pursued as an alternative model. Microfluidic devices have the required properties to provide a physiologically relevant circulatory system model for research as well as the experimental tools to conduct more advanced research analyses of microcirculation flow. In this review paper, the physiological behavior of fluid flow and electrical communication within the endothelial cells of the systems are detailed and discussed to highlight their complexities. Cell co-culturing methods and other relevant organ-on-a-chip devices will be evaluated to demonstrate the feasibility and relevance of the in vitro microfluidic model. Microfluidic systems will be determined as a noteworthy model that can display physiologically relevant flow of the cardiovascular and lymphatic systems, which will enable researchers to investigate the systems' prevalence in diseases and identify potential therapeutics.
Collapse
Affiliation(s)
- Eva Hall
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | - N. Keilany Lightsey
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
15
|
Janssen R, de Kleer JWM, Heming B, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Food allergen sensitization on a chip: the gut-immune-skin axis. Trends Biotechnol 2024; 42:119-134. [PMID: 37580191 DOI: 10.1016/j.tibtech.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
The global population is growing, rapidly increasing the demand for sustainable, novel, and safe food proteins with minimal risks of food allergy. In vitro testing of allergy-sensitizing capacity is predominantly based on 2D assays. However, these lack the 3D environment and crosstalk between the gut, skin, and immune cells essential for allergy prediction. Organ-on-a-chip (OoC) technologies are promising to study type 2 immune activation required for sensitization, initiated in the small intestine or skin, in interlinked systems. Increasing the mechanistic understanding and, moreover, finding new strategies to study interorgan communication is of importance to recapitulate food allergen sensitization in vitro. Here, we outline recently developed OoC platforms and discuss the features needed for reliable prediction of sensitizing allergenicity of proteins.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Janna W M de Kleer
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Bo Heming
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research B.V., Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
17
|
Kwee BJ, Li X, Nguyen XX, Campagna C, Lam J, Sung KE. Modeling immunity in microphysiological systems. Exp Biol Med (Maywood) 2023; 248:2001-2019. [PMID: 38166397 PMCID: PMC10800123 DOI: 10.1177/15353702231215897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
There is a need for better predictive models of the human immune system to evaluate safety and efficacy of immunomodulatory drugs and biologics for successful product development and regulatory approvals. Current in vitro models, which are often tested in two-dimensional (2D) tissue culture polystyrene, and preclinical animal models fail to fully recapitulate the function and physiology of the human immune system. Microphysiological systems (MPSs) that can model key microenvironment cues of the human immune system, as well as of specific organs and tissues, may be able to recapitulate specific features of the in vivo inflammatory response. This minireview provides an overview of MPS for modeling lymphatic tissues, immunity at tissue interfaces, inflammatory diseases, and the inflammatory tumor microenvironment in vitro and ex vivo. Broadly, these systems have utility in modeling how certain immunotherapies function in vivo, how dysfunctional immune responses can propagate diseases, and how our immune system can combat pathogens.
Collapse
Affiliation(s)
- Brian J Kwee
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19711, USA
| | - Xiaoqing Li
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Xinh-Xinh Nguyen
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Courtney Campagna
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Johnny Lam
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kyung E Sung
- Cellular and Tissue Therapy Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
18
|
Buskin A, Scott E, Nelson R, Gaughan L, Robson CN, Heer R, Hepburn AC. Engineering prostate cancer in vitro: what does it take? Oncogene 2023; 42:2417-2427. [PMID: 37438470 PMCID: PMC10403358 DOI: 10.1038/s41388-023-02776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ryan Nelson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| | - Anastasia C Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
19
|
Delong LM, Ross AE. Open multi-organ communication device for easy interrogation of tissue slices. LAB ON A CHIP 2023; 23:3034-3049. [PMID: 37278087 PMCID: PMC10330603 DOI: 10.1039/d3lc00115f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we have developed an open multi-organ communication device that facilitates cellular and molecular communication between ex vivo organ slices. Measuring communication between organs is vital for understanding the mechanisms of health regulation yet remains difficult with current technology. Communication between organs along the gut-brain-immune axis is a key regulator of gut homeostasis. As a novel application of the device, we have used tissue slices from the Peyer's patch (PP) and mesenteric lymph node (MLN) due to their importance in gut immunity; however, any organ slices could be used here. The device was designed and fabricated using a combination of 3D printed molds for polydimethylsiloxane (PDMS) soft lithography, PDMS membranes, and track-etch porous membranes. To validate cellular and protein transfer between organs on-chip, we used fluorescence microscopy to quantitate movement of fluorescent proteins and cells from the PP to the MLN, replicating the initial response to immune stimuli in the gut. IFN-γ secretion during perfusion from a naïve vs. inflamed PP to a healthy MLN was quantitated to demonstrate soluble signaling molecules are moving on-chip. Finally, transient catecholamine release was measured during perfusion from PP to MLN using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to demonstrate a novel application of the device for real-time sensing during communication. Overall, we show an open-well multi-organ device capable of facilitating transfer of soluble factors and cells with the added benefit of being available for external analysis techniques like electrochemical sensing which will advance abilities to probe communication in real-time across multiple organs ex vivo.
Collapse
Affiliation(s)
- Lauren M Delong
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
20
|
Stavrou M, Phung N, Grimm J, Andreou C. Organ-on-chip systems as a model for nanomedicine. NANOSCALE 2023; 15:9927-9940. [PMID: 37254663 PMCID: PMC10619891 DOI: 10.1039/d3nr01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomedicine is giving rise to increasing numbers of successful drugs, including cancer treatments, molecular imaging agents, and novel vaccine formulations. However, traditionally available model systems offer limited clinical translation and, compared to the number of preclinical studies, the approval rate of nanoparticles (NPs) for clinical use remains disappointingly low. A new paradigm of modeling biological systems on microfluidic chips has emerged in the last decade and is being gradually adopted by the nanomedicine community. These systems mimic tissues, organs, and diseases like cancer, on devices with small physical footprints and complex geometries. In this review, we report studies that used organ-on-chip approaches to study the interactions of NPs with biological systems. We present examples of NP toxicity studies, studies using biological NPs such as viruses, as well as modeling biological barriers and cancer on chip. Organ-on-chip systems present an exciting opportunity and can provide a renewed direction for the nanomedicine community.
Collapse
Affiliation(s)
- Marios Stavrou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| | - Ngan Phung
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Jan Grimm
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Chrysafis Andreou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| |
Collapse
|
21
|
Ricci C, Azimi B, Panariello L, Antognoli B, Cecchini B, Rovelli R, Rustembek M, Cinelli P, Milazzo M, Danti S, Lazzeri A. Assessment of Electrospun Poly(ε-caprolactone) and Poly(lactic acid) Fiber Scaffolds to Generate 3D In Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study. Int J Mol Sci 2023; 24:9443. [PMID: 37298394 PMCID: PMC10253282 DOI: 10.3390/ijms24119443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Three-dimensional scaffold-based culture has been increasingly gaining influence in oncology as a therapeutic strategy for tumors with a high relapse percentage. This study aims to evaluate electrospun poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) scaffolds to create a 3D model of colorectal adenocarcinoma. Specifically, the physico-mechanical and morphological properties of PCL and PLA electrospun fiber meshes collected at different drum velocities, i.e., 500 rpm, 1000 rpm and 2500 rpm, were assessed. Fiber size, mesh porosity, pore size distribution, water contact angle and tensile mechanical properties were investigated. Caco-2 cells were cultured on the produced PCL and PLA scaffolds for 7 days, demonstrating good cell viability and metabolic activity in all the scaffolds. A cross-analysis of the cell-scaffold interactions with morphological, mechanical and surface characterizations of the different electrospun fiber meshes was carried out, showing an opposite trend of cell metabolic activity in PLA and PCL scaffolds regardless of the fiber alignment, which increased in PLA and decreased in PCL. The best samples for Caco-2 cell culture were PCL500 (randomly oriented fibers) and PLA2500 (aligned fibers). Caco-2 cells had the highest metabolic activity in these scaffolds, with Young's moduli in the range of 8.6-21.9 MPa. PCL500 showed Young's modulus and strain at break close to those of the large intestine. Advancements in 3D in vitro models of colorectal adenocarcinoma could move forward the development of therapies for this cancer.
Collapse
Affiliation(s)
- Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Benedetta Antognoli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Beatrice Cecchini
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Roberta Rovelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Meruyert Rustembek
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
- Centre for Instrumentation Sharing of University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
- Centre for Instrumentation Sharing of University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
- Centre for Instrumentation Sharing of University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56126 Pisa, Italy
- Centre for Instrumentation Sharing of University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| |
Collapse
|
22
|
Dufva M. A quantitative meta-analysis comparing cell models in perfused organ on a chip with static cell cultures. Sci Rep 2023; 13:8233. [PMID: 37217582 DOI: 10.1038/s41598-023-35043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
As many consider organ on a chip for better in vitro models, it is timely to extract quantitative data from the literature to compare responses of cells under flow in chips to corresponding static incubations. Of 2828 screened articles, 464 articles described flow for cell culture and 146 contained correct controls and quantified data. Analysis of 1718 ratios between biomarkers measured in cells under flow and static cultures showed that the in all cell types, many biomarkers were unregulated by flow and only some specific biomarkers responded strongly to flow. Biomarkers in cells from the blood vessels walls, the intestine, tumours, pancreatic island, and the liver reacted most strongly to flow. Only 26 biomarkers were analysed in at least two different articles for a given cell type. Of these, the CYP3A4 activity in CaCo2 cells and PXR mRNA levels in hepatocytes were induced more than two-fold by flow. Furthermore, the reproducibility between articles was low as 52 of 95 articles did not show the same response to flow for a given biomarker. Flow showed overall very little improvements in 2D cultures but a slight improvement in 3D cultures suggesting that high density cell culture may benefit from flow. In conclusion, the gains of perfusion are relatively modest, larger gains are linked to specific biomarkers in certain cell types.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
23
|
Zhu J, Ji L, Chen Y, Li H, Huang M, Dai Z, Wang J, Xiang D, Fu G, Lei Z, Chu X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov 2023; 9:72. [PMID: 36813783 PMCID: PMC9947255 DOI: 10.1038/s41420-023-01354-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts, organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one. This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement each other well.
Collapse
Affiliation(s)
- Jialong Zhu
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China
| | - Linlin Ji
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Yitian Chen
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China ,grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China ,grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000 China ,grid.410745.30000 0004 1765 1045Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000 China
| | - Huiyu Li
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Mengxi Huang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Zhe Dai
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Jing Wang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Dan Xiang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
24
|
Sisodia Y, Shah K, Ali Sayyed A, Jain M, Ali SA, Gondaliya P, Kalia K, Tekade RK. Lung-on-chip microdevices to foster pulmonary drug discovery. Biomater Sci 2023; 11:777-790. [PMID: 36537540 DOI: 10.1039/d2bm00951j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Respiratory diseases account for unprecedented mortality owing to a lack of personalized or insufficient therapeutic interventions. Fostering pulmonary research into managing pulmonary threat requires a potential alternative approach that can mimick the in vivo complexities of the human body. The in vitro miniaturized bionic simulation of the lung holds great potential in the quest for a successful therapeutic intervention. This review discusses the emerging roles of lung-on-chip microfluidic simulator devices in fostering translational pulmonary drug discovery and personalized medicine. This review also explicates how the lung-on-chip model emulates the breathing patterns, elasticity, and vascularization of lungs in creating a 3D pulmonary microenvironment.
Collapse
Affiliation(s)
- Yashi Sisodia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Shah
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Adil Ali Sayyed
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Meenakshi Jain
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Syed Ansar Ali
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.
| |
Collapse
|
25
|
Abdelkarim M, Perez-Davalos L, Abdelkader Y, Abostait A, Labouta HI. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin Drug Deliv 2023; 20:13-30. [PMID: 36440475 DOI: 10.1080/17425247.2023.2152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs1 and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages. AREAS COVERED The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility. EXPERT OPINION We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.
Collapse
Affiliation(s)
- Mahmoud Abdelkarim
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Luis Perez-Davalos
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Yasmin Abdelkader
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Amr Abostait
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Hagar I Labouta
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, R3E 3P4, Winnipeg, Manitoba, Canada.,Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| |
Collapse
|
26
|
Alatoom A, ElGindi M, Sapudom J, Teo JCM. The T Cell Journey: A Tour de Force. Adv Biol (Weinh) 2023; 7:e2200173. [PMID: 36190140 DOI: 10.1002/adbi.202200173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Indexed: 11/07/2022]
Abstract
T cells act as the puppeteers in the adaptive immune response, and their dysfunction leads to the initiation and progression of pathological conditions. During their lifetime, T cells experience myriad forces that modulate their effector functions. These forces are imposed by interacting cells, surrounding tissues, and shear forces from fluid movement. In this review, a journey with T cells is made, from their development to their unique characteristics, including the early studies that uncovered their mechanosensitivity. Then the studies pertaining to the responses of T cell activation to changes in antigen-presenting cells' physical properties, to their immediate surrounding extracellular matrix microenvironment, and flow conditions are highlighted. In addition, it is explored how pathological conditions like the tumor microenvironment can hinder T cells and allow cancer cells to escape elimination.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
27
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
28
|
ElGindi M, Sapudom J, Laws P, Garcia-Sabaté A, Daqaq MF, Teo J. 3D microenvironment attenuates simulated microgravity-mediated changes in T cell transcriptome. Cell Mol Life Sci 2022; 79:508. [PMID: 36063234 PMCID: PMC11803002 DOI: 10.1007/s00018-022-04531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed F Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
29
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
30
|
Shroff T, Aina K, Maass C, Cipriano M, Lambrecht J, Tacke F, Mosig A, Loskill P. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol 2022; 12:210333. [PMID: 35232251 PMCID: PMC8889168 DOI: 10.1098/rsob.210333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function. This review provides a resource for scientists aiming to study human metabolism by providing an overview of MOCs recapitulating aspects of metabolism, by addressing the technical aspects of MOC development and by providing guidelines for correlation with in silico models. The current state and challenges are presented for two application areas: (i) disease modelling and (ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to integrate the MOC data into in silico models could strengthen the predictive power of the technology. Finally, the translational aspects of metabolizing MOCs are addressed, including adoption for personalized medicine and prospects for the clinic. Predictive MOCs could enable a significantly reduced dependence on animal models and open doors towards economical non-clinical testing and understanding of disease mechanisms.
Collapse
Affiliation(s)
- Tanvi Shroff
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Kehinde Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Madalena Cipriano
- Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Alexander Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany,3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
32
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
33
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
34
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
35
|
Giantesio G, Girelli A, Musesti A. A Mathematical Description of the Flow in a Spherical Lymph Node. Bull Math Biol 2022; 84:142. [PMID: 36318334 PMCID: PMC9626437 DOI: 10.1007/s11538-022-01103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
The motion of the lymph has a very important role in the immune system, and it is influenced by the porosity of the lymph nodes: more than 90% takes the peripheral path without entering the lymphoid compartment. In this paper, we construct a mathematical model of a lymph node assumed to have a spherical geometry, where the subcapsular sinus is a thin spherical shell near the external wall of the lymph node and the core is a porous material describing the lymphoid compartment. For the mathematical formulation, we assume incompressibility and we use Stokes together with Darcy-Brinkman equation for the flow of the lymph. Thanks to the hypothesis of axisymmetric flow with respect to the azimuthal angle and the use of the stream function approach, we find an explicit solution for the fully developed pulsatile flow in terms of Gegenbauer polynomials. A selected set of plots is provided to show the trend of motion in the case of physiological parameters. Then, a finite element simulation is performed and it is compared with the explicit solution.
Collapse
Affiliation(s)
- Giulia Giantesio
- grid.8142.f0000 0001 0941 3192Dipartimento di Matematica e Fisica “N. Tartaglia”, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Alberto Girelli
- grid.7563.70000 0001 2174 1754Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandro Musesti
- grid.8142.f0000 0001 0941 3192Dipartimento di Matematica e Fisica “N. Tartaglia”, Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
36
|
Li M, Zheng K, Ma S, Hu P, Yuan B, Yue X, Li Q. Pilose antler polypeptides promote chemosensitization and T-cell infiltration of triple-negative breast cancer. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
37
|
Shanti A, Hallfors N, Petroianu GA, Planelles L, Stefanini C. Lymph Nodes-On-Chip: Promising Immune Platforms for Pharmacological and Toxicological Applications. Front Pharmacol 2021; 12:711307. [PMID: 34483920 PMCID: PMC8415712 DOI: 10.3389/fphar.2021.711307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Organs-on-chip are gaining increasing attention as promising platforms for drug screening and testing applications. However, lymph nodes-on-chip options remain limited although the lymph node is one of the main determinants of the immunotoxicity of newly developed pharmacological drugs. In this review, we describe existing biomimetic lymph nodes-on-chip, their design, and their physiological relevance to pharmacology and shed the light on future directions associated with lymph node-on-chip design and implementation in drug discovery and development.
Collapse
Affiliation(s)
- Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
39
|
Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. NANO CONVERGENCE 2021; 8:20. [PMID: 34236537 PMCID: PMC8266951 DOI: 10.1186/s40580-021-00270-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/02/2023]
Abstract
The last two decades have witnessed explosive growth in the field of nanoengineering and nanomedicine. In particular, engineered nanoparticles have garnered great attention due to their potential to enable new capabilities such as controlled and targeted drug delivery for treatment of various diseases. With rapid progress in nanoparticle research, increasing efforts are being made to develop new technologies for in vitro modeling and analysis of the efficacy and safety of nanotherapeutics in human physiological systems. Organ-on-a-chip technology represents the most recent advance in this effort that provides a promising approach to address the limitations of conventional preclinical models. In this paper, we present a concise review of recent studies demonstrating how this emerging technology can be applied to in vitro studies of nanoparticles. The specific focus of this review is to examine the use of organ-on-a-chip models for toxicity and efficacy assessment of nanoparticles used in therapeutic applications. We also discuss challenges and future opportunities for implementing organ-on-a-chip technology for nanoparticle research.
Collapse
Affiliation(s)
- Shawn Kang
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
| | - Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
40
|
Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021; 4:757-775. [PMID: 34178414 PMCID: PMC8213042 DOI: 10.1007/s42242-021-00136-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Argus M. Sun
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- UC San Diego Healthcare, UCSD, La Jolla, CA 92037 USA
| | - Tyler Hoffman
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
| | - Bao Q. Luu
- Pulmonary Diseases and Critical Care, Scripps Green Hospital, Scripps Health, La Jolla, CA 92037 USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Song Li
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
41
|
Maulana TI, Kromidas E, Wallstabe L, Cipriano M, Alb M, Zaupa C, Hudecek M, Fogal B, Loskill P. Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. Adv Drug Deliv Rev 2021; 173:281-305. [PMID: 33798643 DOI: 10.1016/j.addr.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The advances in cancer immunotherapy come with several obstacles, limiting its widespread use and benefits so far only to a small subset of patients. One of the underlying challenges remains to be the lack of representative nonclinical models that translate to human immunity and are able to predict clinical efficacy and safety outcomes. In recent years, immunocompetent Cancer-on-Chip models emerge as an alternative human-based platform that enables the integration and manipulation of complex tumor microenvironment. In this review, we discuss novel opportunities offered by Cancer-on-Chip models to advance (mechanistic) immuno-oncology research, ranging from design flexibility to multimodal analysis approaches. We then exemplify their (potential) applications for the research and development of adoptive cell therapy, immune checkpoint therapy, cytokine therapy, oncolytic virus, and cancer vaccines.
Collapse
|
42
|
Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabaté A, McBain I, Nasser RA, Teo JCM. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci 2021; 8:5106-5120. [PMID: 32812979 DOI: 10.1039/d0bm01141j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. Understanding how biophysical properties affect DC behaviors will provide insight into the biology of a DC and its applications. In this work, we studied how cell culture dimensionality (two-dimensional (2D) and three-dimensional (3D)), and matrix density of 3D collagen matrices modulate differentiation and functions of DCs. Besides, we aimed to point out the different conceptual perspectives in modern immunological research, namely tissue-centric and cell-centric perspectives. The tissue-centric perspective intends to reveal how specific microenvironments dictate DC differentiation and in turn modulate DC functionalities, while the cell-centric perspective aims to demonstrate how pre-differentiated DCs behave in specific microenvironments. DC plasticity was characterized in terms of cell surface markers and cytokine secretion profiles. Subsequently, antigen internalization and T cell activation were quantified to demonstrate the cellular functions of immature DCs (iDCs) and mature DCs (mDCs), respectively. In the tissue-centric perspective, we found that expressed surface markers and secreted cytokines of both iDCs and mDCs are generally higher in 2D culture, while they are regulated by matrix density in 3D culture. In contrast, in the cell-centric perspective, we found enhanced expression of cell surface markers as well as distinct cytokine secretion profiles in both iDCs and mDCs. By analyzing cellular functions of cells in the tissue-centric perspective, we found matrix density dependence in antigen uptake by iDCs, as well as on mDC-mediated T cell proliferation in 3D cell culture. On the other hand, in the cell-centric perspective, both iDCs and mDCs appeared to lose their functional potentials to internalization antigen and T cell stimulation. Additionally, mDCs from tissue- and cell-centric perspectives modulated T cell differentiation by their distinct cytokine secretion profiles towards Th1 and Th17, respectively. In sum, our work emphasizes the importance of dimensionality, as well as collagen fibrillar density in the regulation of the immune response of DCs. Besides this, we demonstrated that the conceptual perspective of the experimental design could be an essential key point in research in immune cell-material interactions and biomaterial-based disease models of immunity.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Walaa K E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Ian McBain
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Rasha A Nasser
- Department of Microbiology Immunology, College of Medicine, United Arab Emirates University, United Arab Emirates
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| |
Collapse
|
43
|
Saygili E, Yildiz-Ozturk E, Green MJ, Ghaemmaghami AM, Yesil-Celiktas O. Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response. BIOMICROFLUIDICS 2021; 15:021501. [PMID: 33791050 PMCID: PMC7990507 DOI: 10.1063/5.0038924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center, Ege University, 35100 Izmir, Turkey
| | | | | | | |
Collapse
|
44
|
Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the Human Body on Microfluidic Chips. Trends Biotechnol 2021; 39:838-852. [PMID: 33581889 DOI: 10.1016/j.tibtech.2021.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Animals often fail to faithfully mimic human diseases and drug toxicities, and most in vitro models are not complex enough to recapitulate human body function and pathophysiology. Organ-on-chip culture technology, however, offers a promising tool for the study of tissue development and homeostasis, which has brought us one step closer to performing human experimentation in vitro. To recapitulate the complex functionality of multiple organs at once, their respective on-chip models can be linked to create a functional human body-on-chip platform. Here, we highlight the advantages and translational potentials of body-on-chip platforms in disease modeling, therapeutic development, and personalized medicine. We provide the reader with current limitations of the body-on-chip approach and new ideas to address the pending issues moving forwards.
Collapse
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cláudia C Miranda
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
45
|
Hallfors N, Shanti A, Sapudom J, Teo J, Petroianu G, Lee S, Planelles L, Stefanini C. Multi-Compartment Lymph-Node-on-a-Chip Enables Measurement of Immune Cell Motility in Response to Drugs. Bioengineering (Basel) 2021; 8:bioengineering8020019. [PMID: 33572571 PMCID: PMC7912616 DOI: 10.3390/bioengineering8020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Organs On-a-Chip represent novel platforms for modelling human physiology and disease. The lymph node (LN) is a relevant immune organ in which B and T lymphocytes are spatially organized in a complex architecture, and it is the place where the immune response initiates. The present study addresses the utility of a recently designed LN-on-a-chip to dissect and understand the effect of drugs delivered to cells in a fluidic multicellular 3D setting that mimics the human LN. To do so, we analyzed the motility and viability of human B and T cells exposed to hydroxychloroquine (HCQ). We show that the innovative LN platform, which operates at a microscale level, allows real-time monitoring of co-cultured B and T cells by imaging, and supports cellular random movement. HCQ delivered to cells through a constant and continuous flow induces a reduction in T cell velocity while promotes persistent rotational motion. We also find that HCQ increases the production of reactive oxygen species in T cells. Taken together, these results highlight the potential of the LN-on-a-chip to be applied in drug screening and development, and in cellular dynamics studies.
Collapse
Affiliation(s)
- Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
- Department of Mechanical Engineering, New York University, P.O. Box 903, New York, NY 10276-0903, USA
| | - Georg Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - SungMun Lee
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Khalifa University’s Center for Biotechnology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| |
Collapse
|
46
|
Abstract
The human lymphatic system (HLS) is a complex network of lymphatic organs linked through the lymphatic vessels. We present a graph theory-based approach to model and analyze the human lymphatic network. Two different methods of building a graph are considered: the method using anatomical data directly and the method based on a system of rules derived from structural analysis of HLS. A simple anatomical data-based graph is converted to an oriented graph by quantifying the steady-state fluid balance in the lymphatic network with the use of the Poiseuille equation in vessels and the mass conservation at vessel junctions. A computational algorithm for the generation of the rule-based random graph is developed and implemented. Some fundamental characteristics of the two types of HLS graph models are analyzed using different metrics such as graph energy, clustering, robustness, etc.
Collapse
|
47
|
Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020; 12:E1068. [PMID: 33182382 PMCID: PMC7695259 DOI: 10.3390/pharmaceutics12111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of nucleic acids to lymph nodes is critical for the development of effective vaccines and immunotherapies. However, it remains challenging to achieve selective lymph node delivery. Current gene delivery systems target mainly to the liver and typically exhibit off-target transfection at various tissues. Here we report novel lipid nanoparticles (LNPs) that can deliver plasmid DNA (pDNA) to a draining lymph node, thereby significantly enhancing transfection at this target organ, and substantially reducing gene expression at the intramuscular injection site (muscle). In particular, we discovered that LNPs stabilized by 3% Tween 20, a surfactant with a branched poly(ethylene glycol) (PEG) chain linking to a short lipid tail, achieved highly specific transfection at the lymph node. This was in contrast to conventional LNPs stabilized with a linear PEG chain and two saturated lipid tails (PEG-DSPE) that predominately transfected at the injection site (muscle). Interestingly, replacing Tween 20 with Tween 80, which has a longer unsaturated lipid tail, led to a much lower transfection efficiency. Our work demonstrates the importance of PEGylation in selective organ targeting of nanoparticles, provides new insights into the structure-property relationship of LNPs, and offers a novel, simple, and practical PEGylation technology to prepare the next generation of safe and effective vaccines against viruses or tumours.
Collapse
Affiliation(s)
- Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Estelle J. A. Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Emily H. Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Nghia P. Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| |
Collapse
|
48
|
Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M. Novel Strategies in Artificial Organ Development: What Is the Future of Medicine? MICROMACHINES 2020; 11:E646. [PMID: 32629779 PMCID: PMC7408042 DOI: 10.3390/mi11070646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michal Wszola
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (T.B.); (P.K.); (M.G.); (G.T.); (K.K.); (P.C.); (T.D.); (P.T.)
| |
Collapse
|