1
|
Aier I, Dubey N, Varadwaj PK. Structural dynamics of olfactory receptors: implications for odorant binding and activation mechanisms. J Biomol Struct Dyn 2025:1-12. [PMID: 40244808 DOI: 10.1080/07391102.2025.2492235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Olfaction, an ancient and intricate process, profoundly shapes human innate responses yet remains relatively understudied compared to other sensory modalities. Olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family, play a pivotal role in detecting and discriminating a vast array of odorants. This comprehensive study explores the functional roles of five diverse ORs: OR1A1, OR2W1, OR11A1, OR51E1 and OR51E2, through detailed investigations into the differences between their apo and odorant-bound forms. By examining key residues and mutations, the possible molecular mechanisms that underlie the modulation of binding landscapes and the consequent alterations in OR stability were elucidated. The findings revealed dynamic conformational changes in ORs upon odorant binding, characterized by hinging motions and tilting of transmembrane helices. Using residue interaction network analyses, critical residues involved in mediating interactions between ORs and odorants were uncovered, shedding light on the molecular determinants of olfactory perception. By examining changes in binding pocket volume and per-residue energy decomposition, the dynamic nature of OR activation and the influence of mutations on receptor stability and functionality was observed.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Dubey
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Xiao Z, Wang H, Niu Y, Zhu J, Yu Y, She Y, Zhou R, Wang Z, Zhang J. Effect and mechanism of green and aldehyde aroma compounds from sweet orange on sucrose sweetness perception. Food Chem X 2024; 24:101853. [PMID: 39498250 PMCID: PMC11533047 DOI: 10.1016/j.fochx.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
At present, there are relatively few studies on the influence of green aroma and aldehyde aroma compounds on the sweetness perception of sucrose. This study examined the effects of 11 aroma compounds from sweet orange, characterized by green and aldehyde flavors, on the sweetness of a 5 % sucrose solution. Using artificial sensory analysis and electronic tongue technology, it was found that most aromatic compounds can inhibit sweetness perception, and the inhibitory effect of trans-2-decenoaldehyde is the most significant. The mechanism of inhibition was explored through molecular simulation, revealing that the binding free energy of molecular docking was greater than -5.9 kcal/mol. Further molecular dynamics analysis showed that compared with the T1R2/T1R3 sucrose binary system, the addition of aroma substances reduced the number of hotspot residues involved in protein ligand binding, and did not enhance the binding ability of ligand proteins, indicating an inhibitory effect.
Collapse
Affiliation(s)
- ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - HouWang Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yamin Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YuanBin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - RuJun Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaogai Wang
- Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
3
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
4
|
Li Y, Chai Q, Chen Y, Ma Y, Wang Y, Zhao J. Genome-wide investigation of the OR gene family in Helicoverpa armigera and functional analysis of OR48 and OR75 in metamorphosis development. Int J Biol Macromol 2024; 278:134646. [PMID: 39128738 DOI: 10.1016/j.ijbiomac.2024.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.
Collapse
Affiliation(s)
- Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Qichao Chai
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yujia Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, Shandong, China
| | - Yongcui Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
5
|
Choo JH, Kim D, Min K, Lee SY, Kang NG. Pogostemon cablin Extract Promotes Wound Healing through OR2AT4 Activation and Exhibits Anti-Inflammatory Activity. Curr Issues Mol Biol 2024; 46:9136-9148. [PMID: 39194757 DOI: 10.3390/cimb46080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Skin healing occurs through an intricate process called wound healing which comprises four phases: coagulation and hemostasis, inflammation, cellular proliferation, and remodeling. Chronic wounds often arise because of prolonged or excessive inflammation, which hinders the healing process and wound closure. Despite the recognized efficacy of Pogostemon cablin (patchouli) in wound healing, the precise mechanism of action of Pogostemon cablin extract (PCE) on inflammation and wound healing remains poorly understood. In this study, we investigated the effects of PCE on cell proliferation and wound healing, as well as its anti-inflammatory activity, using in vitro experiments. We found that PCE increased cell proliferation and expression of the cell proliferation marker Ki67 and accelerated wound healing in human keratinocytes through the activation of OR2AT4. Furthermore, PCE exhibited anti-inflammatory effects by decreasing the levels of pro-inflammatory cytokines interleukin-6 and -8 in lipopolysaccharide-treated and TNF-α-exposed THP-1 and HaCaT cells, respectively. Overall, these findings suggest that PCE holds therapeutic potential by promoting cell proliferation, facilitating wound healing, and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Jung Ha Choo
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul 07795, Republic of Korea
| | - Daehyun Kim
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul 07795, Republic of Korea
| | - Kyoungin Min
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul 07795, Republic of Korea
| | - So Young Lee
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul 07795, Republic of Korea
| | - Nae Gyu Kang
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul 07795, Republic of Korea
| |
Collapse
|
6
|
Peng YC, Wu J, He X, Dai J, Xia L, Valenzuela-Leon P, Tumas KC, Singh BK, Xu F, Ganesan S, Munir S, Calvo E, Huang R, Liu C, Long CA, Su XZ. NAD activates olfactory receptor 1386 to regulate type I interferon responses in Plasmodium yoelii YM infection. Proc Natl Acad Sci U S A 2024; 121:e2403796121. [PMID: 38809710 PMCID: PMC11161801 DOI: 10.1073/pnas.2403796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-β and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/β levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-β mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-β responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.
Collapse
Affiliation(s)
- Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Lu Xia
- Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410083, People’s Republic of China
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
7
|
Weidinger D, Jacobsen J, Alisch D, Uebner H, Heinen N, Greune L, Westhoven S, Jamal Jameel K, Kronsbein J, Pfaender S, Taube C, Reuter S, Peters M, Hatt H, Knobloch J. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur J Cell Biol 2024; 103:151408. [PMID: 38583306 DOI: 10.1016/j.ejcb.2024.151408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.
Collapse
Affiliation(s)
- Daniel Weidinger
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Julian Jacobsen
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Desiree Alisch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lea Greune
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Hanns Hatt
- Cell Physiology ND4/35, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| |
Collapse
|
8
|
Malyar RM, Wei Q, Hou L, Elsaid SH, Zhang Y, Banuree SAH, Saifullah, Zhou W, Shi F. Fermented bamboo powder activates gut odorant receptors, and promotes intestinal health and growth performance of dwarf yellow-feathered broiler chickens. Poult Sci 2024; 103:103570. [PMID: 38484565 PMCID: PMC10951526 DOI: 10.1016/j.psj.2024.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/24/2024] Open
Abstract
The present study investigated the effects of fermented bamboo powder (FPB) on gut odorant receptors (OR), intestinal health, and growth performance of dwarf yellow-feathered broiler chickens. Six hundred (600) healthy 1-day-old chicks were randomly assigned into 2 groups, with 10 replicates consisting of 30 chicks each. The control group was fed a basal diet. In contrast, the experimental group was fed the basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg FBP for 4 different phases, namely phase I (1-22 d), phase II (23-45 d), phase III (46-60 d), and phase IV (61-77 d), respectively. The first 2 phases were considered pretreatment (0-45 d), and the remaining were experimental (46-77 d) periods. The tissue samples were collected from phase IV. The chickens in the FBP supplementation group exhibited a significant increment in body weight gain, evisceration yield, breast, thigh, and liver weight, while also experiencing a decrease in the FCR (P < 0.05). Furthermore, the villus height, crypt depth, and villus area exhibited significant increases in the FBP group (P < 0.01). Additionally, the secretion levels of gut hormones such as glucagon-like peptide-1, peptide YY, cholecystokinin, and 5-hydroxytryptamine were significantly elevated in the serum, duodenum, jejunum, and ileum tissues in the FBP group (P < 0.05). The results of qRT-PCR indicated that ORs had responsive expression in the gizzard, proventriculus, and small intestine of chickens when fed with the FBP diet (P < 0.05). Notably, the expression of the COR1, COR2, COR4, COR6, COR8, COR9, OR52R1, OR51M1, OR1F2P, OR5AP2, and OR14J1L112 genes was stronger in the small intestines compared to the gizzard and proventriculus. In conclusion, these results suggest that the FPB plays a crucial role in growth performance, activation of ORs, and gut health and development.
Collapse
Affiliation(s)
- Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Veterinary Science Faculty, Nangarhar University, Jalalabad, 2601, Nangarhar, Afghanistan
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Linsong Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shoura Hytham Elsaid
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Saifullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weisheng Zhou
- Research Institute of Global 3E, Kyoto 602-8452, Japan; College of Policy Science, Ritsumeikan University, Osaka 567-8570, Japan
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
10
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
11
|
Edelkamp J, Lousada MB, Pinto D, Chéret J, Calabrese FM, Jiménez F, Erdmann H, Wessel J, Phillip B, Angelis MD, Rinaldi F, Bertolini M, Paus R. Management of the human hair follicle microbiome by a synthetic odorant. J Dermatol Sci 2023; 112:99-108. [PMID: 37858476 DOI: 10.1016/j.jdermsci.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany.
| | - Marta B Lousada
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Zoological Institute, Christian-Albrechts, University Kiel, Kiel, Germany
| | | | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Francisco Jiménez
- Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Julia Wessel
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Bodo Phillip
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
12
|
Sharma A, Kumar R, Varadwaj P. Developing human olfactory network and exploring olfactory receptor-odorant interaction. J Biomol Struct Dyn 2023; 41:8941-8960. [PMID: 36310099 DOI: 10.1080/07391102.2022.2138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The Olfactory receptor (OR)-odorant interactions are perplexed. ORs can bind to structurally diverse odorants associated with one or more odor percepts. Various attempts have been made to understand the intricacies of OR-odorant interaction. In this study, experimentally documented OR-odorant interactions are investigated comprehensively to; (a) suggest potential odor percepts for ORs based on the OR-OR network; (b) determine how odorants interacting with specific ORs differ in terms of inherent pharmacophoric features and molecular properties, (c) identify molecular interactions that explained OR-odorant interactions of selective ORs; and (d) predict the probable role of ORs other than olfaction. Human olfactory receptor network (hORnet) is developed to study possible odor percepts for ORs. We identified six molecular properties which showed variation and significant patterns to differentiate odorants binding with five ORs. The pharmacophore analysis revealed that odorants subset of five ORs follow similar pharmacophore hypothesis, (one hydrogen acceptor and two hydrophobic regions) but differ in terms of distance and orientation of pharmacophoric features. To ascertain the binding site residues and key interactions between the selected ORs and their interacting odorants, 3D-structure modelling, docking and molecular dynamics studies were carried out. Lastly, the potential role of ORs beyond olfaction is explored. A human OR-OR network was developed to suggest possible odor percepts for ORs using empirically proven OR-odorant interactions. We sought to find out significant characteristics, molecular properties, and molecular interactions that could explain OR-odorant interactions and add to the understanding of the complex issue of odor perception.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Kim JM, Dziobaka S, Yoon YE, Lee HL, Jeong JH, Lee IR, Weidinger D, Yang C, Kim D, Gulperi Y, Lee CK, Sohn J, Song G, Hatt H, Lee SJ. OR2H2 Activates CAMKKβ-AMPK-Autophagy Signaling Axis and Suppresses Senescence in VK2/E6E7 Cells. Pharmaceuticals (Basel) 2023; 16:1221. [PMID: 37765029 PMCID: PMC10535153 DOI: 10.3390/ph16091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Olfactory receptors are expressed in multiple extra-nasal tissues and these ectopic olfactory receptors mediate tissue-specific functions and regulate cellular physiology. Ectopic olfactory receptors may play key roles in tissues constantly exposed to odorants, thus the functionality of these receptors in genital tissues is of particular interest. The functionality of ectopic olfactory receptors expressed in VK2/E6E7 human vaginal epithelial cells was investigated. OR2H2 was the most highly expressed olfactory receptor expressed in VK2/E6E7 cells, and activation of OR2H2 by aldehyde 13-13, a ligand of OR2H2, increased the intracellular calcium and cAMP concentrations. Immunoblotting demonstrated that activation of OR2H2 by aldehyde 13-13 stimulated the CAMKKβ-AMPK-mTORC1-autophagy signaling axis, and that these effects were negated by OR2H2 knockdown. AMPK is known to regulate senescence; consequently, we investigated further the effect of aldehyde 13-13 on senescence. In H2O2-induced senescent cells, activation of OR2H2 by aldehyde 13-13 restored proliferation, and reduced the expression of senescence markers, P16 and P19. Additionally, aldehyde 13-13 induced apoptosis of H2O2-induced senescent cells, compared with non-senescent normal cells. In vivo, aldehyde 13-13 increased the lifespan of Caenorhabditis elegans and budding yeast. These findings demonstrate that OR2H2 is a functional receptor in VK2/E6E7 cells, and that activation of OR2H2 activates the AMPK-autophagy axis, and suppresses cellular aging and senescence, which may increase cellular health.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Sina Dziobaka
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Ye Eun Yoon
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ha Lim Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ji Hyun Jeong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - In-Ryeong Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Daniel Weidinger
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Changwon Yang
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Deokho Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Yalcin Gulperi
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02842, Republic of Korea;
- Korea Institute of Molecular Medicine and Nutrition, Seoul 02842, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02846, Republic of Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
14
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
15
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Tragia plukenetii-Assisted Omega-Decenol as Potential Anticancer Agent: its Isolation, Characterization, and Validation. Appl Biochem Biotechnol 2023; 195:1699-1722. [PMID: 36367619 DOI: 10.1007/s12010-022-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
The second most common and lethal disease is lung cancer. To combat the negative effects of today's synthetic medications, natural phytomedicines are required. Tragia plukenetii is a medicinal plant native to India that belongs to the Euphorbiaceae family. The purpose of this research is to isolate bioactive compounds from T. plukenetii leaves and then test them for anticancer property. A single compound (CH: ME-20:80) was separated using TLC, and an RF value of 0.55 was determined. Spectral analyses utilizing UV-Visible Spectrophotometer and FT-IR were used to examine the absorbance and functional groups. 13C-NMR and 1H-NMR studies revealed the tentative name of the purified phytochemical as omega-decenol (OD). Further antioxidant and anticancer properties of OD were tested for in vitro. In comparison to conventional L-ascorbic acid, the DPPH radical scavenging assay experiment yielded an IC50 of 147.48 g/ml. With an IC50 value of 24 µg/ml (Omega-decenol) and 32 µg/ml (doxorubicin), the MTT assay demonstrated the cytotoxic capability against the A549 lung cancer cell line. FACS revealed the cell cycle arrest of A549 at S phase compared to control with the high-dose IC50 (250 µg/ml) of omega-decenol. Twelve major compounds were detected in the active fraction using GC-MS analysis, where n-hexadecanoic acid was found as a major. Omega-decenol showed good binding affinity against EGFR, amongst other receptors in the in silico docking study. This research reveals the potent anticancer activity of the isolated compound omega-decenol from T. plukenetii leaves and provides a key path to understanding the molecular interaction in anticancer aspects against adenocarcinoma.
Collapse
|
17
|
Curtis TM, Nilon AM, Greenberg AJ, Besner M, Scibek JJ, Nichols JA, Huie JL. Odorant Binding Causes Cytoskeletal Rearrangement, Leading to Detectable Changes in Endothelial and Epithelial Barrier Function and Micromotion. BIOSENSORS 2023; 13:329. [PMID: 36979541 PMCID: PMC10046532 DOI: 10.3390/bios13030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Non-olfactory cells have excellent biosensor potential because they express functional olfactory receptors (ORs) and are non-neuronal cells that are easy to culture. ORs are G-protein coupled receptors (GPCRs), and there is a well-established link between different classes of G-proteins and cytoskeletal structure changes affecting cellular morphology that has been unexplored for odorant sensing. Thus, the present study was conducted to determine if odorant binding in non-olfactory cells causes cytoskeletal changes that will lead to cell changes detectable by electric cell-substrate impedance sensing (ECIS). To this end, we used the human umbilical vein endothelial cells (HUVECs), which express OR10J5, and the human keratinocyte (HaCaT) cells, which express OR2AT4. Using these two different cell barriers, we showed that odorant addition, lyral and Sandalore, respectively, caused an increase in cAMP, changes in the organization of the cytoskeleton, and a decrease in the integrity of the junctions between the cells, causing a decrease in cellular electrical resistance. In addition, the random cellular movement of the monolayers (micromotion) was significantly decreased after odorant exposure. Collectively, these data demonstrate a new physiological role of olfactory receptor signaling in endothelial and epithelial cell barriers and represent a new label-free method to detect odorant binding.
Collapse
Affiliation(s)
- Theresa M. Curtis
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Annabella M. Nilon
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | - Matthew Besner
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Jacob J. Scibek
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | | |
Collapse
|
18
|
Wang Y, Geng R, Zhao Y, Fang J, Li M, Kang SG, Huang K, Tong T. The gut odorant receptor and taste receptor make sense of dietary components: A focus on gut hormone secretion. Crit Rev Food Sci Nutr 2023; 64:6975-6989. [PMID: 36785901 DOI: 10.1080/10408398.2023.2177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| |
Collapse
|
19
|
Orecchioni M, Matsunami H, Ley K. Olfactory receptors in macrophages and inflammation. Front Immunol 2022; 13:1029244. [PMID: 36311776 PMCID: PMC9606742 DOI: 10.3389/fimmu.2022.1029244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1β, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,Immunology Center of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| |
Collapse
|
20
|
Yang Z, Cheng J, Shang P, Sun JP, Yu X. Emerging roles of olfactory receptors in glucose metabolism. Trends Cell Biol 2022; 33:463-476. [PMID: 36229334 DOI: 10.1016/j.tcb.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Olfactory receptors (ORs) are widely expressed in extra-nasal tissues, where they participate in the regulation of divergent physiological processes. An increasing body of evidence over the past decade has revealed important regulatory roles for extra-nasal ORs in glucose metabolism. Recently, nonodorant endogenous ligands of ORs with metabolic significance have been identified, implying the therapeutic potential of ORs in the treatment of metabolic diseases, such as diabetes and obesity. In this review, we summarize current understanding of the expression patterns and functions of ORs in key tissues involved in glucose metabolism modulation, describe odorant and endogenous OR ligands, explain the biased signaling downstream of ORs, and outline OR therapeutic potential.
Collapse
|
21
|
Zhang Y, Zhang X, Meng Y, Xu X, Zuo D. The role of glycolysis and lactate in the induction of tumor-associated macrophages immunosuppressive phenotype. Int Immunopharmacol 2022; 110:108994. [PMID: 35777265 DOI: 10.1016/j.intimp.2022.108994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Growing evidence highlights that glycolysis and tumor-derived lactate could skew tumor-associated macrophages (TAMs) toward an immunosuppressive phenotype. However, the updated research has not been systematically summarized yet. TAMs are educated by the tumor microenvironment (TME) and exert immunosuppressive functions and tumorigenic effects via multiple biological processes. It is well known that lactate generated by aerobic glycolysis is significantly accumulated in TME and promotes tumor progression in solid tumors. Moreover, some recent research demonstrated that glycolysis is activated in TAMs to support M2-like polarization, which is absolutely in contrast with the metabolic profile of M2 macrophages in inflammation. Notably, lactate produced by high levels of glycolysis is not only a metabolic by-product but also an oncometabolite. TAMs could access the biological information delivered by lactate and further enhance protumor functions such as immunosuppression and angiogenesis. Here, we outline the connection between glycolysis and TAM phenotype to elucidate the metabolic characteristics of TAMs. Further, insights into the specific molecular mechanisms of lactate-induced TAM polarization and potential therapeutic targets are summarized. We sought to discuss the reciprocal interaction between tumor cells and TAMs mediated by lactate, which will lay a foundation for the research aiming to elucidate the complex functions of TAMs.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
22
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
23
|
Geng R, Wang Y, Fang J, Zhao Y, Li M, Kang SG, Huang K, Tong T. Ectopic odorant receptors responding to flavor compounds in skin health and disease: Current insights and future perspectives. Crit Rev Food Sci Nutr 2022; 63:9392-9408. [PMID: 35445618 DOI: 10.1080/10408398.2022.2064812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin, the largest organ of human body, acts as a barrier to protect body from the external environment and is exposed to a myriad of flavor compounds, especially food- and plant essential oil-derived odorant compounds. Skin cells are known to express various chemosensory receptors, such as transient potential receptors, adenosine triphosphate receptors, taste receptors, and odorant receptors (ORs). We aim to provide a review of this rapidly developing field and discuss latest discoveries related to the skin ORs activated by flavor compounds, their impacts on skin health and disease, odorant ligands interacting with ORs exerting specific biological effects, and the mechanisms involved. ORs are recently found to be expressed in skin tissue and cells, such as keratinocytes, melanocytes, and fibroblasts. To date, several ectopic skin ORs responding to flavor compounds, are involved in different skin biological processes, such as wound healing, hair growth, melanin regulation, pressure stress, skin barrier function, atopic dermatitis, and psoriasis. The recognition of physiological role of skin ORs, combined with the fact that ORs belong to a highly druggable protein family (G protein-coupled receptors), underscores the potential of skin ORs responding to flavor compounds as a novel regulating strategy for skin health and disease.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|