1
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Liu Q, Liu H, Wu H, Huang Y, Wang H, Zhang F. Continuous preparation of long-acting hydromorphone PLGA microspheres using an automatic and scalable microfluidic process system. Int J Pharm 2025; 674:125459. [PMID: 40101876 DOI: 10.1016/j.ijpharm.2025.125459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The long-acting hydromorphone loaded poly-lactic-co-glycolic acid (HM-PLGA) microspheres for chronic pain management were developed and prepared using an automatic and scalable microfluidic process system in this study. The system consists of a novel designed micro-mixer for particle generation, syringe and HPLC pumps for continuous dosing, a process Raman spectrometer as process analytical technology (PAT) tool and an automation system for programmable automatic control. With the benefits of the automation and digitalization of the system, a wide range of formulation parameters was investigated for its impact on the properties of the microspheres. The particle size of the HM-PLGA microspheres was tunable with the automatic microfluidic process system. The long-acting injectable homogeneous HM-PLGA microspheres were successfully prepared with maximum drug-loading capacity of 7.71 % and drug encapsulation efficiency of 69.40 %. The physical and chemical properties were characterized using various analytical technologies. Pharmacokinetic experiments in female ICR mice confirmed prolonged exposure in plasma compared to the HM hydrochloride injection. In vivo studies in beagle dogs showed that the HM-PLGA microspheres provided sustained drug release for over 11 days. The results demonstrated the potential of the novel automatic microfluidic process system in the development and continuous manufacturing of the particle size-controllable drug loaded microspheres.
Collapse
Affiliation(s)
- Quan Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiting Liu
- Shanghai PROXS Chemical Technology Co. Ltd., Shanghai 201203, China
| | - Haoxiang Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
3
|
Sreedevi A, Ligade VS, Dewan S. Comprehensive bibliographic study of the framework of complex generic drugs. J Taibah Univ Med Sci 2025; 20:169-177. [PMID: 40130015 PMCID: PMC11930681 DOI: 10.1016/j.jtumed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Background Recently, extensive growth in bibliometric analysis has been observed. The demand for generic drugs has markedly increased in the past three decades, and the market appears to be saturated. Consequently, pharmaceutical companies are focusing on complex generics to improve patient demand and economic growth. This article highlights current research trends in generic and complex generic drugs through bibliometric analysis. Method All documents from 2013 to 2023 associated with generics and complex generics were retrieved from the Scopus database. After application of the inclusion criteria, 144,015 articles on generics and 84 articles on complex generics were chosen for inclusion. Microsoft Excel and VOSviewer software were used to represent detailed studies and data on complex generics. Results Publications associated with generic and complex drug products were identified, examined, compared, and summarized, to provide insights into trends and the future research scope. The number of obtained articles clearly indicated that the number of publications on generics is becoming saturated, whereas the number of complex generic studies is markedly increasing. The top regulated and semi regulated markets are now highly focused on complex generics. Concordantly, regulated markets such as those in the United States have funded more complex generics than simple generics. According to cluster analysis, studies on simple generics frequently focused on quality of life. In contrast, the clusters of studies on complex generics indicated challenges at various stages, thus shedding light on the growth of this field. Conclusion This study provides a comprehensive bibliographic overview of the development of complex generic drugs and market growth. Researchers are currently more focused on complex generics than generics. A global revolution in pharmaceutical science can be expected if all stakeholder experts collaborate and focus on generic version of complex drugs.
Collapse
Affiliation(s)
- Amatha Sreedevi
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, MAHE, India
| | - Virendra S. Ligade
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, MAHE, India
| | - Shailee Dewan
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, MAHE, India
| |
Collapse
|
4
|
Garrett M, Curry S, Feris S, Lu Y, Gu Q, Clark A, Martin SF, Kastellorizios M. Delivery of a novel neuroprotective compound to the retina in rat and rabbit animal models. J Control Release 2025; 382:113659. [PMID: 40139393 DOI: 10.1016/j.jconrel.2025.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Posterior segment-related diseases are among the leading causes of irreversible blindness and loss of vision globally. These diseases are extremely difficult to treat due to the drug delivery barriers posed by the eye, among other challenges. One delivery method that bypasses many of these obstacles, albeit not without risk, is ocular injections, and long-acting formulations such as implants can improve patient compliance by allowing for longer intervals between injections. Here, we report our development of a preclinical in situ-forming implant dosage form that provides sustained release of a novel compound, DKR-1677, with a target in the retina. An in situ-forming implant based on polylactic co glycolic acid (PLGA) was chosen in this preclinical stage because it is readily translatable to a preformed implant product. The formulations were tested in vitro, in rat and rabbit animal models for drug release and pharmacokinetics. A two-step in vitro dissolution method with implant formation in a biorelevant gel followed by incubation in release media showed a 30-day three-phase release profile with an initial burst release of 36.04 ± 4.23 %, a plateau, and a controlled release up to 93.75 ± 4.68 % at day 30, typical of PLGA-based implant formulations. Immediate and controlled-release formulations were tested in rat and rabbit animal models and confirmed that DKR-1677 is taken up by the retina after intravitreal administration. Furthermore, the in situ-forming implant was found to prolong drug presence in the retina to 30 days following a single administration, confirming that a PLGA-based implant is a viable approach for this drug candidate.
Collapse
Affiliation(s)
- Meredith Garrett
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stacy Curry
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sherri Feris
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Yan Lu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Qi Gu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Abe Clark
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stephen F Martin
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Michail Kastellorizios
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
5
|
Tabrizi E, Li B. From innovation to application: safety concerns in nanomaterial implant coatings. Nanomedicine (Lond) 2025:1-4. [PMID: 40103528 DOI: 10.1080/17435889.2025.2480045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Affiliation(s)
- Eileen Tabrizi
- Department of Orthopedics, School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Bingyun Li
- Department of Orthopedics, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
6
|
Nath V, Singh M, Jana BK, Sarkar T, Gogoi NR, Mazumder B. PLGA and cancer: a comprehensive patent-based review on the present state of art. Pharm Pat Anal 2025:1-15. [PMID: 40022546 DOI: 10.1080/20468954.2025.2470103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a highly efficient biodegradable polymeric nanoparticle (NP). Owing to its low toxicity, controlled and sustained release qualities, and biocompatibility with tissue and cells, the US FDA has approved its usage in drug delivery systems. The manufacturing and characterization techniques, surface changes, encapsulation of anticancer medicines, active or passive tumor targeting, and various PLGA nanoparticle release methods have been explored in the research arena in the past decade and patents have been filed across the globe. This review covers nanotechnology-backed PLGA patent literature for various types of cancers available on distinguished and eminent patent databases like 'Espacenet' and 'Patent Scope' ranging within a time frame from 2008 to 2024. This review is the first ever reported compilation of the state-of-the-art patent-based literature in PLGA nanoparticles. This review will pave a path for researchers of the present era and future, to understand the research landscape in PLGA nanoparticles and cancer therapy and pave a path for further connective research in the arena of PLGA-based nanoparticles and cancer formulation development.
Collapse
Affiliation(s)
- Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Tumpa Sarkar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
7
|
Johnson C, Zhang F. Development of a Melting Point Depression Method to Measure the Solubility of a Small-Molecule Drug in Poly-Lactic-co-Glycolic Acid (PLGA). Pharm Res 2025; 42:529-543. [PMID: 40050551 DOI: 10.1007/s11095-025-03840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/14/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE The solubility of a crystalline drug in a polymer is commonly determined by measuring melting point depression with differential scanning calorimetry (DSC). The accuracy of this measurement depends on rapid dissolution of the drug into the molten polymer during the DSC heating scan. A preferred method of accelerating this dissolution process is to preblend the drug and polymer by cryo-milling. However, cryo-milling may be unsuitable for water-sensitive drugs or polymers such as poly(lactic-co-glycolic acid) (PLGA). The purpose of this study was to develop a PLGA-specific melting point depression method that did not require a cryo-milling operation. METHODS A three-step DSC method was used to measure the solubility of a small-molecule drug, voriconazole, in amorphous PLGA (Resomer ® RG 502H). First, drug/PLGA powder mixtures of multiple drug loadings were melted and rapidly cooled to form glassy solid solutions. Second, these solid solutions were heated above their Tg until the drug crystallized. Third, these crystallized samples were slowly heated to measure melting point depression (i.e., solubility temperatures). RESULTS The crystallization procedure generated the desired drug polymorph and likely generated small, well-mixed crystalline drug particles, as the drug dissolved rapidly into the molten polymer during melting point depression scans. Drug/PLGA solubility temperatures were determined with confidence between 40 - 100% drug loading. The solubility curve was extrapolated to lower drug loadings using the Flory-Huggins model. CONCLUSION This technique can assist product development of high-drug-loaded PLGA products, particularly those manufactured by melt extrusion.
Collapse
Affiliation(s)
- Coleman Johnson
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Feng Zhang
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Xie J, Li K, Chen L, Zhong H, Xiao T, Chen L, He H, Liu H, Zhang G. Long-acting release of fluocinolone acetonide microspheres using electrospray technology for noninfectious uveitis therapy. Pharm Dev Technol 2025; 30:210-219. [PMID: 39899473 DOI: 10.1080/10837450.2025.2462998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Intravitreous long-acting drug delivery system offers an excellent alternative to multiple injections for the treatment of noninfectious uveitis (NIU). However, the adverse effects of non-biodegradable intravitreal implants of fluocinolone acetonide (FA), such as postoperative hypotony and secondary injury during removal of the implant matrix, are frequent occurrence to affect patient's compliance. Herein, biodegradable poly (lactic-co-glycolic acid) (PLGA)-based microspheres (MS) containing fluocinolone acetonide (FA@MS) were prepared using an optimized electrospray technology with a voltage of 10.07 kV and the receiving distance of 9.87 cm. The obtained FA@MS with the average particle size of 2.25 μm possessed the high encapsulation efficiency (94.85%) and drug content (9.48%). In vitro release demonstrated that FA@MS exhibited sustained release for 30 days, and the release characteristic of FA@MS conformed to the Weibull model. In vivo study in a rabbit NIU model indicated that FA@MS continuously released the drug for at least 28 days in vitreum and progressively decreased inflammation of NIU. Furthermore, the intraocular pressure of rabbits treated with blank MS and FA@MS remained the normal level for 28 days, which demonstrated the favorable biosafety of FA@MS. In conclusion, long-acting release of FA@MS provides a promising formulation for NIU treatment. HIGHLIGHTSA biodegradable FA@MS was prepared using the modified electrospray technology for intravitreal administration.FA@MS exhibited the sustained release characteristics for 30 days in the medium of PBS (pH 7.4) with 0.2% Tween 80.The pharmacodynamics indicated that FA@MS could be continuously released for at least 28 days in vitreum to treat NIU.
Collapse
Affiliation(s)
- Jiayu Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Ke Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Lusi Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Huiying Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Tao Xiao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Lihua Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haibing He
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Hongfei Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Guoqing Zhang
- Research and Development Center, Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, China
| |
Collapse
|
9
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
10
|
Alvarez-Sandoval J, Guillen Melendez GA, Pérez-Hernández RA, Elizondo-Luevano JH, Castro-Ríos R, Kačániová M, Montes de Oca-Saucedo CR, Soto-Domínguez A, Chávez-Montes A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2025; 18:580. [PMID: 39942246 PMCID: PMC11818646 DOI: 10.3390/ma18030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Vernonia greggii belongs to the Asteraceae family, and some members of this family have been reported to possess anticancer properties. This study evaluated the antiproliferative effect of V. greggii methanol extract (ME), both in its free form and encapsulated into poly(lactic-co-glycolide) (PLGA) nanoparticles (NPs), on human cervical cancer cells (HeLa) and human epidermal keratinocytes (HaCaT). The extract was subsequently sub-fractionated into n-hexane (F-He), methanol (F-Me), and distilled water (F-Ac) fractions, and their antiproliferative effects were assessed. Time-dependent toxicity on HeLa cells was observed for the free-form fractions, with the F-Me fraction showing the highest efficacy compared to the others. Additionally, an NP formulation based on PLGA and F-Me (NPs F-Me) was developed, achieving 64.21% encapsulation efficiency and 11.38% drug loading. The NPs had an average size of 146.9 nm, a polydispersity index (PDI) of 0.103, and a ζ-potential of 23.3 mV. NPs F-Me were tested on HeLa and HaCaT cells, with toxicity observed at concentrations of 300 and 500 μg/mL, affecting tumor cell morphology. Furthermore, the hemolytic activity of F-Me and NPs F-Me was evaluated. The major bioactive compounds in the F-Me fraction were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). These findings suggest that the F-Me fraction of V. greggii exerts an antineoplastic effect both in its free form and when encapsulated in nanoparticles.
Collapse
Affiliation(s)
- Jissell Alvarez-Sandoval
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Gloria A. Guillen Melendez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Raymundo A. Pérez-Hernández
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Joel H. Elizondo-Luevano
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
- Laboratorio de Ciencias Naturales, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo C.P. 66050, NL, Mexico
| | - Rocío Castro-Ríos
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico;
| | - Miroslava Kačániová
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Carlos R. Montes de Oca-Saucedo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| |
Collapse
|
11
|
Wang Y, Otte A, Park H, Park K. In vitro-in vivo correlation (IVIVC) development for long-acting injectable drug products based on poly(lactide-co-glycolide). J Control Release 2025; 377:186-196. [PMID: 39542257 DOI: 10.1016/j.jconrel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
In vitro-in vivo correlation (IVIVC), linking in vitro drug release to in vivo drug release or in vivo drug absorption, has been explored chiefly for oral extended-release dosage forms. Currently, there are no official guidelines on IVIVC development for non-oral drug delivery systems. Recently, many long-acting injectable (LAI) formulations based on poly(lactide-co-glycolide) (PLGA) have been developed to deliver various drugs, ranging from small molecules to peptides and proteins, for up to 6 months. The circumstances involved in the LAI formulations are drastically different from those in oral formulations, which generally deliver drugs for a maximum of 24 h. This article examines 37 IVIVC studies of PLGA microparticle formulations available in the literature. Understanding and establishing an IVIVC of LAI formulations requires more than merely plotting the percentage in vitro drug release against the percentage in vivo absorption. In vivo drug absorption (or release) should be measured to provide a complete pharmacokinetic profile when feasible. Accelerated in vitro release methods need to be respective of the real-time measurements by sharing the same release mechanism. Obtaining meaningful IVIVCs with predictive capability will be highly useful for future regulatory actions and for developing generic and new formulations.
Collapse
Affiliation(s)
- Yan Wang
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, USA
| | - Andrew Otte
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| | | | - Kinam Park
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA; Purdue University, Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Wang M, Prachyathipsakul T, Wisniewski CA, Xiong C, Goel S, Goel HL, Karner ER, Mukhopadhyay D, Gupta P, Majee A, Thayumanavan S, Mercurio AM. Therapeutic induction of ferroptosis in tumors using PD-L1 targeting antibody nanogel conjugates. Cell Chem Biol 2024; 31:2039-2051.e6. [PMID: 39603241 DOI: 10.1016/j.chembiol.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Although programmed cell death ligand 1 (PD-L1) is best known for its role in immune suppression, tumor-intrinsic functions are emerging. Here, we report that tumor cells that express PD-L1 are sensitive to ferroptosis inducers such as imidazole ketone erastin (IKE). PD-L1 promotes ferroptosis sensitivity because it suppresses SLC7A11 expression and diminishes glutathione levels. Although the use of anti-PD-L1 antibody drug conjugates (ADCs) could be effective for the delivery of ferroptosis inducers to specific tumor populations, the chemistry of most ferroptosis inducers precludes their incorporation in ADCs. To overcome this challenge, we synthesized an antibody nanogel conjugate (ANC) comprised of an anti-PD-L1 antibody conjugated to a nanogel encapsulated with IKE. This ANC targets PD-L1-expressing cells in vitro and in vivo and induces ferroptosis, resulting in tumor suppression. Importantly, this approach is superior to systemic administration of IKE because it enables enhanced delivery of IKE specifically to tumor cells and it requires lower drug doses for efficacy.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Christi A Wisniewski
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emmet R Karner
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Aniket Majee
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Mittapelly N, Djehizian A, Telaprolu KC, McNally K, Puttrevu SK, Arjmandi-Tash O, Polak S, Bois FY. Mechanistic Model for Drug Release from PLGA-Based Biodegradable Implants for In Vitro Release Testing: Development and Validation. ACS APPLIED BIO MATERIALS 2024; 7:7453-7465. [PMID: 39424342 DOI: 10.1021/acsabm.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Several factors can affect drug release from polylactide coglycolide (PLGA)-based formulations, including polymer and drug properties, formulation components, manufacturing processes, and environmental in vitro or in vivo conditions. To achieve optimal release profiles for specific drug delivery applications, it is crucial to understand the mechanistic processes that determine drug release from PLGA-based formulations. In the current study, we developed a mechanistic model for the in vitro drug release of PLGA-based solid implants. The model accounts for all known critical quality attributes (CQAs) and considers the most important release rate processes, including water or dissolution medium influx into the porous structure of the implant, initial noncatalytic hydrolysis of PLGA, autocatalytic hydrolysis, dissolution of oligomers and monomers into the aqueous medium, the liberation of the trapped solid drug from the polymer matrix, dissolution of the solid drug into the wetted pore network, diffusion of the dissolved drug out of the implant, and distribution of the dissolved drug into the dissolution medium. The model has been validated using in vitro release data obtained from implants of four drugs (buserelin, afamelanotide, brimonidine, and nafarelin). The model presented in this manuscript provides valuable insights into the kinetics and mechanism of drug release from PLGA-based solid implants and has demonstrated the potential for optimizing formulation design. The in vitro release model, coupled with physiologically based pharmacokinetic (PBPK) modeling, can predict the in vivo performance of implants and can be used to support bioequivalence studies in a drug development program.
Collapse
Affiliation(s)
- Naresh Mittapelly
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Alexandre Djehizian
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Krishna Chaitanya Telaprolu
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Kevin McNally
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Santosh Kumar Puttrevu
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Omid Arjmandi-Tash
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Sebastian Polak
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Frederic Y Bois
- Certara Predictive Technologies (CPT), Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, U.K
| |
Collapse
|
15
|
Malavia N, Bao Q, Burgess DJ. Novel dissolution methods for drug release testing of Long-Acting injectables. Int J Pharm 2024; 664:124634. [PMID: 39182741 DOI: 10.1016/j.ijpharm.2024.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Long-acting parenteral drug products are a popular choice for therapeutic areas requiring long term treatment. These products range from dispersed systems such as drug suspensions and polymeric microspheres to in situ forming polymeric implants. The lack of reliable drug release testing methods for these drug products not only impedes the development of new drug products but also affects generic drug development. Current release methods suffer from a range of problems such as high variability, poor reproducibility, poor discriminatory ability, lack of depot-like structure formation (that could mimic the in vivo situation). Moreover, shorter duration (less than a week) of release renders them unsuitable for in vitro-in vivo correlations (IVIVCs). To overcome these issues, novel adapters were developed for both USP-type-II & IV apparatus. These adapters were validated and assessed using the long-acting injectable (LAI) suspension drug product Depo Provera 150® as well as its Q1/Q2 equivalents. For USP-type-IV apparatus, two open adapter designs (conical and ellipsoidal shaped cavity with volume capacities of 50 µl and 1 ml, respectively) were developed. A closed conical adapter design with a volume capacity of 0.05 ml was developed for USP apparatus type-II. All three novel adapter designs effectively retained the suspensions, achieved release durations of 3-6 weeks with good reproducibility, minimal variability (RSD≤5%) and had good discriminatory ability. Based on this, the adapter-based dissolution methods were deemed suitable for IVIVC development of long-acting injectables. A successful Level A IVIVC was developed for Depo SubQ Provera 104® and its Q1Q2 equivalents using USP apparatus type IV with a conical adapter design. The closed adapter design for apparatus type-II was also investigated for suitability with risperidone in situ forming implants. The adapter was able to securely retain and maintain the shape of the in situ forming implants and resulted in release profiles of up to one month with good discriminatory ability and low standard error (RSD≤5%). These novel adapters hold promise of wide use for in vitro release testing of different long-acting parenteral drug products.
Collapse
Affiliation(s)
- Nilesh Malavia
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269 USA
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269 USA
| | - Diane J Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269 USA.
| |
Collapse
|
16
|
Garanina A, Vishnevskiy D, Chernysheva A, Malinovskaya J, Lazareva P, Semkina A, Abakumov M, Naumenko V. The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils. Biomedicines 2024; 12:2180. [PMID: 39457493 PMCID: PMC11505478 DOI: 10.3390/biomedicines12102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neutrophils are emerging as promising candidates for cell-based nanodrug delivery to tumors due to their unique biological properties. This study aims to investigate the mechanisms of nanoparticle internalization by neutrophils, specifically focusing on liposomes, poly(lactic-co-glycolic acid) (PLGA), and magnetite nanoparticles. Understanding these mechanisms could enhance the efficiency of neutrophil-based nanodrug delivery for cancer treatment. METHODS Neutrophils were isolated from the peripheral blood of mice bearing 4T1 mammary adenocarcinoma. Confocal microscopy, transmission electron microscopy, and flow cytometry were employed to evaluate the uptake of liposomes, PLGA, and magnetite nanoparticles by neutrophils. The effects of cultivation conditions, such as the presence or absence of plasma in the growth medium, were also examined. Additionally, the roles of immunoglobulins (IgG/IgM) and cell surface receptors (Fc and scavenger receptors) in nanoparticle internalization were explored. RESULTS All types of nanoparticles were successfully internalized by neutrophils, though the mechanisms of uptake varied. Plasma presence in the medium significantly influenced nanoparticle binding, particularly for PLGA nanoparticles. Internalization of PLGA nanoparticles was found to depend on the presence of IgG/IgM in the medium and Fc receptors on neutrophil surfaces, while scavenger receptors were not involved. CONCLUSIONS Understanding the distinct endocytosis pathways for different nanoparticles can improve the efficacy of neutrophil loading with nanodrugs, potentially advancing the development of neutrophil-based cancer therapies. The findings underscore the importance of the extracellular environment in modulating nanoparticle uptake.
Collapse
Affiliation(s)
- Anastasiia Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Anastasia Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Julia Malinovskaya
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Polina Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Maxim Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Victor Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| |
Collapse
|
17
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Zhao X, Guo C, Zhang H, Yu X, Zhu X, Du G, Tian J, Liu W, Song T, Chen X, Guo W. 20-Week intramuscular toxicity study of rotigotine behenate extended-release microspheres for injection via intramuscular injection in cynomolgus monkeys. Food Chem Toxicol 2024; 190:114786. [PMID: 38849048 DOI: 10.1016/j.fct.2024.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Continuous dopaminergic stimulation (CDS) has become an important strategy for the development of drugs to treat Parkinson's disease (PD). Rotigotine behenate extended-release microspheres (RBEM) for injection represents a new treatment regime for CDS and is being applied for clinical trial. Our study in cynomolgus monkeys was a 20-week repeat dose toxicity investigation with RBEM at dosages of 90, 180, 360, with a 12-week recovery period. The results observed some irritations in the application site and surrounding tissues in Placebo microspheres and each dose of RBEM, was accompanied with increased white blood count and fibrinogen. RBEM-treated monkeys were additionally noted with a pharmacological action-related decrease in prolactin. These findings showed certain reversibility after the 12-week recovery phase. No clear sex difference was noted in the plasma exposure to rotigotine. The exposure generally increased in a dose-proportional manner. In summary, major toxicological effects are associated with the dopamine agonist-related properties of rotigotine, and the removal of foreign bodies caused by p oly (lactide-co-glycolide) (PLGA)and sodium carboxymethyl cellulose (SCMC), and the no-observed-adverse-effect-level (NOAEL) was 360 mg/kg.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Chunmin Guo
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Hong Zhang
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Xin Yu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China.
| | - Xiaoyin Zhu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Guagnying Du
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Jingwei Tian
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Wanhui Liu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Tao Song
- Luye Pharmaceutical Co., Ltd. (Luye Pharma), Yantai, Shandong, 264003, PR China
| | - Xiaobo Chen
- WestChina-Frontier PharmaTech Co. (WCFP) & National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, Sichuan, 610041, PR China
| | - Wei Guo
- WestChina-Frontier PharmaTech Co. (WCFP) & National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
19
|
Iureva AM, Nikitin PI, Tereshina ED, Nikitin MP, Shipunova VO. The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: Comprehensive study. Eur J Pharm Biopharm 2024; 201:114366. [PMID: 38876361 DOI: 10.1016/j.ejpb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation. Here we investigate the effect of different polymer coatings of the surface on in vitro and in vivo properties of PLGA nanoparticles. Namely, cell binding efficiency, cytotoxicity, efficiency of fluorescent bioimaging, and tumor accumulation were tested. The highest binding efficiency in vitro and cytotoxicity were observed for positively charged polymers. Interestingly, in vivo fluorescent visualization of tumor-bearing mice and quantitative measurements of biodistribution of magnetite-loaded nanoparticles indicated different dependences of accumulation in tumors on the coating of PLGA nanoparticles. This means that nanoparticle surface properties can simultaneously enhance imaging efficiency and decrease quantitative accumulation in tumors. The obtained data demonstrate the complexity of the dependence of nanoparticles' effectiveness for theranostic applications on surface features. We believe that this study will contribute to the rational design of nanoparticles for effective cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Anna M Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Ekaterina D Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| |
Collapse
|
20
|
Xue R, Wu H, Li S, Pu N, Wei D, Zhao N, Cui Y, Li H, Song Z, Tao Y. Biodegradable microspheres come into sight: A promising biomaterial for delivering drug to the posterior segment of the eyeball. Mater Today Bio 2024; 27:101126. [PMID: 38994470 PMCID: PMC11237977 DOI: 10.1016/j.mtbio.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Posterior segment disease acts as a major cause of irreversible visual impairments. Successful treatment of posterior segment disease requires the efficient delivery of therapeutic substances to the targeted lesion. However, the complex ocular architecture makes the bioavailability of topically applied drugs extremely low. Invasive delivery approaches like intravitreal injection may cause adverse complications. To enhance the efficiency, several biomedical engineering systems have been developed to increase the penetration efficiency and improve the bioavailability of drugs at the posterior segments. Advantageously, biodegradable microspheres are found to deliver the therapeutic agents in a controlled fashion. The microspheres prepared from novel biomaterials can realize the prolonged release at the posterior segment with minimum side effects. Moreover, it will be degraded automatically into products that are non-toxic to the human body without the necessity of secondary operation to remove the residual polymer matrix. Additionally, biodegradable microspheres have decent thermoplasticity, adjustable hydrophilicity, controlled crystallinity, and high tensile strength, which make them suitable for intraocular delivery. In this review, we introduce the latest advancements in microsphere production technology and elaborate on the biomaterials that are used to prepare microspheres. We discuss systematically the pharmacological characteristics of biodegradable microspheres and compare their potential advantages and limitations in the treatment of posterior segment diseases. These findings would enrich our knowledge of biodegradable microspheres and cast light into the discovery of effective biomaterials for ocular drug delivery.
Collapse
Affiliation(s)
- Rongyue Xue
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Siyu Li
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Ning Pu
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Na Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Yongheng Cui
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Haoyan Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
21
|
Wang X, Roy M, Wang R, Kwok O, Wang Y, Wang Y, Qin B, Burgess DJ. Towards in vitro - In vivo correlation models for in situ forming drug implants. J Control Release 2024; 372:648-660. [PMID: 38936743 DOI: 10.1016/j.jconrel.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
In vitro-In vivo correlation (IVIVC) is a main focus of the pharmaceutical industry, academia and the regulatory sectors, as this is an effective modelling tool to predict drug product in vivo performance based on in vitro release data and serve as a surrogate for bioequivalence studies, significantly reducing the need for clinical studies. Till now, IVIVCs have not been successfully developed for in situ forming implants due to the significantly different in vitro and in vivo drug release profiles that are typically achieved for these dosage forms. This is not unexpected considering the unique complexity of the drug release mechanisms of these products. Using risperidone in situ forming implants as a model, the current work focuses on: 1) identification of critical attributes of in vitro release testing methods that may contribute to differences in in vitro and in vivo drug release from in situ forming implants; and 2) optimization of the in vitro release method, with the aim of developing Level A IVIVCs for risperidone implants. Dissolution methods based on a novel Teflon shape controlling adapter along with a water non-dissolvable glass fiber membrane (GF/F) instead of a water dissolvable PVA film (named as GF/F-Teflon adapter and PVA-Teflon adapter, respectively), and an in-house fabricated Glass slide adapter were used to investigate the impact of: the surface-to-volume ratio, water uptake ratio, phase separation rate (measured by NMP release in 24 h post injection in vitro or in vivo), and mechanical pressure on the drug release patterns. The surface-to-volume ratio and water uptake were shown to be more critical in vitro release testing method attributes compared to the phase separation rate and mechanical pressure. The Glass slide adapter-based dissolution method, which allowed for the formation of depots with bio-mimicking surface-to-volume ratios and sufficient water uptake, has the ability to generate bio-relevant degradation profiles as well as in vitro release profiles for risperidone implants. For the first time, a Level A IVIVC (rabbit model) has been successfully developed for in situ forming implants. Release data for implant formulations with slightly different PLGA molecular weights (MWs) were used to develop the IVIVC. The predictability of the model passed external validation using the reference listed drug (RLD), Perseris®. IVIVC could not be developed when formulations with different PLGA molar ratios of lactic acid to glycolic acid (L/G) were included. The present work provides a comprehensive understanding of the impact of the testing method attributes on drug release from in situ forming implants, which is a valuable practice for level A IVIVC development.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mckenzie Roy
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ruifeng Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Owen Kwok
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yinhang Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
22
|
Vijayakumar N, Sanjay AV, Al-Ghanim KA, Nicoletti M, Baskar G, Kumar R, Govindarajan M. Development of Biodegradable Bioplastics with Sericin and Gelatin from Silk Cocoons and Fish Waste. TOXICS 2024; 12:453. [PMID: 39058105 PMCID: PMC11281016 DOI: 10.3390/toxics12070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The bioplastics sector promotes environmentally friendly means of cutting down on the usage of fossil fuels, plastic waste, and environmental pollution. Plastic contamination has detrimental effects on both ecological systems and the global food supply. The approach we present here to resolve this issue involves the integration of sericin and gelatin, obtained from cocoon and fish waste, respectively, with nano-reinforced cellulose crystals, to develop a biodegradable and compostable plastic material. The use of cocoon and fish wastes for the extraction of sericin and gelatin presents an environmentally beneficial approach since it contributes to waste reduction. The sericin level found in silk cocoon waste was determined to be 28.08%, and the gelatin amount in fish waste was measured to be 58.25%. The inclusion of sericin and gelatin in bioplastics was accompanied by the incorporation of glycerol, vinegar, starch, sodium hydroxide, and other coloring agents. Fourier transform infrared (FTIR) examination of bioplastics revealed the presence of functional groups that corresponded to the sericin and gelatin components. The tensile strength of the bioplastic material was measured to be 27.64 MPa/psi, while its thickness varied between 0.072 and 0.316 mm. The results of burial experiments indicated that the bioplastic material had a degradation rate of 85% after 14 days. The invention exhibits potential as a viable alternative for packaging, containment, and disposable plastic materials. The use of this sustainable approach is recommended for the extraction of sericin and gelatin from silk cocoons and fish waste, with the intention of using them as raw materials for bioplastic production.
Collapse
Affiliation(s)
- Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (A.V.S.)
| | - Aathiyur Velumani Sanjay
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (A.V.S.)
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Marcello Nicoletti
- Department of Environmental Biology, In Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph’s College of Engineering, Chennai 600119, Tamil Nadu, India;
- School of Engineering, Lebanese American University, Byblos 1102 2801, Lebanon
| | - Ranvijay Kumar
- University Centre for Research and Development, Department of Mechanical Engineering, Chandigarh University, Mohali 140413, Punjab, India;
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India
| |
Collapse
|
23
|
Oe Y, Kobayashi M, Yoshida T, Kojima H, Terukina T, Kondo H. Injectable testosterone PLGA microsphere with different characteristics: effect of preparation method (paddle mixing versus microfluidic device). Pharm Dev Technol 2024; 29:482-491. [PMID: 38682665 DOI: 10.1080/10837450.2024.2348580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The purpose of this study was to compare the characteristics of testosterone polylactic-co-glycolic (PLGA) microspheres prepared by a paddle mixer or microfluidics device. The comparison was conducted by not only in vitro evaluation but also in vivo evaluation which has not been reported up to date. We discovered that, among the steps in microsphere preparation, the solvent removal process strongly impacted drug content, particle size and surface morphology. Spectroscopic measurements suggested that molecular interactions and crystallinity of the drug incorporated in the microspheres differed. For the drug release profile, although both mixer- and microfluidics-prepared samples showed similar sustained release of the incorporated drug for approximately one month in vitro, they exhibited different plasma concentration profiles in vivo. Together, our findings show that the preparation process, especially the solvent removal process, may affect the physicochemical characteristics of testosterone PLGA microspheres, leading to different in vivo performance.
Collapse
Affiliation(s)
- Yusuke Oe
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Masanori Kobayashi
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Takayuki Yoshida
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Takayuki Terukina
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| |
Collapse
|
24
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
25
|
Sun L, Han Y, Zhao Y, Cui J, Bi Z, Liao S, Ma Z, Lou F, Xiao C, Feng W, Liu J, Cai B, Li D. Black phosphorus, an advanced versatile nanoparticles of antitumor, antibacterial and bone regeneration for OS therapy. Front Pharmacol 2024; 15:1396975. [PMID: 38725666 PMCID: PMC11079190 DOI: 10.3389/fphar.2024.1396975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yao Zhao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiguo Bi
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Shiyu Liao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Zheru Ma
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wei Feng
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Bo Cai
- Department of Diagnostic Ultrasound of People's Liberation Army 964 Hospital, Changchun, China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| |
Collapse
|
26
|
Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, Shao T, Piao Y, Jin L, Gao J. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. Int J Nanomedicine 2024; 19:1571-1595. [PMID: 38406600 PMCID: PMC10888034 DOI: 10.2147/ijn.s445269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Long-acting injectable microspheres have been on the market for more than three decades, but if calculated on the brand name, only 12 products have been approved by the FDA due to numerous challenges in achieving a fully controllable drug release pattern. Recently, more and more researches on the critical factors that determine the release kinetics of microspheres shifted from evaluating the typical physicochemical properties to exploring the microstructure. The microstructure of microspheres mainly includes the spatial distribution and the dispersed state of drug, PLGA and pores, which has been considered as one of the most important characteristics of microspheres, especially when comparative characterization of the microstructure (Q3) has been recommended by the FDA for the bioequivalence assessment. This review extracted the main variables affecting the microstructure formation from microsphere formulation compositions and preparation processes and highlighted the latest advances in microstructure characterization techniques. The further understanding of the microsphere microstructure has significant reference value for the development of long-acting injectable microspheres, particularly for the development of the generic microspheres.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Changhao Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Xinming Hu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Tianjiao Shao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Yan Piao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Lili Jin
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| |
Collapse
|
27
|
Xiong Y, Wang J, Zhou X, Li X. The Development of a Stable Peptide-Loaded Long-Acting Injection Formulation through a Comprehensive Understanding of Peptide Degradation Mechanisms: A QbD-Based Approach. Pharmaceutics 2024; 16:266. [PMID: 38399320 PMCID: PMC10891632 DOI: 10.3390/pharmaceutics16020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Quality by design (QbD) serves as a systematic approach to pharmaceutical development, beginning with predefined objectives and emphasizing an understanding of the product based on sound science and risk management. The purpose of this study is to utilize the QbD concept to develop a stable peptide-loaded long-acting injection formulation. An in-depth comprehension of peptide degradation mechanisms was achieved through forced degradation investigations, elucidating (acid) hydrolysis and oxidation as the primary degradation pathways for the peptide ACTY116. The quality built into the product was focused on risk assessment, for which the critical material attributes (CMAs) and critical process parameters (CPPs) associated with the critical quality attributes (CQAs) of each formulation were identified, leading to the development of the corresponding control strategies. CQAs for three LAI (long-acting injectable) formulations were enhanced by taking the right control strategies. The LAI formulation exhibiting the highest stability for ACTY116 was chosen for subsequent pharmacokinetic investigations in rats. The objective of addressing peptide chemical instability and in vivo long-acting release was achieved. For other molecules with susceptible functionalities like amide bonds, amino groups, and hydroxyl groups, the utilization of PLGA-based in situ gel as an LAI formulation for stabilizing molecules provides valuable insights.
Collapse
Affiliation(s)
- Yingxin Xiong
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
| | - Jiawei Wang
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China;
| | - Xing Zhou
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China;
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
- Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
28
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
29
|
Xiong Z, Tong T, Xie Z, Yu S, Zhuang R, Jia Q, Peng S, Li B, Xie J, Li K, Wu J, Huang H. Delivery of gefitinib loaded nanoparticles for effectively inhibiting prostate cancer progression. Biomater Sci 2024; 12:650-659. [PMID: 38168678 DOI: 10.1039/d3bm01735d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Androgen deprivation therapy is administered to suppress the growth of prostate cancer (PCa). However, some cells continue to proliferate independent of hormones, leading to the development of castration-resistant prostate cancer (CRPC). Overexpression of the epidermal growth factor receptor (EGFR) has been observed in CRPC and is associated with an unfavorable prognosis. Gefitinib (GEF) is an EGFR inhibitor used to treat patients with CRPC. Nevertheless, some clinical studies have reported that gefitinib does not result in prostate-specific antigen (PSA) or objectively measurable CRPC reactions. This lack of response may be attributed to the limited solubility in water, high side effects, low tumor aggregation, and insufficient tumor-specific reactions of GEF. In order to tackle these obstacles, we present a practical and efficient approach to administer GEF, encompassing the utilization of biocompatible nanostructures as a vehicle for drug delivery to augment its bioaccessibility and curative potency. Despite their small particle size, poly(D,L-lactide-co-glycolide) acid nanoparticles (PLGA NPs) exhibit a high drug-loading capacity, low toxicity, biocompatibility, biodegradability, and minimal immunogenicity. The drug delivery efficiency can be improved by employing GEF@PLGA NPs, which could also enhance drug cytotoxicity and impede the advancement of prostate cancer. Moreover, through experiments in vivo, it has been verified that GEF@PLGA NPs exhibit selective accumulation in the tumor and effectively restrain tumor growth. Therefore, the GEF@PLGA NPs hold great promise for the treatment of PCa.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Tong Tong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Shunli Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, 510520, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Bingheng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Junjia Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
30
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
31
|
Bakhrushina EO, Mikhel IB, Buraya LM, Moiseev ED, Zubareva IM, Belyatskaya AV, Evzikov GY, Bondarenko AP, Krasnyuk II, Krasnyuk II. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024; 10:44. [PMID: 38247767 PMCID: PMC10815592 DOI: 10.3390/gels10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants-systems formed in the tumor due to a phase transition (sol-gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents.
Collapse
Affiliation(s)
- Elena O. Bakhrushina
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Iosif B. Mikhel
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Liliya M. Buraya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Egor D. Moiseev
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Irina M. Zubareva
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Anastasia V. Belyatskaya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Grigory Y. Evzikov
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | | | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Ivan I. Krasnyuk
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| |
Collapse
|
32
|
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release 2024; 365:317-330. [PMID: 37996056 DOI: 10.1016/j.jconrel.2023.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Developing combined cancer therapy strategies is of utmost importance as it can enhance treatment efficacy, overcome drug resistance, and ultimately improve patient outcomes by targeting multiple pathways and mechanisms involved in cancer growth and progression. Specifically, the potential of developing a combination chemo&photothermal therapy using targeted polymer nanoparticles as nanocarriers offers a promising approach for synergistic cancer treatment by combining the benefits of both therapies, such as targeted drug delivery and localized hyperthermia. Here, we report the first targeted anti-HER2 PLGA nanocarriers, called targosomes, that simultaneously possess photothermal, chemotherapeutic and diagnostic properties using only molecular payloads. Biocompatible poly(lactic-co-glycolic acid), PLGA, nanoparticles were loaded with photosensitizer phthalocyanine, diagnostic dye Nile Blue, and chemotherapeutic drug irinotecan, which was chosen as a result of screening a panel of theragnostic nanoparticles. The targeted delivery to cell surface oncomarker HER2 was ensured by nanoparticle modification with the anti-HER2 monoclonal antibody, trastuzumab, using the one-pot synthesis method without chemical conjugation. The irradiation tests revealed prominent photothermal properties of nanoparticles, namely heating by 35 °C in 10 min. Nanoparticles exhibited a 7-fold increase in binding and nearly an 18-fold increase in cytotoxicity for HER2-overexpressing cells compared to cells lacking HER2 expression. This enhancement of cytotoxicity was further amplified by >20-fold under NIR light irradiation. In vivo studies proved the efficacy of nanoparticles for bioimaging of primary tumor and metastasis sites and demonstrated 93% tumor growth inhibition, making these nanoparticles excellent candidates for translation into theragnostic applications.
Collapse
Affiliation(s)
- E N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - O A Kolesnikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - A V Syuy
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - V S Volkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - M P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - V O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia.
| |
Collapse
|
33
|
Wang T, Chang TMS. Superparamagnetic Artificial Cells PLGA-Fe 3O 4 Micro/Nanocapsules for Cancer Targeted Delivery. Cancers (Basel) 2023; 15:5807. [PMID: 38136352 PMCID: PMC10741498 DOI: 10.3390/cancers15245807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Artificial cells have been extensively used in many fields, such as nanomedicine, biotherapy, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, and the COVID-19 vaccine. The unique properties of superparamagnetic Fe3O4 nanoparticles have contributed to increased interest in using superparamagnetic artificial cells (PLGA-Fe3O4 micro/nanocapsules) for targeted therapy. In this review, the preparation methods of Fe3O4 NPs and superparamagnetic artificial cell PLGA-drug-Fe3O4 micro/nanocapsules are discussed. This review also focuses on the recent progress of superparamagnetic PLGA-drug-Fe3O4 micro/nanocapsules as targeted therapeutics. We shall concentrate on the use of superparamagnetic artificial cells in the form of PLGA-drug-Fe3O4 nanocapsules for magnetic hyperthermia/photothermal therapy and cancer therapies, including lung breast cancer and glioblastoma.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
34
|
Gao Z, Wei Y, Ma G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J Mater Chem B 2023; 11:11184-11197. [PMID: 37975420 DOI: 10.1039/d3tb02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used in treating type 2 diabetes (T2D). However, owing to their limited oral bioavailability, most commercially available GLP-1 RAs are administered through frequent subcutaneous injections, which may result in poor patient compliance during clinical treatment. To improve patients' compliance, sustained-release GLP-1 RA-loaded microspheres have been explored. This review is an overview of recent progress and research in GLP-1 RA-loaded microspheres. First, the fabrication methods of GLP-1 RA-loaded microspheres including the coacervation method, emulsion-solvent evaporation method based on agitation, premix membrane emulsification technology, spray drying, microfluidic droplet technology, and supercritical fluid technology are summarized. Next, the strategies for maintaining GLP-1 RAs' stability and activity in microspheres by adding additives and PEGylation are reviewed. Finally, the effect of particle size, drug distribution, the internal structure of microspheres, and the hydrogel/microsphere composite strategy on improved release behavior is summarized.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
35
|
Garanina AS, Vishnevskiy DA, Chernysheva AA, Valikhov MP, Malinovskaya JA, Lazareva PA, Semkina AS, Abakumov MA, Naumenko VA. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals (Basel) 2023; 16:1564. [PMID: 38004431 PMCID: PMC10674452 DOI: 10.3390/ph16111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil A. Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Marat P. Valikhov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | | | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| |
Collapse
|
36
|
Arutyunyan IV, Dunaev AG, Trifanova EM, Khvorostina MA, Elchaninov AV, Soboleva AG, Fatkhudinov TH, Popov VK. Effects of Mesenchymal Stem Cells on the Physical and Mechanical Properties of Polyester Scaffolds of Various Architectonics. INORGANIC MATERIALS: APPLIED RESEARCH 2023; 14:1275-1284. [DOI: 10.1134/s2075113323050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 03/05/2025]
|
37
|
Zhang H, Yang Z, Wu D, Hao B, Liu Y, Wang X, Pu W, Yi Y, Shang R, Wang S. The Effect of Polymer Blends on the In Vitro Release/Degradation and Pharmacokinetics of Moxidectin-Loaded PLGA Microspheres. Int J Mol Sci 2023; 24:14729. [PMID: 37834176 PMCID: PMC10573114 DOI: 10.3390/ijms241914729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
To investigate the effect of polymer blends on the in vitro release/degradation and pharmacokinetics of moxidectin-loaded PLGA microspheres (MOX-MS), four formulations (F1, F2, F3 and F4) were prepared using the O/W emulsion solvent evaporation method by blending high (75/25, 75 kDa) and low (50/50, 23 kDa) molecular weight PLGA with different ratios. The addition of low-molecular-weight PLGA did not change the release mechanism of microspheres, but sped up the drug release of microspheres and drastically shortened the lag phase. The in vitro degradation results show that the release of microspheres consisted of a combination of pore diffusion and erosion, and especially autocatalysis played an important role in this process. Furthermore, an accelerated release method was also developed to reduce the period for drug release testing within one month. The pharmacokinetic results demonstrated that MOX-MS could be released for at least 60 days with only a slight blood drug concentration fluctuation. In particular, F3 displayed the highest AUC and plasma concentration (AUC0-t = 596.53 ng/mL·d, Cave (day 30-day 60) = 8.84 ng/mL), making it the optimal formulation. Overall, these results indicate that using polymer blends could easily adjust hydrophobic drug release from microspheres and notably reduce the lag phase of microspheres.
Collapse
Affiliation(s)
- Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| |
Collapse
|
38
|
Wang X, Bao Q, Wang R, Kwok O, Maurus K, Wang Y, Qin B, Burgess DJ. In situ forming risperidone implants: Effect of PLGA attributes on product performance. J Control Release 2023; 361:777-791. [PMID: 37591464 DOI: 10.1016/j.jconrel.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Despite the unique advantages of injectable, long-acting in situ forming implant formulations based on poly(lactide-co-glycolide) (PLGA) and N-Methyl-2-Pyrrolidone (NMP), only six products are commercially available. A better understanding of PLGA will aid in the development of more in situ forming implant innovator and generic products. This article investigates the impact of slight changes in PLGA attributes, i.e., molecular weight (MW), lactide:glycolide (L/G) ratio, blockiness, and end group, on the in vitro and in vivo performance of PLGA-based in situ forming implant formulations. Perseris (risperidone) for extended-release injectable suspension was selected as the reference listed drug (RLD). A previously developed adapter-based USP 2 method was used for the in vitro release testing of various risperidone implant formulations. A rabbit model was used to determine the in vivo pharmacokinetic profiles of the formulations (subcutaneous administration) and deconvolution (Loo-Riegelman method) was conducted to obtain the in vivo release profiles. The results showed that a 5 KDa difference in the MW (19.2, 24.2, 29.2 KDa), a 5% variation in the L/G ratio (85/15, 80/20, 75/25) and the end-cap (acid vs ester) all significantly impacted the formulation behavior both in vitro and in vivo. Higher MW, higher L/G ratio and ester end-cap PLGA all resulted in longer release durations. The formulations prepared with polymers with different blockiness values (within the blockiness range tested) did not show differences in in vitro and in vivo release. An in vitro-in vivo correlation (IVIVC) was not developed due to the different in vitro and in vivo phase separation rates, swelling tendencies and consequent significantly different release profiles. This is the first report evaluating the impact of PLGA property variation (over a narrow range) on the performance of in situ forming implants. The knowledge gained will provide a better understanding of the mechanisms underlying risperidone in situ forming implant performance and will aid the development of future products.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Quanying Bao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ruifeng Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Owen Kwok
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Kellen Maurus
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
39
|
Chandrashekar A, Beig A, Wang Y, Schwendeman SP. In vitro performance of composition-equivalent PLGA microspheres encapsulating exenatide acetate by solvent evaporation. Int J Pharm 2023; 643:123213. [PMID: 37423376 DOI: 10.1016/j.ijpharm.2023.123213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The once-weekly Bydureon® (Bdn) PLGA microsphere formulation encapsulating the GLP-1 receptor agonist, exenatide acetate, is an important complex injectable product prepared by coacervation for the treatment of type 2 diabetic patients. Encapsulation by coacervation is useful to minimize an undesirable initial burst of exenatide, but it suffers from manufacturing difficulties such as process scale-up and batch-to-batch variations. Herein we prepared exenatide acetate-PLGA formulations of similar compositions using the desirable alternative double emulsion-solvent evaporation technique. After screening several process variables, we varied the PLGA concentration, the hardening temperature, and the collected particle size range, and determined the resulting drug and sucrose loading, initial burst release, in vitro retention kinetics, and peptide degradation profiles using Bdn as a positive control. All formulations exhibited a triphasic release profile with a burst, lag, and rapid release phase, although the burst release was greatly decreased to <5% for some. Marked differences were observed in the peptide degradation profiles, particularly the oxidized and acylated fractions, when the polymer concentration was varied. For one optimal formulation, the release and peptide degradation profiles were similar to Bdn microspheres, albeit with an induction time shift of one week, likely due to the slightly higher Mw of PLGA in Bdn. These results highlight the effects of key manufacturing variables on drug release and stability in composition-equivalent microspheres encapsulating exenatide acetate and indicate the potential of manufacturing the microsphere component of Bdn by solvent evaporation.
Collapse
Affiliation(s)
- Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Kovalenko VL, Kolesnikova OA, Nikitin MP, Shipunova VO, Komedchikova EN. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. MICROMACHINES 2023; 14:1647. [PMID: 37630183 PMCID: PMC10458446 DOI: 10.3390/mi14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Photothermal therapy is one of the most promising and rapidly developing fields in modern oncology due to its high efficiency, localized action, and minimal invasiveness. Polymeric nanoparticles (NPs) incorporating low molecular-weight photothermal dyes are capable of delivering therapeutic agents to the tumor site, releasing them in a controlled manner, and providing tumor treatment under external light irradiation. The nanoparticle synthesis components are critically important factors that influence the therapeutically significant characteristics of polymeric NPs. Here, we show the impact of stabilizers and solvents used for synthesis on the properties of PLGA NPs for photothermal therapy. We synthesized PLGA nanocarriers using the microemulsion method and varied the nature of the solvent and the concentration of the stabilizer-namely, chitosan oligosaccharide lactate. A phthalocyanine-based photosensitizer, which absorbs light in the NIR window, was encapsulated in the PLGA NPs. When mQ water was used as a solvent and chitosan oligosaccharide lactate was used at a concentration of 1 g/L, the PLGA NPs exhibited highly promising photothermal properties. The final composite of the nanocarriers demonstrated photoinduced cytotoxicity against EMT6/P cells under NIR laser irradiation in vitro and was suitable for bioimaging.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| |
Collapse
|
41
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics 2023; 15:pharmaceutics15030833. [PMID: 36986694 PMCID: PMC10053351 DOI: 10.3390/pharmaceutics15030833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy for aggressive metastatic breast cancer remains a great challenge for modern biomedicine. Biocompatible polymer nanoparticles have been successfully used in clinic and are seen as a potential solution. Specifically, researchers are exploring the development of chemotherapeutic nanoagents targeting the membrane-associated receptors of cancer cells, such as HER2. However, there are no targeting nanomedications that have been approved for human cancer therapy. Novel strategies are being developed to alter the architecture of agents and optimize their systemic administration. Here, we describe a combination of these approaches, namely, the design of a targeted polymer nanocarrier and a method for its systemic delivery to the tumor site. Namely, PLGA nanocapsules loaded with a diagnostic dye, Nile Blue, and a chemotherapeutic compound, doxorubicin, are used for two-step targeted delivery using the concept of tumor pre-targeting through the barnase/barstar protein “bacterial superglue”. The first pre-targeting component consists of an anti-HER2 scaffold protein, DARPin9_29 fused with barstar, Bs-DARPin9_29, and the second component comprises chemotherapeutic PLGA nanocapsules conjugated to barnase, PLGA-Bn. The efficacy of this system was evaluated in vivo. To this aim, we developed an immunocompetent BALB/c mouse tumor model with a stable expression of human HER2 oncomarkers to test the potential of two-step delivery of oncotheranostic nano-PLGA. In vitro and ex vivo studies confirmed HER2 receptor stable expression in the tumor, making it a feasible tool for HER2-targeted drug evaluation. We demonstrated that two-step delivery was more effective than one-step delivery for both imaging and tumor therapy: two-step delivery had higher imaging capabilities than one-step and a tumor growth inhibition of 94.9% in comparison to 68.4% for the one-step strategy. The barnase*barstar protein pair has been proven to possess excellent biocompatibility, as evidenced by the successful completion of biosafety tests assessing immunogenicity and hemotoxicity. This renders the protein pair a highly versatile tool for pre-targeting tumors with various molecular profiles, thereby enabling the development of personalized medicine.
Collapse
|
43
|
Gurgul SJ, Moreira A, Xiao Y, Varma SN, Liu C, Costa PF, Williams GR. Electrosprayed Particles Loaded with Kartogenin as a Potential Osteochondral Repair Implant. Polymers (Basel) 2023; 15:polym15051275. [PMID: 36904516 PMCID: PMC10007262 DOI: 10.3390/polym15051275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The restoration of cartilage damage is a slow and not always successful process. Kartogenin (KGN) has significant potential in this space-it is able to induce the chondrogenic differentiation of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range of 2.4-4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with high entrapment efficiencies of >93%. The various blends of polymers had a range of release profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h. The range of release profiles observed offers the potential to provide a precisely tailored profile via preparing physical mixtures of the materials. The formulations are highly cytocompatible with primary human osteoblasts.
Collapse
Affiliation(s)
| | | | - Yi Xiao
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Swastina Nath Varma
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | | | - Gareth R. Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence: ; Tel.: +44-0203-987-2817
| |
Collapse
|
44
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
45
|
Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022; 19:1233-1245. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peptides are widely recognized as therapeutic agents in the treatment of a wide range of diseases, such as cancer, diabetes etc. However, their use has been limited by their short half-life, due to significant metabolism by exo- and endo-peptidases as well as their inherent poor physical and chemical stability. Research with the aim of improving their half-life in the body, and thus improving patient compliance (by decreasing the frequency of injections) has gained significant attention. AREAS COVERED This review outlines the current landscape and industrial approaches to achieve extended peptide exposure and reduce dosing frequency. Emphasis is placed on identifying challenges in drug product manufacturing and desirable critical quality attributes that are essential for activity and safety, providing insights into chemistry and design aspects impacting peptide release, and summarizing important considerations for CMC developability assessments of sustained release peptide drugs. EXPERT OPINION Bring the patient and disease perspective early into development. Substantial advances have been made in the field of sustained delivery of peptides despite their complexity. The article will also highlight considerations for early-stage product design and development, providing an industrial perspective on risk mitigation in developing sustained release peptide drug products.
Collapse
Affiliation(s)
- Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|