1
|
Clément S, Richeter S, Winum J. Targeting Tumor-Associated Carbonic Anhydrases in Photothermal Therapy. ChemMedChem 2025; 20:e202400893. [PMID: 39807074 PMCID: PMC12005469 DOI: 10.1002/cmdc.202400893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis. Recent advances in the design of hCA-targeted photothermal agents have shown promise in selectively targeting and ablating cancer cells while sparing healthy tissues. We explore here recent advancements in developing combination therapies that integrate hCA-targeted strategies with PTT for tumor treatment. By focusing on tumor-associated isoforms hCA IX and hCA XII, we underscore the potential of hCA inhibition to enhance both the efficacy and specificity of PTT in cancer therapy. We also address critical challenges and outline future directions, emphasizing the need to improve the biocompatibility, stability, and clinical translation of hCA-targeted photothermal agents. This mini review highlights the promise of combining hCA inhibition with PTT as an innovative therapeutic approach, aiming to advance more precise and effective cancer treatments.
Collapse
|
2
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
3
|
Basak U, Mukherjee S, Chakraborty S, Sa G, Dastidar SG, Das T. In-silico analysis unveiling the role of cancer stem cells in immunotherapy resistance of immune checkpoint-high pancreatic adenocarcinoma. Sci Rep 2025; 15:10355. [PMID: 40133473 PMCID: PMC11937529 DOI: 10.1038/s41598-025-93924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Although immune checkpoint (IC) inhibition is a major treatment modality in cancer-immunotherapy, multiple cancers show low response. Our in-silico exploration by mining cancer datasets using R2, available clinical trial data, and Kaplan-Meier analysis from GEPIA depicted that unlike low-responder (LR) cancers, high-responder (HR) cancers furnish higher IC expression, that upon lowering may provide better prognosis. Contrastingly, pancreatic adenocarcinoma (PAAD) demonstrated high IC expression but low immunotherapy-response. Infiltration scores from TIMER2.0 revealed higher pro-tumor immune subsets and cancer-associated fibroblasts (CAFs) while depicting lower anti-tumor immune subsets in PAAD as compared to HR lung adenocarcinoma (LUAD). Additionally, bioinformatic tool cBioportal showed lesser tumor mutational burden, mismatch repair deficiency and greater percent of driver mutations in TP53, KRAS and CDKN2A in PAAD, supporting its higher immunotherapy-resistance than LUAD. Our search for the 'key' immunotherapy response-deciding factor(s) revealed cancer stem cells (CSCs), the known contributors of therapy-resistance and immuno-evasion, to be positively correlated with above-mentioned driver mutations, pro-tumor immune and CAF subsets; and that PAAD furnished higher expression of CSC genes than LUAD. UMAP/tSNE analyses revealed that high CSC signature is positively correlated with immunotherapy-resistance genes and pro-cancer immune cells, while negatively with cytotoxic-T cells in PAAD. Our in-silico study explains the low immunotherapy-response in high IC-expressing PAAD, wherein CSC plays a pivotal role. Further exploration portrayed correlation of CSCs with immunotherapy-resistance in other LR and HR cancers too, substantiating the need for personalized CSC evaluation and targeting for successful immunotherapy outcomes.
Collapse
Affiliation(s)
- Udit Basak
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumon Mukherjee
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Gaurisankar Sa
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Shubhra Ghosh Dastidar
- Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhannagar, Kolkata, 700091, India.
| | - Tanya Das
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
4
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
5
|
Abedi A, Moosazadeh Moghaddam M, Kachuei R, Imani Fooladi AA. Exosomes as a Therapeutic Strategy in Cancer: Potential Roles as Drug Carriers and Immune Modulators. Biochim Biophys Acta Rev Cancer 2025; 1880:189238. [PMID: 39674417 DOI: 10.1016/j.bbcan.2024.189238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Exosome-based cancer immunotherapy is advancing quickly on the concept of artificially activating the immune system to combat cancer. They can mechanistically change the tumor microenvironment, increase immune responses, and function as efficient drug delivery vehicles because of their inherent bioactivity, low toxicity, and immunogenicity. Accurate identification of the mechanisms of action of exosomes in tumor environments, along with optimization of their isolation, purification, and characterization methods, is necessary to increase clinical applications. Exosomes can be modified through cargo loading and surface modification to enhance their therapeutic applications, either before or after the donor cells' isolation. These engineered exosomes can directly target tumor cells at the tumor site or indirectly activate innate and adaptive immune responses in the tumor microenvironment. This approach is particularly effective when combined with traditional cancer immunotherapy techniques such as vaccines, immune checkpoints, and CAR-T cells. It can improve anti-tumor responses, induce long-term immunity, and address the limitations of traditional therapies, such as poor penetration in solid tumors and immunosuppressive environments. This review aims to provide a comprehensive and detailed overview of the direct role of engineered exosomes as drug delivery systems and their immunomodulatory effects on tumors as an indirect approach to fighting cancer. Additionally, it will discuss novel immunotherapy options.
Collapse
Affiliation(s)
- Azam Abedi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Said SS, Ibrahim WN. Gut Microbiota-Tumor Microenvironment Interactions: Mechanisms and Clinical Implications for Immune Checkpoint Inhibitor Efficacy in Cancer. Cancer Manag Res 2025; 17:171-192. [PMID: 39881948 PMCID: PMC11776928 DOI: 10.2147/cmar.s405590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025] Open
Abstract
Cancer immunotherapy has transformed cancer treatment in recent years, with immune checkpoint inhibitors (ICIs) emerging as a key therapeutic approach. ICIs work by inhibiting the mechanisms that allow tumors to evade immune detection. Although ICIs have shown promising results, especially in solid tumors, patient responses vary widely due to multiple intrinsic and extrinsic factors within the tumor microenvironment. Emerging evidence suggests that the gut microbiota plays a pivotal role in modulating immune responses at the tumor site and may even influence treatment outcomes in cancer patients receiving ICIs. This review explores the complex interactions between the gut microbiota and the tumor microenvironment, examining how these interactions could impact the effectiveness of ICI therapy. Furthermore, we discuss how dysbiosis, an imbalance in gut microbiota composition, may contribute to resistance to ICIs, and highlight microbiota-targeted strategies to potentially overcome this challenge. Additionally, we review recent studies investigating the diagnostic potential of microbiota profiles in cancer patients, considering how microbial markers might aid in early detection and stratification of patient responses to ICIs. By integrating insights from recent preclinical and clinical studies, we aim to shed light on the potential of microbiome modulation as an adjunct to cancer immunotherapy and as a diagnostic tool, paving the way for personalized therapeutic approaches that optimize patient outcomes.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Schaub J, Tang SC. Beyond checkpoint inhibitors: the three generations of immunotherapy. Clin Exp Med 2025; 25:43. [PMID: 39888507 PMCID: PMC11785663 DOI: 10.1007/s10238-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Anti-tumor immunotherapy was rediscovered and rejuvenated in the last two decades with the discovery of CTLA-4, PD-1 and PD-L1 and the roles in inhibiting immune function and tumor evasion of anti-tumor immune response. Following the approval of the first checkpoint inhibitor ipilimumab against CTLA-4 in melanoma in 2011, there has been a rapid development of tumor immunotherapy. Furthermore, additional positive and negative molecules among the T-cell regulatory systems have been identified that that function to fine tune the stimulatory or inhibitory immune cells and modulate their functions (checkpoint modulators). Many strategies are being explored to target macrophages, NK-cells, cytotoxic T-cells, fibroblasts, endothelial cells, cytokines and molecules involved in tumor tolerance and microbiome. Similar to agents that target checkpoint modulators, these newer targets have the potential to synergize with other classes of immunotherapeutic agents and importantly may overcome the resistance to other immunotherapies. In order to better understand the mechanism of action of all major classes of immunotherapy, design clinical trials taking advantage of different types of immunotherapeutic agents and use them rationally in clinical practice either in combination or in sequence, we propose the group all immunotherapies into three generations: with CTLA-4, PD-1 and PD-L1 inhibitors as the first generation, agents that target the checkpoint modulators as the second generation, while those that target TME as the third generation. This review discusses all three generations of immunotherapy in oncology, their mechanism of actions, major clinical trial results and indication, strategies for future clinical trial designs and rational clinical applications.
Collapse
Affiliation(s)
- John Schaub
- Woodlands Medical Specialists, 4724 N Davis Hwy, Pensacola, FL, 32503, USA
| | - Shou-Ching Tang
- LSU-LCMC Cancer Center, LSU School of Medicine, 1700 Tulane Avenue, Room 510, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Yuzhakova DV, Sachkova DA, Izosimova AV, Yashin KS, Yusubalieva GM, Baklaushev VP, Mozherov AM, Shcheslavskiy VI, Shirmanova MV. Fluorescence Lifetime Imaging of NAD(P)H in Patients' Lymphocytes: Evaluation of Efficacy of Immunotherapy. Cells 2025; 14:97. [PMID: 39851525 PMCID: PMC11764258 DOI: 10.3390/cells14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions. Fluorescence lifetime imaging microscopy (FLIM) is a powerful, non-destructive tool that enables direct monitoring of cellular metabolism on a label-free basis with a potential to resolve metabolic rearrangements in immune cells associated with their reactivity. OBJECTIVE The aim of the study was to develop a patient-derived glioma explant model enriched by autologous peripheral lymphocytes and explore FLIM of the redox-cofactor NAD(P)H in living lymphocytes to measure the responses of the model to immune checkpoint inhibitors. METHODS The light microscopy, FLIM of NAD(P)H and flow cytometry were used. RESULTS The results demonstrate that the responsive models displayed a significant increase in the free NAD(P)H fraction α1 after treatment, associated with a shift towards glycolysis due to lymphocyte activation. The non-responsive models exhibited no alterations or a decrease in the NAD(P)H α1 after treatment. The FLIM data correlated well with the standard assays of immunotherapy drug response in vitro, including morphological changes, the T-cells activation marker CD69, and the tumor cell proliferation index Ki67. CONCLUSIONS The proposed platform that includes tumor explants co-cultured with lymphocytes and the NAD(P)H FLIM assay represents a promising solution for the patient-specific immunotherapeutic drug screening.
Collapse
Affiliation(s)
- Diana V. Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Daria A. Sachkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anna V. Izosimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia;
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Artem M. Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- R&D Department, Becker&Hickl GmbH, 7-9 Nunsdorfer Ring, 12277 Berlin, Germany
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| |
Collapse
|
9
|
El Fil S, Uwishema O, Rizwan Ahmed A, Ratnani T, Rupani A, Mshaymesh S. Immunotherapy in gastrointestinal cancers: current strategies and future directions - a literature review. Ann Med Surg (Lond) 2025; 87:151-160. [PMID: 40109582 PMCID: PMC11918700 DOI: 10.1097/ms9.0000000000002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Introduction The National Cancer Institute defines the disease of "cancer" as a group of disorders in which aberrant cells proliferate uncontrollably and have the potential to infiltrate neighboring tissues. It is well established that cancer remains a significant etiology contributing to worldwide mortality. Gastrointestinal (GI) neoplasms are a type of cancer that affects the digestive system and adds to the total cancer burden. Conventionally, several therapies have been employed, such as radiation and chemotherapy; nevertheless, their adverse effects have prompted the need for an improved therapeutic alternative. Immunotherapy thus became a notable medium of treatment for several malignancies, including tumors of the GI tract. Aim This comprehensive review seeks to provide insight on future directions and prospective therapies under development, as well as information regarding the present strategies utilized to mitigate one of the primary forms of cancer, GI cancer. Methods A detailed analysis of the existing literature on GI cancers has been conducted. Several databases were employed to gather this information, mainly PubMed/MEDLINE. Different aspects of the disease were considered when searching the databases to provide a comprehensive review of the current and future strategies being incorporated to mitigate the negative consequences of this disease. Results Many strategies are being used currently, and some are still under development. These comprise the usage of immune checkpoint inhibitors (ICIs), cytokine therapy, cancer vaccines, oncolytic viruses, and adoptive cell therapy. For instance, various monoclonal antibodies have been developed to inhibit the immunomodulatory effects of programmed death-1 and programmed death-1 ligand. There are also results of several clinical trials showing significant benefits and many changes are introduced to make the best of these strategies and minimize the challenges to group sizes. These challenges include overcoming the tumor's immunosuppressive environment, finding suitable predictive biomarkers, and reducing the adverse effects. Additionally, several novel immunotherapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) therapy, are being studied. In 2017, the US FDA approved the use of two CAR-T therapies, which marks a major milestone following extensive research and clinical trials. New approaches such as toll-like receptor-directed and helminth-based immunotherapies are being developed for the treatment of GI cancers as well. These therapies, along with targeted treatments, represent the future of immunotherapy in GI cancers. Conclusion Immunotherapy plays a significant role in the different types of GI cancers. However, optimizing these treatments will require overcoming barriers such as immune resistance, minimizing side effects, and improving the selection of patients through biomarkers. Continued research into these novel therapies and the mechanisms of immune modulation will be key to maximizing the therapeutic benefits of immunotherapy in the future.
Collapse
Affiliation(s)
- Serene El Fil
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Aisha Rizwan Ahmed
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Jinnah Medical and Dental College, Karachi, Pakistan
| | - Tanya Ratnani
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Ameen Rupani
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- International Higher School of Medicine, Bishkek, Kyrgyzstan
| | - Sarah Mshaymesh
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Division of Natural Sciences, Faculty of Sciences, Haigazian University, Beirut, Lebanon
| |
Collapse
|
10
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Heater NK, Warrior S, Lu J. Current and future immunotherapy for breast cancer. J Hematol Oncol 2024; 17:131. [PMID: 39722028 DOI: 10.1186/s13045-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Substantial therapeutic advancement has been made in the field of immunotherapy in breast cancer. The immune checkpoint inhibitor pembrolizumab in combination with chemotherapy received FDA approval for both PD-L1 positive metastatic and early-stage triple-negative breast cancer, while ongoing clinical trials seek to expand the current treatment landscape for immune checkpoint inhibitors in hormone receptor positive and HER2 positive breast cancer. Antibody drug conjugates are FDA approved for triple negative and HER2+ disease, and are being studied in combination with immune checkpoint inhibitors. Vaccines and bispecific antibodies are areas of active research. Studies of cellular therapies such as tumor infiltrating lymphocytes, chimeric antigen receptor-T cells and T cell receptor engineered cells are promising and ongoing. This review provides an update of recent major clinical trials of immunotherapy in breast cancer and discusses future directions in the treatment of breast cancer.
Collapse
Affiliation(s)
- Natalie K Heater
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, 60611, USA
| | - Surbhi Warrior
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA
| | - Janice Lu
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Chekaoui A, Garofalo M, Gad B, Staniszewska M, Chiaro J, Pancer K, Gryciuk A, Cerullo V, Salmaso S, Caliceti P, Masny A, Wieczorek M, Pesonen S, Kuryk L. Cancer vaccines: an update on recent achievements and prospects for cancer therapy. Clin Exp Med 2024; 25:24. [PMID: 39720956 DOI: 10.1007/s10238-024-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines. Using the latest research technologies has also enabled scientists to interpret complex and multiomics data of the tumour mutanome, thus identifying new tumour-specific antigens to design new generations of cancer vaccines with high specificity and long-term efficacy. Furthermore, combinatorial regimens of cancer vaccines with immune checkpoint inhibitors have offered new therapeutic approaches and demonstrated impressive efficacy in cancer patients over the last few years. In the present review, we summarize the current state of cancer vaccines, including their potential therapeutic effects and the limitations that hinder their effectiveness. We highlight the current efforts to mitigate these limitations and highlight ongoing clinical trials. Finally, a special focus will be given to the latest milestones expected to transform the landscape of cancer therapy and nurture hope among cancer patients.
Collapse
Affiliation(s)
- Arezki Chekaoui
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, University Federico II of Naples, Naples, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | | | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
- Valo Therapeutics Oy, Helsinki, Finland.
| |
Collapse
|
13
|
Chen L, Chen N, Xie Z, Xiao Y, Jiang H. Prognostic and immunological role of LASP2 in clear cell renal cell carcinoma. Genes Genomics 2024:10.1007/s13258-024-01612-9. [PMID: 39714590 DOI: 10.1007/s13258-024-01612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents a common renal carcinoma subtype influenced by the immune microenvironment. LIM and SH3 Protein 2 (LASP2), an actin-binding protein within the nebulin family, contributes to cellular immunity and adhesion mechanisms. OBJECTIVE This study aimed to clarify the immunological and prognostic relevance of LASP2 in ccRCC. METHODS Using clinical and expression data from TCGA, LASP2 expression levels were analyzed alongside clinicopathological features in ccRCC patients. Validation was conducted through real-world samples and tissue microarrays. Comprehensive analysis using online databases examined genetic mutations, DNA methylation patterns, and immune microenvironment characteristics. Gene set enrichment analysis (GSEA) provided insights into LASP2's potential mechanisms in ccRCC. RESULTS LASP2 expression was notably reduced and correlated with adverse clinicopathological features and prognosis in ccRCC patients. Prognostic associations were identified across multiple CpG DNA methylation sites. LASP2 levels showed significant correlations with immune cell infiltration and checkpoint genes, including PDCD1 and CTLA4. GSEA findings highlighted LASP2's enrichment within metabolic pathways and signaling networks, such as fatty acid metabolism, TGF-β signaling, and epithelial-mesenchymal transition. CONCLUSION LASP2 emerged as an immune-associated biomarker linked to poorer survival outcomes in ccRCC, suggesting its potential as a novel anti-cancer target and prognostic indicator in ccRCC.
Collapse
Affiliation(s)
- Libo Chen
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China
| | - Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, People's Republic of China
| | - Yuchen Xiao
- Shantou University Medical College, Shantou, People's Republic of China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China.
| |
Collapse
|
14
|
Ankrom E, Dalesandro B, Pires MM, Thévenin D. Selective Recruitment of Antibodies to Cancer Cells and Immune Cell-mediated Killing via In Situ Click Chemistry. ChemMedChem 2024; 19:e202400356. [PMID: 39087480 PMCID: PMC11617666 DOI: 10.1002/cmdc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/14/2024] [Accepted: 01/17/2024] [Indexed: 08/02/2024]
Abstract
Many current cancer immunotherapies function by redirecting immune system components to recognize cancer biomarkers and initiate a cytotoxic attack. The lack of a universal tumor biomarker limits the therapeutic potential of these approaches. However, one feature characteristic of nearly all solid tumors is extracellular acidity. This inherent acidity provides the basis for targeted drug delivery via the pH-low insertion peptide (pHLIP), which selectively accumulates in tumors in vivo due to a pH-dependent membrane insertion propensity. Previously, we established that we could selectively decorate cancer cells with antigen-pHLIP conjugates to facilitate antibody recruitment and subsequent killing by engineered effector cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we present a novel strategy for opsonizing antibodies on target cell surfaces using click chemistry. We utilize pHLIP to facilitate selective tetrazine - trans-cyclooctene ligation of human IgGs to the cancer cell surface and induce ADCC. We demonstrate that our approach activates the primary ADCC signaling pathway via CD16a (FcγRIIIa) receptors on effector cells and induces the killing of cancer cell targets by engineered NK cells.
Collapse
Affiliation(s)
- Emily Ankrom
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| | - Brianna Dalesandro
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| |
Collapse
|
15
|
Arjmand B, Alavi-Moghadam S, Khorsand G, Sarvari M, Arjmand R, Rezaei-Tavirani M, Rajaeinejad M, Mosaed R. Cell-Based Vaccines: Frontiers in Medical Technology for Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:480-499. [DOI: 10.1007/s40883-024-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025]
|
16
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
17
|
Casciano F, Caruso L, Zauli E, Gonelli A, Zauli G, Vaccarezza M. Emerging Mechanisms of Physical Exercise Benefits in Adjuvant and Neoadjuvant Cancer Immunotherapy. Biomedicines 2024; 12:2528. [PMID: 39595094 PMCID: PMC11591576 DOI: 10.3390/biomedicines12112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The primary factors that can be modified in one's lifestyle are the most influential determinants and significant preventable causes of various types of cancer. Exercise has demonstrated numerous advantages in preventing cancer and aiding in its treatment. However, the precise mechanisms behind these effects are still not fully understood. To contribute to our comprehension of exercise's impact on cancer immunotherapy and provide recommendations for future research in exercise oncology, we will examine the roles and underlying mechanisms of exercise on immune cells. In addition to reducing the likelihood of developing cancer, exercise can also improve the effectiveness of certain approved anticancer treatments, such as targeted therapy, immunotherapy, and radiotherapy. Exercise is a pivotal modulator of the immune response, and thus, it can play an emerging important role in new immunotherapies. The mechanisms responsible for these effects involve the regulation of intra-tumoral angiogenesis, myokines, adipokines, their associated pathways, cancer metabolism, and anticancer immunity. Our review assesses the potential of physical exercise as an adjuvant/neoadjuvant tool, reducing the burden of cancer relapse, and analyzes emerging molecular mechanisms predicting favorable adjuvanticity effects.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Environmental Sciences and Prevention and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Mauro Vaccarezza
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
18
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
19
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
20
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
21
|
Wang M, Zhang X, Yang H, Li Y, Chen W, Yin A. DNA methylation variations of DNA damage response correlate survival and local immune status in melanomas. Immun Inflamm Dis 2024; 12:e1331. [PMID: 39254643 PMCID: PMC11386344 DOI: 10.1002/iid3.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 09/11/2024] Open
Abstract
AIM We aimed to explore the impact of DNA methylation alterations on the DNA damage response (DDR) in melanoma prognosis and immunity. MATERIAL & METHODS: Different melanoma cohorts with molecular and clinical data were included. RESULTS Hierarchical clustering utilizing different combinations of DDR-relevant CpGs yielded distinct melanoma subtypes, which were characteristic of different prognoses, transcriptional function profiles of DDR, and immunity and immunotherapy responses but were associated with similar tumor mutation burdens. We then constructed and validated a clinically applicable 4-CpG risk-score signature for predicting survival and immunotherapy response. CONCLUSION Our study describes the close interrelationship among DNA methylation, DDR machinery, local tumor immune status, melanoma prognosis, and immunotherapy response.
Collapse
Affiliation(s)
- Min Wang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Xiao‐dong Zhang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Han‐qing Yang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Wen‐mei Chen
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - An‐an Yin
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Clinic GeneticsFourth Military Medical UniversityXi'anChina
| |
Collapse
|
22
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Sahyon HA, Alharbi NS, Asad Z, El Shishtawy MA, Derbala SA. Assessment of the Circulating PD-1 and PD-L1 Levels and P53 Expression as a Predictor of Relapse in Pediatric Patients with Wilms Tumor and Hypernephroma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1035. [PMID: 39334568 PMCID: PMC11430274 DOI: 10.3390/children11091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background/Objectives: Wilms tumor (WT) is the most common form of pediatric renal tumor, accounting for over 90% of cases followed by hypernephroma. Some pediatric patients with WT (10%) experience relapse or metastasis and have poor survival rates. PD-L1 assists cancer cells in escaping damage from the immune system. P53 mutations are found in relapsed WT tumor samples. We hypothesized that testing circulating PD-1 and PD-L1 and P53 expression levels could offer a simple method to predict patient relapse and explore novel treatments for pediatric WTs and hypernephroma. Methods: Flow cytometric detection of cPD-1, cPD-L1, and P53 expression in relapsed and in-remission WT and hypernephroma before and after one year of chemotherapy was performed. Results: Our data shows increased levels of cPD-L1 in relapsed pediatric patients with WT or hypernephroma before and after chemotherapy. There were also slight and significant increases in cPD-1 levels in relapsed groups before chemotherapy. Additionally, we observed significant decreases in P53 expression after one year of chemotherapy in relapsed pediatric patients. Conclusions: Our study found that circulating PD-L1 can be used as a predictor marker for WT and hypernephroma relapse. In conclusion, these circulating markers can assist in monitoring relapse in WT and hypernephroma patients without the need for several biopsies.
Collapse
Affiliation(s)
- Heba A. Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nadaa S. Alharbi
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
- Ministry of Health, Riyadh 12233, Saudi Arabia
| | - Zummar Asad
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
| | - Mohamed A. El Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Safaa A. Derbala
- Urology, and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
24
|
Duan W, Tian W, Li Z, Liu Y, Xu L. A comprehensive pan-cancer analysis revealing the role of ITPRIPL1 as a prognostic and immunological biomarker. Front Mol Biosci 2024; 11:1452290. [PMID: 39211744 PMCID: PMC11357910 DOI: 10.3389/fmolb.2024.1452290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Inositol 1,4,5-Trisphosphate Receptor-Interacting Protein-Like 1 (ITPRIPL1), a single-pass type I membrane protein located in the membrane, functions as an inhibitory ligand of CD3ε. Recent studies have shown that its expression suppresses T cells activation and promote tumor immune evasion. Despite increasing evidence suggesting that ITPRIPL1 plays a significant role in tumor growth, no systematic pan-cancer analysis of ITPRIPL1 has been conducted to date. This study utilized datasets curated from The Cancer Genome Atlas, Genotype Tissue-Expression, and Human Protein Atlas to investigate the relationship between ITPRIPL1 expression and clinical outcomes, immune infiltration, and drug sensitivity across 33 cancer types. We employed multiple methods to assess its prognostic value in pan-cancer, such as univariate Cox regression, survival analysis, and ROC curve analysis and explored the relationship between ITPRIPL1 and tumor mutation burden (TMB), tumor microsatellite instability (MSI), CNV, DNA methylation, immune-related genes, immune cell infiltration, and drug sensitivity to reveal its immunological role. The mRNA expression levels of the ITPRIPL1 gene vary significantly across multiple types of cancer and significantly reduced in breast cancer. Conversely, high ITPRIPL1 expression was associated with a better prognosis in BRCA. Furthermore, the expression of ITPRIPL1 highly correlates with the presence of tumor-infiltrating immune cells and immune checkpoint genes across various types of cancers. Additionally, ITPRIPL1 expression was associated with TMB in 6 cancer types and with MSI in 13 cancer types. High expression of ITPRIPL1 serves as a protective factor in certain cancer types, correlating with longer overall survival in BRCA. Our study further confirms that ITPRIPL1 participates in regulating immune infiltration and affecting the prognosis of patients in pan-cancer. These findings underscore the promising potential of ITPRIPL1 as a therapeutic target for human cancer.
Collapse
Affiliation(s)
- Wenyuan Duan
- Department of Medical Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wen Tian
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhongyi Li
- Department of Medical Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yunsong Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Linping Xu
- Department of Medical Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Kulkarni P, Basu R, Bonn T, Low B, Mazurek N, Kopchick JJ. Growth Hormone Upregulates Melanoma Drug Resistance and Migration via Melanoma-Derived Exosomes. Cancers (Basel) 2024; 16:2636. [PMID: 39123364 PMCID: PMC11311539 DOI: 10.3390/cancers16152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.
Collapse
Affiliation(s)
- Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
| | - Taylor Bonn
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Nutrition, Ohio University, Athens, OH 45701, USA
| | - Beckham Low
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Nathaniel Mazurek
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
26
|
Denison M, Ullrich A, Herroon MK, Mecca S, Turro C, Podgorski I, Gibson H, Kodanko JJ. Ru(II)-Photoactive Agents for Targeting ER Stress and Immunogenic Cell Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604104. [PMID: 39091867 PMCID: PMC11291038 DOI: 10.1101/2024.07.18.604104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Immunotherapy has emerged as a promising avenue for cancer treatment by bolstering the immune system's ability to recognize and attack cancer cells. Photodynamic therapy shows potential in enhancing antitumor immunity, though the mechanisms behind its success are not fully understood. In this manuscript, we investigate two previously reported green light activated PCT/PDT agents where compound 2 - [Ru(tpy)(Me2bpy)( 3 )] 2+ , (tpy = 2,2':6',2''- terpyridine, Me2bpy = 6,6'-dimethyl-2,2'-bipyridine, 3 = pyridyl-BODIPY-I2,) - shows remarkable photoselectivity in assays containing both 2D cancer cells and 3D cocultures containing BALB/c macrophages and 4T1 murine breast cancer cells. Through flow cytometry and protein analysis, we found complex 2 displays superior evidence of induced endoplasmic reticulum (ER) stress markers and indicators of immunogenic cell death (ICD) compared to its ligand 3 , despite its weaker photoselectivity. Most importantly, these results were supported by in vivo studies where 2 produced anti-tumor immunity against the 4T1 tumor model in BALB/c mice. Complete tumor elimination was achieved in 2/8 mice, and these mice were both protected against a subsequent contralateral rechallenge and showed increased ex vivo peripheral tumor antigen-specific recall, suggesting memory T cells are induced by 2 . Signatures of M1 macrophage polarization were also evident in tumor tissue from the remaining 6/8 mice treated with 2 compared to untreated tumors. These findings demonstrate Ru(II) complexation plays a critical role in ER targeting which triggers ICD, highlighting the potential of Ru(II) agents as future in situ tumor vaccines.
Collapse
|
27
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Azam AB, Wee F, Väyrynen JP, Yim WWY, Xue YZ, Chua BL, Lim JCT, Somasundaram AC, Tan DSW, Takano A, Chow CY, Khor LY, Lim TKH, Yeong J, Lau MC, Cai Y. Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy. Front Immunol 2024; 15:1404640. [PMID: 39007128 PMCID: PMC11239356 DOI: 10.3389/fimmu.2024.1404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied. Methodology In this study, we assess the impact of cell label derivation on H&E model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model). Results We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility. Discussion Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.
Collapse
Affiliation(s)
- Abu Bakr Azam
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Felicia Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Juha P. Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Willa Wen-You Yim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yue Zhen Xue
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bok Leong Chua
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Angela Takano
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chun Yuen Chow
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Li Yan Khor
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Mai Chan Lau
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Singapore, Singapore
| | - Yiyu Cai
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
29
|
Xiao S, Ma S, Sun B, Pu W, Duan S, Han J, Hong Y, Zhang J, Peng Y, He C, Yi P, Caligiuri MA, Yu J. The tumor-intrinsic role of the m 6A reader YTHDF2 in regulating immune evasion. Sci Immunol 2024; 9:eadl2171. [PMID: 38820140 DOI: 10.1126/sciimmunol.adl2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yaqun Hong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Yi
- Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
30
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
31
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
32
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Hadfield MJ, Safran H, Purbhoo MA, Grossman JE, Buell JS, Carneiro BA. Overcoming resistance to programmed cell death protein 1 (PD-1) blockade with allogeneic invariant natural killer T-cells (iNKT). Oncogene 2024; 43:758-762. [PMID: 38281989 DOI: 10.1038/s41388-024-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Gastric cancer is the 5th most common malignancy worldwide with only 36% of patients with metastatic disease surviving beyond 5 years. Despite therapeutic improvements with the advent of immune checkpoint inhibitors, most patients with gastric cancer develop disease progression related to tumor resistance. Novel immunotherapeutic approaches, including invariant natural killer (iNKT) cells, are in clinical development and represent potential therapeutic options to overcome resistance. AgenT-797 is an allogeneic human unmodified iNKT derived from healthy donors. Activation of iNKT cells by tumor lipid antigens can trigger direct cytotoxicity and promote indirect anti-tumor immune responses such as recruitment and activation of T cells, NK cells, and dendritic cells through secretion of cytokines and IFNγ. We describe immune modulation leading to durable tumor response in a patient with microsatellite instability-high (MSI-H) advanced gastric adenocarcinoma treated with agent-797 after progression on standard chemotherapy and anti-PD-1 therapy.
Collapse
Affiliation(s)
- Matthew J Hadfield
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Howard Safran
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | | | | | | | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA.
| |
Collapse
|
34
|
Said SS, Ibrahim WN. Breaking Barriers: The Promise and Challenges of Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Biomedicines 2024; 12:369. [PMID: 38397971 PMCID: PMC10886684 DOI: 10.3390/biomedicines12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with pronounced immunogenicity, exhibiting rapid proliferation and immune cell infiltration into the tumor microenvironment. TNBC's heterogeneity poses challenges to immunological treatments, inducing resistance mechanisms in the tumor microenvironment. Therapeutic modalities, including immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4, are explored in preclinical and clinical trials. Promising results emerge from combining ICIs with anti-TGF-β and VISTA, hindering TNBC tumor growth. TNBC cells employ complex evasion strategies involving interactions with stromal and immune cells, suppressing immune recognition through various cytokines, chemokines, and metabolites. The recent focus on unraveling humoral and cellular components aims to disrupt cancer crosstalk within the tumor microenvironment. This review identifies TNBC's latest resistance mechanisms, exploring potential targets for clinical trials to overcome immune checkpoint resistance and enhance patient survival rates.
Collapse
Affiliation(s)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
35
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
36
|
Alshwyeh HA, Al-Sheikh WMS, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells. Mol Cell Oncol 2024; 11:2299046. [PMID: 38196561 PMCID: PMC10773660 DOI: 10.1080/23723556.2023.2299046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
Collapse
Affiliation(s)
- Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU health, Qatar University, Doha, Qatar
| |
Collapse
|
37
|
Shbeer AM. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol Res Pract 2024; 253:155025. [PMID: 38147726 DOI: 10.1016/j.prp.2023.155025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
DCs have great promise for cancer immunotherapy and are essential for coordinating immune responses. In the battle against cancer, using DCs' ability to stimulate the immune system and focus it on tumor cells has shown to be a viable tactic. This study offers a thorough summary of recent developments as well as potential future paths for DC-based immunotherapy against cancer. This study reviews the many methods used in DC therapy, such as vaccination and active cellular immunotherapy. The effectiveness and safety of DC-based treatments for metastatic castration-resistant prostate cancer and non-small cell lung cancer are highlighted in these investigations. The findings indicate longer survival times and superior results for particular patient groups. We are aware of the difficulties and restrictions of DC-based immunotherapy, though. These include the immunosuppressive tumor microenvironment, the intricacy of DC production, and the heterogeneity within DC populations. More study and development are needed to overcome these challenges to enhance immunological responses, optimize treatment regimens, and increase scalability.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
38
|
Coschi CH, Juergens RA. Overcoming Resistance Mechanisms to Immune Checkpoint Inhibitors: Leveraging the Anti-Tumor Immune Response. Curr Oncol 2023; 31:1-23. [PMID: 38275827 PMCID: PMC10814017 DOI: 10.3390/curroncol31010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
As far back as 3000 years ago, the immune system was observed to play a role in mediating tumor regression. Since then, many strategies have been developed to leverage the anti-tumor immune response. However, while many patients respond to ICIs up front some do not, and many of those that do eventually experience tumor progression. Currently, there are several predictive biomarkers of the immune checkpoint inhibitor response; however, no one test appears to be universally predictive and their application varies by disease site. There are many ways in which cancer cells develop primary or acquired resistance to immune checkpoint inhibitors. Efforts to reverse resistance include ways to combat T cell exhaustion, reprogram the tumor microenvironment, increase the availability of tumor neo-antigens, target alternative immune checkpoints, restore a normal/healthy patient gut microbiome, oncolytic viruses and tumor vaccines. The most studied and most promising methods include combining ICIs with therapies targeting alternative immune checkpoints and restoring a normal/healthy patient gut microbiome. This review will discuss T cell-mediated immunity, how this is leveraged by modern immunotherapy to treat cancer and mechanisms of immune checkpoint inhibitor resistance, while highlighting strategies to overcome primary and secondary resistance mechanisms.
Collapse
Affiliation(s)
- Courtney H. Coschi
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - Rosalyn A. Juergens
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
- Escarpment Cancer Research Institute, McMaster University, Hamilton, ON L8V 5C2, Canada
| |
Collapse
|
39
|
Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel) 2023; 15:5857. [PMID: 38136402 PMCID: PMC10742031 DOI: 10.3390/cancers15245857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer immunotherapy has ushered in a transformative era in oncology, offering unprecedented promise and opportunities. Despite its remarkable breakthroughs, the field continues to grapple with the persistent challenge of treatment resistance. This resistance not only undermines the widespread efficacy of these pioneering treatments, but also underscores the pressing need for further research. Our exploration into the intricate realm of cancer immunotherapy resistance reveals various mechanisms at play, from primary and secondary resistance to the significant impact of genetic and epigenetic factors, as well as the crucial role of the tumor microenvironment (TME). Furthermore, we stress the importance of devising innovative strategies to counteract this resistance, such as employing combination therapies, tailoring immune checkpoints, and implementing real-time monitoring. By championing these state-of-the-art methods, we anticipate a paradigm that blends personalized healthcare with improved treatment options and is firmly committed to patient welfare. Through a comprehensive and multifaceted approach, we strive to tackle the challenges of resistance, aspiring to elevate cancer immunotherapy as a beacon of hope for patients around the world.
Collapse
Affiliation(s)
- Liqin Yao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou 313000, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Ferreira RC, Duarte SS, de Sousa VM, de Souza RRM, Marques KKG, de Abrantes RA, do Nascimento YM, de Sousa NF, Scotti MT, Scotti L, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. The Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae) Exerts an In Vitro Antimelanoma Effect by Inducing Apoptosis and Modulating the MAPKs, NF-κB, and PKB/AKT Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:1553. [PMID: 38004419 PMCID: PMC10674350 DOI: 10.3390/ph16111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The characterization and cytotoxicity of the essential oil from Conyza bonariensis (L.) aerial parts (CBEO) were previously conducted. The major compound was (Z)-2-lachnophyllum ester (EZ), and CBEO exhibited significant ROS-dependent cytotoxicity in the melanoma cell line SK-MEL-28. Herein, we employed the Molegro Virtual Docker v.6.0.1 software to investigate the interactions between the EZ and Mitogen-Activated Protein Kinases (MAPKs), the Nuclear Factor kappa B (NF-κB), and the Protein Kinase B (PKB/AKT). Additionally, in vitro assays were performed in SK-MEL-28 cells to assess the effect of CBEO on the cell cycle, apoptosis, and these signaling pathways by flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using MAPKs inhibitors. CBEO induced a significant increase in the sub-G1 peak, as well as biochemical and morphological changes characteristic of apoptosis. The in-silico results indicated that EZ interacts with Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), p38α MAPK, NF-κB, and PKB/AKT. Moreover, CBEO modulated the ERK1/2, JNK, p38 MAPK, NF-κB, and PKB/AKT activities in SK-MEL-28 cells. Furthermore, CBEO's cytotoxicity against SK-MEL-28 cells was significantly altered in the presence of MAPKs inhibitors. These findings support the in vitro antimelanoma effect of CBEO through apoptosis induction, and the modulation of ERK, JNK, p38 MAPK, NF-κB, and PKB/AKT activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (R.R.M.d.S.); (K.K.G.M.)
| |
Collapse
|
41
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
42
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|