1
|
He M, Zhang Y, Liu X, Lu X. Tungsten Adsorption on Goethite: Insights from First-Principles Molecular Dynamics Simulations. Inorg Chem 2025; 64:5331-5340. [PMID: 40035395 DOI: 10.1021/acs.inorgchem.5c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The environmental fate of tungsten (W) has received particular attention due to its increasing utilization and potential health hazards. Adsorption on minerals is considered as a major factor in governing tungsten's mobility and bioavailability. Goethite, a highly stable iron oxide in soils and sediments, is pivotal in determining tungsten's environmental behavior. In this study, the sorption mechanisms of tungsten on the primary (110) surface of goethite were investigated by using systematic first-principles molecular dynamics (FPMD) simulations. First, we computed the bidentate corner-sharing complexation structures of tungsten in all protonation states (i.e., WO42-, HWO4-, and H2WO40) on the goethite surface. Tungsten exhibits a fivefold coordination in the WO42- and HWO4- systems, whereas it transforms into a sixfold coordination in the H2WO40 system. By using the vertical energy gap method for pKa calculations, it is revealed that the adsorbed WO4(H2O)2- species is predominant at pH > 2.0, which is different from WO42- in aqueous solutions (pH > 4.9). The desorption free energy of WO4(H2O)2- species suggest that the bidentate corner-sharing form of WO4(H2O)2- is highly stable with a binding energy of 19.8 kcal/mol. This study fills a critical gap in the atomic-scale knowledge of tungsten behavior and stability in natural environments, providing a theoretical foundation for managing tungsten mobilization in both natural and industrial settings.
Collapse
Affiliation(s)
- Mengjia He
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory for Mineral Deposits Research, Frontiers Science Centre for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yingchun Zhang
- State Key Laboratory for Mineral Deposits Research, Frontiers Science Centre for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, Frontiers Science Centre for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, Frontiers Science Centre for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Bruno de Abreu C, Gebara RC, Rocha GS, da Silva Mansano A, Assis M, Pereira TM, Sindra Virtuoso L, Moreira AJ, Franklin Mayrink Nogueira P, Zucolotto V, Gama Melão MDG, Longo E. Cobalt tungstate nanoparticles (CoWO 4 NPs) affect the photosynthetic performance of the green microalga Raphidocelis subcapitata. CHEMOSPHERE 2025; 372:144085. [PMID: 39798718 DOI: 10.1016/j.chemosphere.2025.144085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Innovative applications of cobalt tungstate nanoparticles (CoWO4 NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO4 NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae). To this end, we assessed algal growth, reactive oxygen species (ROS) production and photosynthetic performance. Our results show that the NPs inhibited the growth of algal cells from 42.37 mg L-1, significantly induced ROS production in the first hours of exposure (1 h) at all concentrations and directly compromised the photosynthetic activity, reinforcing that the oxygen-evolving complex (OEC) is one of the main targets of NPs and that the light curve parameters were the most sensitive endpoints. We observed reductions in the maximum relative electron transport rate (rETRmax) of around 53% and decreases in the saturating irradiance (Ek) of around 40%, which demonstrated that the NPs not only compromised the photosynthetic activity, but also decreased the ability of algal cells to tolerate high light intensities. Our results also highlight that Co was mostly particulate and that the dissolved fraction represented only ∼8% at the lowest concentration and ∼0.70% at the highest concentration of CoWO4 NPs, suggesting that the toxicity observed was caused by the NPs. CoWO4 NPs exhibited a high negative surface charge of -33mV in L.C. Oligo medium. The polydispersity index (PdI) varied from 0.22 to 0.45, while the hydrodynamic size ranged from 217.8 ± 11.36 to 503.43 ± 32.78 nm, indicating greater aggregation in this medium. This study elucidates how the CoWO4 NPs interact with R. subcapitata, resulting in changes mainly in its photosynthetic performance.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Department of Chemical Engineering, Higher Technical School of Chemical Engineering, University of Rovira i Virgili, 26 Països Catalans Av., 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), 46001, Valencia, Spain
| | - Thalles Maranesi Pereira
- Institute of Chemistry, Federal University of Alfenas (UNIFAL-MG), 700 Gabriel Monteiro da Silva Street, 37130-000, Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Institute of Chemistry, Federal University of Alfenas (UNIFAL-MG), 700 Gabriel Monteiro da Silva Street, 37130-000, Alfenas, MG, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of Sao Carlos, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Chen X, Wang Y, Zhang L, Zhu D, Yan W, Li M, Jin J, Wu T, Li Q, He X, Wu G, Tian Y, You X, Yan J, Xiao J, Zhou L, Hang X. Tungsten migration and transformation characteristics in lake sediments under changing habitats from algae to macrophytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136134. [PMID: 39405690 DOI: 10.1016/j.jhazmat.2024.136134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Tungsten (W), a toxic and hazardous pollutant, poses substantial risks to both aquatic life and human health. However, the available understanding of the migration properties of W in lake sediments under various habitats is still limited. This study was designed to evaluate variations in the concentrations of soluble W, manganese (Mn), and iron (Fe) in the summer season by applying a high-resolution Peeper sampling device. According to the results, soluble W concentrations and release fluxes were higher in the pore water of sediments in algae-dominated lake areas than in areas dominated by aquatic plants. This result indicates that the competition for adsorption between algae-derived dissolved organic matter and W, as well as the reductive dissolution caused by dissolved organic matter on Fe (III)/Mn (IV) (hydroxyl) oxides, contributes to the release of W from lake sediments. W uptake by aquatic plants and in-situ formation of Fe (III)/Mn (IV) (hydroxyl) oxides might be the primary factor that controls W release from lake sediments. Aquatic plants can effectively control W release from sediments. The findings of this work provide a scientific basis for the effective control of W release from shallow lake sediments.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China
| | - Junliang Jin
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China
| | - Tingfeng Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China
| | - Qi Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Gongyao Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Yan Tian
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
4
|
Wang Y, Nie B, Zheng S, Wu H, Chen N, Wang D. Emerging activated tungsten dust: Source, environmental behaviors, and health effects. ENVIRONMENT INTERNATIONAL 2024; 188:108774. [PMID: 38810497 DOI: 10.1016/j.envint.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Nie
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shanliang Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dezhong Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Preiner J, Steccari I, Oburger E, Wienkoop S. Rhizobium symbiosis improves amino acid and secondary metabolite biosynthesis of tungsten-stressed soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2024; 15:1355136. [PMID: 38628363 PMCID: PMC11020092 DOI: 10.3389/fpls.2024.1355136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The industrially important transition metal tungsten (W) shares certain chemical properties with the essential plant micronutrient molybdenum and inhibits the activity of molybdoenzymes such as nitrate reductase, impacting plant growth. Furthermore, tungsten appears to interfere with metabolic processes on a much wider scale and to trigger common heavy metal stress response mechanisms. We have previously found evidence that the tungsten stress response of soybeans (Glycine max) grown with symbiotically associated N2-fixing rhizobia (Bradyrhizobium japonicum) differs from that observed in nitrogen-fertilized soy plants. This study aimed to investigate how association with symbiotic rhizobia affects the primary and secondary metabolite profiles of tungsten-stressed soybean and whether changes in metabolite composition enhance the plant's resilience to tungsten. This comprehensive metabolomic and proteomic study presents further evidence that the tungsten-stress response of soybean plants is shaped by associated rhizobia. Symbiotically grown plants (N fix) were able to significantly increase the synthesis of an array of protective compounds such as phenols, polyamines, gluconic acid, and amino acids such as proline. This resulted in a higher antioxidant capacity, reduced root-to-shoot translocation of tungsten, and, potentially, also enhanced resilience of N fix plants compared to non-symbiotic counterparts (N fed). Taken together, our study revealed a symbiosis-specific metabolic readjustment in tungsten-stressed soybean plants and contributed to a deeper understanding of the mechanisms involved in the rhizobium-induced systemic resistance in response to heavy metals.
Collapse
Affiliation(s)
- Julian Preiner
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Irene Steccari
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Chen X, Liu L, Wang Y, Zhou L, Xiao J, Yan W, Li M, Li Q, He X, Zhang L, You X, Zhu D, Yan J, Wang B, Hang X. The combined effects of lanthanum-modified bentonite and Vallisneria spiralis on phosphorus, dissolved organic matter, and heavy metal(loid)s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170502. [PMID: 38301791 DOI: 10.1016/j.scitotenv.2024.170502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Wang
- Zhongyifeng Construction Group Co., Ltd., Suzhou 215131, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
7
|
Li Q, Liu L, Yan W, Chen X, Liu R, Zhao Z, Jiang F, Huang Y, Zhang S, Zou Y, Yang C. Influence on the release of arsenic and tungsten from sediment, and effect on other heavy metals and microorganisms by ceria nanoparticle capping. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123161. [PMID: 38104760 DOI: 10.1016/j.envpol.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
In this study, ceria nanoparticle (CNP) was used as a capping agent to investigate the efficiency and mechanism of simultaneously controlling the release of sediment internal Arsenic (As) and tungsten (W). The results of incubation experiment demonstrated that CNP capping reduced soluble As and W by 81.80% and 97.97% in overlying water, respectively; soluble As and W by 65.64% and 60.13% in pore water, respectively; and labile As and W in sediment by 45.20% and 53.20%, respectively. The main mechanism of CNP controlling sediment internal As and W was through adsorption via ligand exchange and inner-sphere complexation, as determined through adsorption experiments, XPS and FIRT spectra analysis. Besides, CNP also acted as an oxidant, facilitating the oxidation of AsⅢ to AsV and thereby enhancing the adsorption of soluble As. Additionally, sediment As and W fractions experiments demonstrated that the immobilization of As and W with CNP treatment via transforming mobile to stable fractions was another mechanism inhibiting sediment As and W release. The obtained significant positive correlation between soluble As/W and Fe/Mn, labile As/W and Fe/Mn indicated that iron (Fe) and manganese (Mn) oxidation, influenced by CNP, serve as additional mechanisms. Moreover, Fe redox plays a crucial role in controlling internal As and W, while Mn redox plays a more significant role in controlling As compared to W. Meanwhile, CNP capping effectively prevented the release of As and W by reducing the activity of microorganisms that degrade Fe-bound As and W and reduced the release risk of V, Cr, Co, Ni, and Zn from sediments. Overall, this study proved that CNP was a suitable capping agent for simultaneously controlling the release of As and W from sediment.
Collapse
Affiliation(s)
- Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yiqian Zou
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chenjun Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Li Q, Yan W, Li M, Chen X, Wu T, He X, Yao Q, Yan Y, Li G. Simultaneous immobilization of sediment internal phosphorus, arsenic and tungsten by lanthanum carbonate capping. ENVIRONMENTAL RESEARCH 2024; 242:117817. [PMID: 38043892 DOI: 10.1016/j.envres.2023.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
In this study, lanthanum carbonate (LC) was selected as a capping agent to examine its effectiveness in immobilizing sediment internal phosphorus (P), arsenic (As) and tungsten (W). With a 180-day incubation experiment, it was determined that LC capping efficiently reduced the concentrations of soluble reactive P (SRP), soluble As and soluble W in pore water, with the highest reduction rate of 83.39%, 56.21% and 68.52%, respectively. The primary mechanisms involved in the adsorption of P, As and W by LC were precipitation reactions and ligand exchange. Additionally, P, As and W were immobilized by LC capping through the transformation of fractions from mobile and less stable forms to more stable forms. Furthermore, LC capping led to an increase in the Eh value, which promoted the oxidation of soluble Fe (Ⅱ) and soluble Mn. The significantly positive correlation and synchronized variations observed between SRP, soluble As, soluble W, and soluble Fe (II) indicated that the effects of LC on Fe redox played a crucial role in immobilizing sediment internal P, As and W. However, the oxidation of Mn, promoted by LC, played a more significant role in immobilizing sediment internal As than P and W. These effects resulted in LC capping achieving the highest reduction of SRP, soluble As and soluble W flux at 145.22, 22.19, and 0.58 μg m-2d-1. It is of note that LC capping did not lead to an elevated release hazard of Co, Ni, Cu, and Pb, barring Cd. Besides, LC capping did not modify the entire microbial communities in the sediment, but altered the proportional representation of specific microorganisms. Generally, LC has potential as a capping agent capable of simultaneously immobilizing sediment internal P, As and W.
Collapse
Affiliation(s)
- Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Wenming Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| | - Minjuan Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Tingfeng Wu
- . State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qi Yao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yulin Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Gaoxiang Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Bolan S, Wijesekara H, Ireshika A, Zhang T, Pu M, Petruzzelli G, Pedron F, Hou D, Wang L, Zhou S, Zhao H, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Tungsten contamination, behavior and remediation in complex environmental settings. ENVIRONMENT INTERNATIONAL 2023; 181:108276. [PMID: 39492254 DOI: 10.1016/j.envint.2023.108276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Tungsten (W) is a rare element and present in the earth's crust mainly as iron, aluminium, and calcium minerals including wolframite and scheelite. This review aims to offer an overview on the current knowledge on W pollution in complex environmental settlings, including terrestrial and aquatic ecosystems, linking to its natural and anthropogenic sources, behavior in soil and water, environmental and human health hazards, and remediation strategies. Tungsten is used in many alloys mainly as wafers, which have wide industrial applications, such as incandescent light bulb filaments, X-ray tubes, arc welding electrodes, radiation shielding, and industrial catalysts. The rigidity and high density of W enable it to be suitable for defence applications replacing lead. In soil, W metal is oxidised to the tungstate anion and occurs in oxidation states from - 2 to + 6, with the most prevalent oxidation state of + 6. However, recently, people have been alerted to the risk posed by W alloys and its particulates, which can cause cancer and have other detrimental health effects in animals and humans. The population is subject to W pollution in the workplace by breathing, ingestion, and dermal contact. Remediation of W-polluted soil and aquatic environments can be accomplished via stabilization or solubilization. Stabilization of W in soil and groundwater using immobilizing agents inhibits the bioavailability of W, thereby preventing the contaminant from reaching the food chain, while solubilization of W in soil involving mobilizing materials accelerates the elimination of W via soil washing and root absorption. Future research opportunities covering risk-based remediation of W pollution in these complex settings are presented.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Achali Ireshika
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sarah Zhou
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hoachen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
10
|
Alsherif EA, Hajjar D, AbdElgawad H. Future Climate CO 2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1924. [PMID: 37653841 PMCID: PMC10222005 DOI: 10.3390/plants12101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2018 Antwerp, Belgium;
| |
Collapse
|
11
|
Chen X, Liu L, Yan W, Li M, Li Q, He X, Zhao Z, Liu R, Zhang S, Huang Y, Jiang F. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments. ENVIRONMENTAL RESEARCH 2023; 231:116060. [PMID: 37149024 DOI: 10.1016/j.envres.2023.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In this study, CaO2 was used as a capping material to control the release of Phosphate (P) and tungsten (W) from the sediment due to its oxygen-releasing and oxidative properties. The results revealed significant decreases in SRP and soluble W concentrations after the addition of CaO2. The mechanisms of P and W adsorption by CaO2 were mainly chemisorption and ligand exchange mechanisms. In addition, the results showed significant increases in HCl-P and amorphous and poorly crystalline(oxyhydr)oxides bound W after the addition of CaO2. The highest reduction rates of sediment SRP and soluble W release were 37 and 43%, respectively. Furthermore, CaO2 can promote the redox of iron (Fe) and manganese (Mn). On the other hand, a significant positive correlation was observed between SRP/soluble W and soluble Fe (II) and between SRP/soluble W and soluble Mn, indicating that the effects of CaO2 on Fe and Mn redox play a crucial role in controlling P and W releases from sediments. However, the redox of Fe plays a key role in controlling sediment P and W release. Therefore, CaO2 addition can simultaneously inhibit sediment internal P and W release.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Inst Environm Sci, Minist Ecol & Environm, Nanjing, 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Deng Z, Luo Y, Bian M, Guo X, Zhang N. Synthesis of easily renewable and recoverable magnetic PEI-modified Fe 3O 4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121703. [PMID: 37094732 DOI: 10.1016/j.envpol.2023.121703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Tungsten is a hazardous metal to human health and the environment, but it is also valuable. Previous studies have been limited to the adsorption and removal of tungsten, without considering its recovery and utilization. In this article, a renewable magnetic material, Fe3O4 nanoparticles coated by polyethyleneimine (Fe3O4@PEI NPs), is synthesized and used for the adsorption of tungsten in water. Tungsten adsorption experiments were conducted under different initial tungsten concentrations, contact times, solution pH values, and co-existing anions. The results show that Fe3O4@PEI NPs efficiently and rapidly adsorb tungsten from water, with a maximum adsorption capacity of 43.24 mg/g. Under acidic conditions (pH ∼2), the adsorption performance of the NPs maximized. This is because tungstate ions polymerize under such conditions to form polytungstic anions. These are attracted to the positively charged surface of Fe3O4@PEI NPs by electrostatic attraction, followed by complexation reactions with the surface hydroxyl and amino groups of NPs, as evidenced by multiple spectroscopic methods. The NPs can be recovered and renewed and provide a potential application for the enrichment and recycling of high-value tungsten (W(VI)).
Collapse
Affiliation(s)
- Zien Deng
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Yong Luo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Miao Bian
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Xin Guo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Ning Zhang
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China.
| |
Collapse
|
13
|
Singh A, Banerjee A, Roychoudhury A. Fluoride tolerance in rice is negatively regulated by the 'stress-phytohormone' abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid. PROTOPLASMA 2022; 259:1331-1350. [PMID: 35084591 DOI: 10.1007/s00709-022-01740-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 05/02/2023]
Abstract
The present manuscript aimed at investigating whether abscisic acid (ABA) promotes fluoride tolerance, similar to inciting salt adaptation in rice. Seeds of three salt-tolerant rice genotypes were maintained at 32 °C under 16/8 h light/dark photoperiodic cycle with 700 μmol photons m-2 s-1 intensity and 50% relative humidity in a plant growth chamber for 20 days. Suppressed ABA biosynthesis, and downregulated expression of ABA-inducible genes like Rab16A, Osem, and TRAB1 triggered NaCl-induced growth inhibition and physiological injuries like chlorophyll degradation, electrolyte leakage, formation of H2O2, malondialdehyde, and methylglyoxal in Matla. Reduced ABA accumulation increased the levels of melatonin and gibberellic acid in NaF (50 mg L-1)-stressed Nonabokra and Matla, which altogether promoted fluoride tolerance. Higher ABA content in NaF-stressed Jarava stimulated fluoride uptake via chloride channels, thus exhibiting severe fluoride susceptibility, in spite of higher production of ABA-associated osmolytes like proline, glycine-betaine and polyamines via the concerted action of genes like PDH, ADC, ODC, SAMDC, SPDS, SPMS, DAO, and PAO. Increased accumulation of compatible solutes in presence of high endogenous ABA promoted salt tolerance in Jarava; the same was insufficient to ameliorate fluoride-induced injuries in this cultivar. Treatment with ABA biosynthetic inhibitor, Na2WO4 promoted fluoride tolerance in Jarava, whereas further supplementation with exogenous ABA resulted in reversion back to fluoride-susceptible phenotype. Our work clearly established that ABA cannot always be considered as a 'universal' stress hormone as known in literature, since it acts as a negative regulator of fluoride tolerance which is more tightly regulated in rice via melatonin- and gibberellic acid-dependent pathways in ABA-independent manner.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aditya Banerjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
14
|
Shi N, Bai T, Wang X, Tang Y, Wang C, Zhao L. Toxicological effects of WS 2 nanomaterials on rice plants and associated soil microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154987. [PMID: 35378175 DOI: 10.1016/j.scitotenv.2022.154987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
As an important member of transition-metal dichalcogenides family, tungsten disulfides nanomaterials (WS2 NMs) have a wide range of applications. To date, their environmental risks remain largely unknown. In this study, rice plants were grown in soil amended with different concentrations (0, 10, and 100 mg/kg) of WS2 NMs for 4 weeks. WS2 NMs at 100 mg/kg significantly increased MDA (malondialdehyde) content and decreased total antioxidant capacities of leaves, indicating the oxidative response induced by WS2 NMs. Meanwhile, WS2 NMs at 100 mg/kg significantly decreased root biomass compared to control, indicating the negative impacts of WS2 NMs on plant growth. While exposure to 100 mg/kg WS2 NMs significantly increased soil bioavailable Cu, Fe, Zn, and Olsen-P, and increased the content of Cu, Fe, Zn, and P in rice leaves. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis showed that W was taken up by rice roots and translocated into leaves. The impact of WS2 on soil microbial communities was evaluated by 16S rRNA gene sequencing. WS2 NMs at 100 mg/kg significantly decreased soil microbial diversity, as indicated by decreased Shannon index. In addition, 100 mg/kg WS2 shifted the soil microbial profile, the relative abundance of the phylum Acidobacteriota decreased, and Actinobacteriota increased. Taken together, the soil microbial community's diversity and composition have been altered upon exposure to 100 mg/kg WS2 NMs. The results of this study provide some basic information regarding the environmental behavior and phytotoxicity of WS2 NMs, which is valuable for safe use of WS2 NMs.
Collapse
Affiliation(s)
- Nibin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tonghao Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuqiong Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Huang Q, Hu X, Yuan X, Xiao T, Zhang M, Zhang D, Ren S, Luo W. Immobilization of W(VI) and/or Cr(VI) in soil treated with montmorillonite modified by a gemini surfactant and tetrachloroferrate (FeCl 4-). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127768. [PMID: 34810006 DOI: 10.1016/j.jhazmat.2021.127768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of highly toxic chromium (Cr) and the emerging contaminant tungsten (W) in the soil adjacent to W mining areas is identified. Immobilization of W and/or Cr is vital for the safe utilization of contaminated soil. In this study, the cationic gemini surfactant (butane-1,4-bis(dodecyl dimethyl ammonium bromide)) and tetrachloroferrate (FeCl4-)-modified montmorillonite (FeOMt) was applied to investigate the retention performance of W and/or Cr in the soil. Regardless of the initially spiked amount of WO42- and/or CrO42-, the W and/or Cr leached in soil solution was rapidly immobilized within 5 min. The immobilization rates of W and/or Cr in the single and binary soil systems were stably maintained against the variations in pH and coexisting anion. FeOMt showed more favorable performance in the retention of W and/or Cr with respect to the precursors (i.e., the original Mt and surfactant-modified Mt) and efficiently inhibited the phytotoxicity and bioaccumulation of W and/or Cr in mung beans. Due to the ion exchange, complexation, reduction, and flocculation, the addition of FeOMt transformed W and/or Cr from exchangeable/carbonate species to reducible/oxidizable fractions, reducing the environmental risk. FeCl4- complex, as a byproduct of the steel pickling process in industry, plays the pivotal role in the efficient retention of W and Cr. Based on the facile synthesis procedure and the efficient performance, the use of FeOMt for the amendment of W- and/or Cr-contaminated soil is feasible and promising.
Collapse
Affiliation(s)
- Qidong Huang
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xiaojie Hu
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xiujuan Yuan
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Ting Xiao
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Meng Zhang
- Jiangxi Academy of Environmental Sciences, Nanchang 330039, PR China
| | - Dachao Zhang
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Ganzhou Technology Innovation Center for Mine Ecology Remediation, Ganzhou 341000, PR China
| | - Sili Ren
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Wuhui Luo
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Jiangxi Academy of Environmental Sciences, Nanchang 330039, PR China.
| |
Collapse
|
16
|
Selim S, AbdElgawad H, Reyad AM, Alowaiesh BF, Hagagy N, Al-Sanea MM, Alsharari SS, Madany MMY. Potential use of a novel actinobacterial species to ameliorate tungsten nanoparticles induced oxidative damage in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:226-239. [PMID: 34973889 DOI: 10.1016/j.plaphy.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Tungsten nanoparticles (WNPs) could induce hazard impact on plant growth and development; however, no study investigated their phytotoxicity. On the other hand, plant growth-promoting bacteria (PGPB) can effectively reduce WNPs toxicity. To this end, Nocardiopsis sp. was isolated and employed to mitigate the phytotoxic effect of WNPs on three crops (wheat, barley, and oat). Soil contamination with WPNs induced the W accumulation in all tested crops, inhibited both growth and photosynthesis and induced oxidative damage. On the other hand, pre-inoculation with Nocardiopsis sp. significantly reduced W level in treated plants. Concomitantly, Nocardiopsis sp. strikingly mitigated the inhibitory effect of WNPs by augmenting both growth and reactive oxygen species (ROS) homeostasis. To cope with heavy metal stress, all the tested species orchestrated their antioxidant homeostasis through enhancing the production of antioxidant metabolites (e.g., phenolics, flavonoids and tocopherols) and elevated the activities of ROS-scavenging enzymes (e.g., APX, POX, CAT, as well as the enzymes involved in AsA/GSH cycle). Moreover, pre-inoculation with Nocardiopsis sp. improved the detoxification metabolism by enhancing the accumulation of phytochelatins (PCs), metallothionein (MTC) and glutathione-S-transferase (GST) in grasses grown in WNPs-contaminated soils. Overall, restrained ROS homeostasis and improved WNPs detoxification systems were the bases underlie the WNPs stress mitigating impact of Nocardiopsis sp treatment.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Mohamed Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Bassam F Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf Province, Saudi Arabia
| | - Salam S Alsharari
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
17
|
Li M, Zhang F, Li S, Wang X, Liu J, Wang B, Ma Y, Song N. Biotic ligand modeling to predict the toxicity of HWO 4- and WO 42- on wheat root elongation in solution cultures: Effects of pH and accompanying anions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112499. [PMID: 34246946 DOI: 10.1016/j.ecoenv.2021.112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence demonstrates that hexavalent tungsten (W(VI)) can affect the survival of various organisms. This study explored the influences of pH and common anions on W(VI) toxicity on wheat and established a biotic ligand model (BLM) for predicting W(VI) toxicity. It was found that as the pH value increased from 6.0 to 8.5, the EC50[W(VI)]T values increased greatly from 24.7 to 46.6 μM, indicating that increasing pH values can alleviate W(VI) toxicity. A linear relationship between the ratio of HWO4- to WO42- and EC50{WO42-} indicated that WO42- and HWO4- were two toxic species of W(VI). The toxicity of W(VI) decreased as the H2PO4- and SO42- activities increased but not when the activities of Cl- and NO3- increased, demonstrating that the competition from H2PO4- and SO42- significantly influenced W(VI) toxicity. By applying BLM theory, the stability constants for HWO4-, WO42-, H2PO4-, and SO42- were obtained: logKWO4BL = 4.08, logKHWO4BL = 6.44, logKH2PO4BL = 2.09, and logKSO4BL = 1.87, fWBL50% = 0.300, β = 1.99. Results demonstrated that BLM outperformed the free metal activity model(FIAM) in predicting W(VI) toxicity when considering the influences of pH, W(VI) species, and H2PO4- and SO42- competition for active ligand sites.
Collapse
Affiliation(s)
- Mengjia Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fangyu Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Shaojing Li
- College of Science and Information, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xuexia Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Bin Wang
- Institute of Soil Fertilizer and Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yibing Ma
- Macau Environmental Research Institute, Macau University of Science and Technology, Taipa, Macau.
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
18
|
Abstract
The increasing use of tungsten in the production of green energy in the aerospace and military industries, and in many other hi-tech applications, may increase the content of this element in soil. This overview examines some aspects of the behavior of tungsten in soil, such as the importance of characteristics of soils in relation to bioavailability processes, the chemical approaches to evaluate tungsten mobility in the soil environment and the importance of adsorption and desorption processes. Tungsten behavior depends on soil properties of which the most important is soil pH, which determines the solubility and polymerization of tungstate ions and the characteristics of the adsorbing soil surfaces. During the adsorption and desorption of tungsten, iron, and aluminum oxides, and hydroxides play a key role as they are the most important adsorbing surfaces for tungsten. The behavior of tungsten compounds in the soil determines the transfer of this element in plants and therefore in the food chain. Despite the growing importance of tungsten in everyday life, environmental regulations concerning soil do not take this element into consideration. The purpose of this review is also to provide some basic information that could be useful when considering tungsten in environmental legislation.
Collapse
|
19
|
Mondal H, Karmakar M, Chattopadhyay PK, Singha NR. New property-performance optimization of scalable alginate-g-terpolymer for Ce(IV), Mo(VI), and W(VI) exclusions. Carbohydr Polym 2020; 245:116370. [DOI: 10.1016/j.carbpol.2020.116370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
|
20
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
21
|
Dawood MFA, Azooz MM. Concentration-dependent effects of tungstate on germination, growth, lignification-related enzymes, antioxidants, and reactive oxygen species in broccoli (Brassica oleracea var. italica L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36441-36457. [PMID: 31728946 DOI: 10.1007/s11356-019-06603-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The phyto-impact of tungstate is not frequently studied like other heavy metals especially in the sight of continuous accumulation of tungstate in the agriculture soils and water. Thus, the present study was aimed to investigate the supplementation of various tungstate concentrations (0, 1, 5, 10, 50, and 100) to germination water (mg L-1) or clay soil (mg kg-1) on germination and metabolism of broccoli. Lower concentrations (1-10 mg L-1) accelerated germination process and reciprocally were recorded at the highest one (100 mg L-1). The promoter effect of lower concentrations on seedlings growing on tungstate contaminated soil was underpinned from enhancement of pigments, metabolites, enzymatic and non-enzymatic antioxidants, and nitrate reductase. However, the highest concentration-noxious impacts perceived from oxidative damage and membrane integrity deregulation accompanied with no gain from increment of proline, superoxide dismutase, and glutathione-S-transferase. The depletion of phytochelatins and nitric oxide jointed with the enhancement of peroxidases, polyphenol oxidase, and phenylalanine ammonia-lyase at higher concentration reinforced lignin production which restricted plant growth. The results supported the hormetic effects of tungstate (beneficial at low concentrations and noxious at high concentration) on morphological and physiological parameters of broccoli seedlings. The stimulatory effect of tungstate on metabolic activities could serve as important components of antioxidative defense mechanism against tungstate toxicity.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed M Azooz
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
22
|
Park JH, Han HJ. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120825. [PMID: 31279307 DOI: 10.1016/j.jhazmat.2019.120825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Tungsten is an emerging contaminant because of its potential toxicity to humans. However, tungsten-plant-microbe interactions remains unknown. The objective of the study was to evaluate the effect of tungsten-resistant bacteria on tungsten species in plants and microbial community structure in soil. Although bacterial inoculation did not affect lettuce (Lactuca sativa L.) growth or tungsten uptake via root, tungsten-resistant bacteria increased translocation of tungsten from root to shoot. Bacterial inoculation slightly oxidized tungsten in lettuce based on tungsten L3 x-ray absorption near-edge structure (XANES). Tungsten in lettuce roots and shoots grown in tungsten(VI)-spiked soil existed as a mixture of tungsten(IV) and tungsten(VI). Tungsten accumulated as polytungstate in the root and monotungstate in the shoot. Inoculation with tungsten-resistant bacteria and plant growth increased microbial diversity in tungsten-contaminated soil. In tungsten-spiked soils without plants, metal-resistant or reducing bacteria were found while bacteria growing in rhizosphere were detected in soils supporting plant growth. These results indicate a role of the bacteria and plants in phytoremediation of tungsten-contaminated soil.
Collapse
Affiliation(s)
- Jin Hee Park
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Hyeop-Jo Han
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Influence of Increasing Tungsten Concentrations and Soil Characteristics on Plant Uptake: Greenhouse Experiments with Zea mays. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tungsten is largely used in high-tech and military industries. Soils are increasingly enriched in this element, and its transfer in the food chain is an issue of great interest. This study evaluated the influence of soil characteristics on tungsten uptake by Zea mays grown on three soils, spiked with increasing tungsten concentrations. The soils, classified as Histosol, Vertisol, and Fluvisol, are characteristic of the Mediterranean area. The uptake of the element by Zea mays was strictly dependent on the soil characteristics. As the pH of soils increases, tungsten concentrations in the roots and shoots of the plants increased. Also, humic substances showed a great influence on tungsten uptake, which decreased with increasing organic matter of soils. Tungsten uptake by Zea mays can be described by a Freundlich-like equation. This soil-to-plant transfer model may be useful in promoting environmental regulations on the hazards of this element in the environment.
Collapse
|
24
|
Preiner J, Wienkoop S, Weckwerth W, Oburger E. Molecular Mechanisms of Tungsten Toxicity Differ for Glycine max Depending on Nitrogen Regime. FRONTIERS IN PLANT SCIENCE 2019; 10:367. [PMID: 31001297 PMCID: PMC6454624 DOI: 10.3389/fpls.2019.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 05/06/2023]
Abstract
Tungsten (W) finds increasing application in military, aviation and household appliance industry, opening new paths into the environment. Since W shares certain chemical properties with the essential plant micronutrient molybdenum (Mo), it is proposed to inhibit enzymatic activity of molybdoenzymes [e.g., nitrate reductase (NR)] by replacing the Mo-ion bound to the co-factor. Recent studies suggest that W, much like other heavy metals, also exerts toxicity on its own. To create a comprehensive picture of tungsten stress, this study investigated the effects of W on growth and metabolism of soybean (Glycine max), depending on plant nitrogen regime [nitrate fed (N fed) vs. symbiotic N2 fixation (N fix)] by combining plant physiological data (biomass production, starch and nutrient content, N2 fixation, nitrate reductase activity) with root and nodule proteome data. Irrespective of N regime, NR activity and total N decreased with increasing W concentrations. Nodulation and therefore also N2 fixation strongly declined at high W concentrations, particularly in N fix plants. However, N2 fixation rate (g N fixed g-1 nodule dwt) remained unaffected by increasing W concentrations. Proteomic analysis revealed a strong decline in leghemoglobin and nitrogenase precursor levels (NifD), as well as an increase in abundance of proteins involved in secondary metabolism in N fix nodules. Taken together this indicates that, in contrast to the reported direct inhibition of NR, N2 fixation appears to be indirectly inhibited by a decrease in nitrogenase synthesis due to W induced changes in nodule oxygen levels of N fix plants. Besides N metabolism, plants exhibited a strong reduction of shoot (both N regimes) and root (N fed only) biomass, an imbalance in nutrient levels and a failure of carbon metabolic pathways accompanied by an accumulation of starch at high tungsten concentrations, independent of N-regime. Proteomic data (available via ProteomeXchange with identifier PXD010877) demonstrated that the response to high W concentrations was independent of nodule functionality and dominated by several peroxidases and other general stress related proteins. Based on an evaluation of several W responsive proteotypic peptides, we identified a set of protein markers of W stress and possible targets for improved stress tolerance.
Collapse
Affiliation(s)
- Julian Preiner
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Adamakis IDS, Eleftheriou EP. Structural Evidence of Programmed Cell Death Induction by Tungsten in Root Tip Cells of Pisum sativum. PLANTS (BASEL, SWITZERLAND) 2019; 8:E62. [PMID: 30862127 PMCID: PMC6473820 DOI: 10.3390/plants8030062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023]
Abstract
Previous studies have shown that excess tungsten (W), a rare heavy metal, is toxic to plant cells and may induce a kind of programmed cell death (PCD). In the present study we used transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) to investigate the subcellular malformations caused by W, supplied as 200 mg/L sodium tungstate (Na₂WO₄) for 12 or 24 h, in root tip cells of Pisum sativum (pea), The objective was to provide additional evidence in support of the notion of PCD induction and the presumed involvement of reactive oxygen species (ROS). It is shown ultrastructurally that W inhibited seedling growth, deranged root tip morphology, induced the collapse and deformation of vacuoles, degraded Golgi bodies, increased the incidence of multivesicular and multilamellar bodies, and caused the detachment of the plasma membrane from the cell walls. Plastids and mitochondria were also affected. By TEM, the endoplasmic reticulum appeared in aggregations of straight, curved or concentric cisternae, frequently enclosing cytoplasmic organelles, while by CLSM it appeared in bright ring-like aggregations and was severely disrupted in mitotic cells. However, no evidence of ROS increase was obtained. Overall, these findings support the view of a W-induced vacuolar destructive PCD without ROS enhancement.
Collapse
Affiliation(s)
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| |
Collapse
|
26
|
James B, Zhang W, Sun P, Wu M, Li HH, Khaliq MA, Jayasuriya P, James S, Wang G. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:487-497. [PMID: 28994318 DOI: 10.1080/09603123.2017.1386768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H2C2O4·2H2O-(NH4)2C2O4·H2O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg-1 to 15.34 mg kg-1 and available soil W ranged from 0.03 mg kg-1 to 1.61 mg kg-1. The W concentration in brown rice varied from 7 μg kg-1 to 283 μg kg-1 and was significantly correlated with the available soil W. The highest mean TFavail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TFavail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.
Collapse
Affiliation(s)
- Blessing James
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Weili Zhang
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Pei Sun
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Mingyan Wu
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Hong Hong Li
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Muhammad Athar Khaliq
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Pathmamali Jayasuriya
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Swithin James
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Guo Wang
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| |
Collapse
|
27
|
Arslan H, Erdemir ÜS, Güleryüz G, Kiazolu H, Güçer Ş. Assessment of Trace Elements in Plantago holosteum Scop. (Plantaginaceae) from Abandoned Tungsten Mine Works Using Inductively Coupled Plasma–Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1308374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hülya Arslan
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Ümran Seven Erdemir
- Faculty of Art and Sciences, Department of Chemistry, Uludag University, Bursa, Turkey
| | - Gürcan Güleryüz
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Hawa Kiazolu
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Şeref Güçer
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| |
Collapse
|
28
|
Hedberg YS, Hedberg JF, Isaksson S, Mei N, Blomberg E, Wold S, Odnevall Wallinder I. Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles - Particle stability and reactivity in synthetic surface water and influence of humic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:275-288. [PMID: 28196769 DOI: 10.1016/j.envpol.2017.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.
Collapse
Affiliation(s)
- Yolanda S Hedberg
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden; Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| | - Jonas F Hedberg
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden.
| | - Sara Isaksson
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden.
| | - Nanxuan Mei
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden.
| | - Eva Blomberg
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden; SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, Sweden.
| | - Susanna Wold
- KTH Royal Institute of Technology, School of Chemical Science and Technology, Applied Physical Chemistry, Sweden.
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Sweden.
| |
Collapse
|
29
|
Seven Erdemir Ü. INVESTIGATIONS ON BORON AND MOLYBDENUM LEVELS OF VERBASCUM OLYMPICUM BOISS. AROUND ABANDONED TUNGSTEN MINE WORK BY ICP-MS. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.282219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Qin S, Sun X, Hu C, Tan Q, Zhao X, Xu S. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:87-93. [PMID: 28167042 DOI: 10.1016/j.plantsci.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo1 (1μmol/L Mo, Low Mo), Mo1+W1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo200 (200μmol/L Mo, High Mo) and Mo200+W200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress.
Collapse
Affiliation(s)
- Shiyu Qin
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xuecheng Sun
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China.
| | - Chengxiao Hu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Qiling Tan
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xiaohu Zhao
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Shoujun Xu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| |
Collapse
|
31
|
Erdemir ÜS, Arslan H, Güleryüz G, Güçer Ş. Elemental Composition of Plant Species from an Abandoned Tungsten Mining Area: Are They Useful for Biogeochemical Exploration and/or Phytoremediation Purposes? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:299-303. [PMID: 27514686 DOI: 10.1007/s00128-016-1899-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
We aimed to evaluate the elemental (W, Mo, Zn, Fe, Cu, Co, Bi, Mn, Cd, Cr, As) composition of some plant species spread around the abandoned tungsten mining area of Uludağ Mountain. The plant species tested were Anthemis cretica and Trisetum flavescens which are grown in this area and they are pioneer species on these contaminated sites. W levels in soils were found up to 1378.6 ± 672.3 mg/kg dry weight in contaminated areas. The leaf W contents of the selected plant species were found 41.1 ± 24.4 and 31.1 ± 15.5 mg/kg dry weight for A. cretica and T. flavescens, respectively. Our results indicate that the elemental composition of species changed by the increased tungsten and some element concentrations in soil without detrimental effect. So, these species can be useful tungsten removal and some elements from contaminated sites.
Collapse
Affiliation(s)
- Ümran Seven Erdemir
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey.
| | - Hülya Arslan
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| | - Gürcan Güleryüz
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| | - Şeref Güçer
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
32
|
SEVEN ERDEMİR Ü. Development of a sample preparation strategy for the determination of tungsten in soil samples by inductively coupled plasma mass spectrometry using a response surface methodology. Turk J Chem 2017. [DOI: 10.3906/kim-1607-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
33
|
Güleryüz G, Erdemir ÜS, Arslan H, Güçer Ş. Elemental composition of Marrubium astracanicum Jacq. growing in tungsten-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18332-18342. [PMID: 27278070 DOI: 10.1007/s11356-016-7028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates the elemental (W, Mo, Zn, Fe, Cu, Cd, Mn, Pb, Cr, Co, B, and Bi) composition of Marrubium astracanicum Jacq. (Lamiaceae), around the abandoned tungsten mine on Uludağ Mountain, Turkey, to determine if it is an appropriate candidate for phytomonitoring and/or phytoremediation purposes. Three sample sites were selected around the mine for soil and plant sampling. Two sites approximately 500 m from the mine were assumed to be unpolluted sites. The other site was selected from a waste removal pool (WRP) and was assumed to be a polluted site. The soil and different organs (roots, leaves, and flowers) of plant samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine the elemental content. The classic open wet digestion procedure was applied to the samples with 5 mL HNO3 and 3 mL H2O2 in a borosilicate glass vessel for the roots, leaves, and the flowers of the plants. Kjeldahl digestion was used for the soil samples. The W, Zn, Fe, Cu, Cd, Mn, Pb, B, and Bi contents were found to be higher in the soil samples from the waste removal pools compared with the samples from the unpolluted sites. We also found that the elemental composition of M. astracanicum has generally been increased by the activity of the tungsten mine, and there were significant correlations between the elemental contents of the soil samples and plant parts, except for Mo and Cr. The high level of many elements in the soil samples indicates the presence of contamination related to tungsten-mining activity on Uludağ Mountain. Assessing the elemental contents of M. astracanicum, we can suggest this species as a candidate for phytoremediation purposes of W-contaminated sites due to its high W-accumulation capacity.
Collapse
Affiliation(s)
- Gürcan Güleryüz
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey.
| | - Ümran Seven Erdemir
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| | - Hülya Arslan
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey
| | - Şeref Güçer
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
34
|
Laulicht F, Brocato J, Cartularo L, Vaughan J, Wu F, Kluz T, Sun H, Oksuz BA, Shen S, Peana M, Medici S, Zoroddu MA, Costa M. Tungsten-induced carcinogenesis in human bronchial epithelial cells. Toxicol Appl Pharmacol 2015; 288:33-9. [PMID: 26164860 PMCID: PMC4579035 DOI: 10.1016/j.taap.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/30/2022]
Abstract
Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans.
Collapse
Affiliation(s)
- Freda Laulicht
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Laura Cartularo
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Joshua Vaughan
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Feng Wu
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Betul Akgol Oksuz
- Genome Technology Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Steven Shen
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016, USA
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA.
| |
Collapse
|
35
|
Adamakis IDS, Panteris E, Eleftheriou EP. "CLASPing" tungsten's effects on microtubules with "PINs". PLANT SIGNALING & BEHAVIOR 2015; 10:e1064572. [PMID: 26313814 PMCID: PMC4883889 DOI: 10.1080/15592324.2015.1064572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Tungsten, supplied as sodium tungstate, inhibits root elongation in Arabidopsis thaliana, which has been attributed to a diminishing of PIN2 and PIN3 auxin efflux carriers. In this work, we sought to analyze the effect of tungsten on cortical microtubules and CLASP (Cytoplasmic Linker Associated Protein), which are also involved in the anisotropic cell expansion of root cells. Seedlings grown in a tungsten-free substrate for 4 d and then transplanted into a tungsten-containing substrate exhibited randomly oriented microtubules in a time-dependent manner. While tungsten had no effect on roots treated for 3 h, microtubule alignment was obviously affected in the transition and elongation zones after a 6, 12, 24, 48 h tungsten treatment, at prolonged tungsten administrations and in seedlings grown directly in the presence of tungsten. This change in microtubule orientation may be associated with the reduction of CLASP protein expression induced by tungsten, as evidenced in experiments with plants expressing the CLASP-GFP protein. A possible mechanism, by which the coordinated functions of CLASP, PIN2 and microtubules are affected, as revealed by inhibited root growth, is discussed.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany; School of Biology, Aristotle University; Thessaloniki, Greece
| | | |
Collapse
|
36
|
Adamakis IDS, Panteris E, Eleftheriou EP. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1174-87. [PMID: 24973590 DOI: 10.1016/j.jplph.2014.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 05/19/2023]
Abstract
Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
37
|
Adamakis IDS, Panteris E, Eleftheriou EP. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L. PROTOPLASMA 2014; 251:567-574. [PMID: 24091895 DOI: 10.1007/s00709-013-0556-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.
Collapse
|
38
|
Lin C, Li R, Cheng H, Wang J, Shao X. Tungsten distribution in soil and rice in the vicinity of the world's largest and longest-operating tungsten mine in China. PLoS One 2014; 9:e91981. [PMID: 24642612 PMCID: PMC3958402 DOI: 10.1371/journal.pone.0091981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/15/2014] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to investigate tungsten (W) contamination in soil and its enrichment in rice in the area of the world's largest and longest-operating W mines in China. Root zone soil and rice plants were sampled at 15 sites in the agricultural field adjacent to W mines and analyzed for Al, Fe, Mn, Sc, and W contents and W chemical forms in the soil samples and W contents in the rice root, stem, leaf, and grain samples. Results showed that W content in the soil ranged from 3.99 to 43.7 mg kg(-1), with more than 90% of W in the residual fraction, showing its low mobility and bioavailability. Average W contents in the rice root, stem, leaf, and grain were 7.06, 2.34, 4.76, 0.17 mg kg(-1), respectively. In addition, they were linearly independent of W content and chemical forms in the soil. Average enrichment factor values were 0.39, 0.13, 0.28, and 0.01 for the root, stem, leaf, and grain, respectively. In can be concluded that W mining activity in the Dayu county contaminated the nearby agricultural soil and led to W bioaccumulation in the rice. This may pose a health risk to residents via food and soil ingestion, which should be a focus of scrutiny.
Collapse
Affiliation(s)
- Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Ruiping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Jing Wang
- Key Laboratory of Land Use, China Land Surveying and Planning Institute, Ministry of land and Resources, Beijing, China
| | - Xiao Shao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
39
|
Malea P, Adamakis IDS, Kevrekidis T. Kinetics of cadmium accumulation and its effects on microtubule integrity and cell viability in the seagrass Cymodocea nodosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:257-64. [PMID: 24200991 DOI: 10.1016/j.aquatox.2013.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/13/2013] [Indexed: 05/09/2023]
Abstract
The kinetics of cadmium accumulation and its effects on microtubule cytoskeleton and cell viability in leaf blades of the seagrass Cymodocea nodosa were investigated under laboratory conditions in exposure concentrations ranging from 0.5 to 40 mg L(-1). An initial rapid accumulation of cadmium was followed by a steady state. The Michaelis-Menten model adequately described metal accumulation; equilibrium concentration and uptake velocity tended to increase, whereas bioconcentration factor at equilibrium to decrease, as the exposure concentration increased. Cadmium depolymerized microtubules after 3-9 d of exposure, depending on trace metal concentration, indicating that microtubules could be used as an early biomarker of cadmium stress; cell death, occurring at later time than microtubule disturbance, was also observed. Microtubule depolymerization expressed as percentage of reduction of fluorescence intensity and cell mortality expressed as percentage of live cells increased with time. The lowest experimental tissue concentration associated with the onset of microtubule depolymerization and cell death (98.5-128.9μgg(-1)drywt, 0.5 mg L(-1) treatment, 7th and 9th d) was within the wide range of reported cadmium concentrations in leaves of seagrass species from various geographical areas. This lowest tissue concentration was exceeded up to the 3rd d at higher exposure concentrations, but toxic effects were generally detected at later time. The time periods required for the onset of depolymerization and for 10 and 50% of cells to die tended to decrease as the uptake velocity increased; in particular, significant negative correlations were found between these variables. These results suggest that toxicity appears to be a function of cadmium uptake rate rather than of the total tissue metal concentration. Hence, tissue residues should be interpreted in relation to the time frame of the exposure, while the estimation of metal uptake velocity could be utilized for predicting toxic effects. The data presented provide insight on the relationship between metal bioaccumulation and toxic effects in seagrasses and, overall, contribute to a better understanding of the impact of metals on aquatic organisms.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | | | | |
Collapse
|
40
|
Malea P, Adamakis IDS, Kevrekidis T. Microtubule integrity and cell viability under metal (Cu, Ni and Cr) stress in the seagrass Cymodocea nodosa. CHEMOSPHERE 2013; 93:1035-1042. [PMID: 23800588 DOI: 10.1016/j.chemosphere.2013.05.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/18/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
The effects of increasing Cu, Ni and Cr concentrations (0.5, 5, 10, 20 and 40 mg L(-1)) on microtubule organization and the viability of leaf cells of the seagrass Cymodocea nodosa for 13 consecutive days were investigated under laboratory conditions. Increased oblique microtubule orientation, microtubule depolymerization at the 5-40 mg L(-1) Ni treatments after 3 d of exposure, and a complete microtubule depolymerization at all Ni treatments after 5 d were observed. Cu depolymerised microtubules after three to 7 d of exposure, while Cr caused an extensive microtubule bundling after 9 or 11 d of exposure, depending on metal dosage. Fluorescence intensity measurements further consolidated the above phenomena. Cell death, occurring at later time than microtubule disturbance, was also observed at all Cu and Ni treatments and at the 10-40 mg L(-1) Cr treatments and adding to the above quantification of the number of dead cells clearly showed that only a portion of the cell population studied died. The data presented, being the first assessment of microtubule disturbance in seagrasses, indicate that microtubules in seagrass leaf cells could be used as a valuable and early marker of metal-induced stress in biomonitoring programmes.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | | | | |
Collapse
|