1
|
Vatani S, Abbaspour-Fard MH, Khodabakhshian R. Macroscopic and microscopic investigations of determining elasto-mechanical properties of limequat fruit. Microsc Res Tech 2025; 88:396-406. [PMID: 39381956 DOI: 10.1002/jemt.24699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Given the paramount importance of agricultural products in global health and food security, and the increasing consumer demand, understanding the mechanical behavior of these materials under various conditions is necessary yet challenging. Due to their heterogeneous and non-uniform nature, determining their mechanical behavior is complex. This study employs atomic force microscopy (AFM) to determine the modulus of elasticity of limequat fruit at the microscopic scale and compares it with macroscopic methods. The analyses revealed a statistically significant difference (at the 1% level) in the mechanical behavior determined at the macroscopic scale. The highest modulus of elasticity, 0.752 MPa, was observed using Hertz's theory under complete placement between two parallel planes. The lowest, 0.059 MPa, was noted when a spherical probe compressed a rectangular sample. The average modulus of elasticity of the limequat peel was 2.007 MPa. At the microscopic scale, the modulus of elasticity of the fruit tissue ranged from 0.370 to 0.365 MPa, and for the peel, it was 0.246 MPa. RESEARCH HIGHLIGHTS: Working principles of this innovative technique were elaborated. The AFM technique used provide elasto-mechanical properties determination of cell walls of single living cells extracted from biological materials on the nanoscale. By combining AFM topographical image and nano-indentation of living fruit cells it will be possible to investigate cells' elasto-mechanical properties. Atomic force microscopy holds great potential for monitoring fruit mechanical properties of biological materials.
Collapse
Affiliation(s)
- Sanaz Vatani
- Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
2
|
Zhang H, Xiao L, Qin S, Kuang Z, Wan M, Li Z, Li L. Heterogeneity in Mechanical Properties of Plant Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:3561. [PMID: 39771259 PMCID: PMC11678144 DOI: 10.3390/plants13243561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages. Here, we review recent research advances, both methodological and experimental, that shed new light on the architecture of cell walls, with a focus on the mechanical heterogeneity of plant cell walls. Facilitated by advanced techniques and tools, especially atomic force microscopy (AFM), research efforts over the last decade have contributed to impressive progress in our understanding of how mechanical properties are associated with cell growth. In particular, the pivotal importance of pectin, the most complex wall polysaccharide, in wall mechanics is rapidly emerging. Pectin is regarded as an important determinant for establishing anisotropic growth patterns of elongating cells. Altogether, the diversity of plant cell walls can lead to heterogeneity in the mechanical properties, which will help to reveal how mechanical factors regulate plant cell growth and organ morphogenesis.
Collapse
Affiliation(s)
- He Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Liang Xiao
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Zheng Kuang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Zhan Li
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Lei Li
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| |
Collapse
|
3
|
Mengistie E, Alayat AM, Sotoudehnia F, Bokros N, DeBolt S, McDonald AG. Evaluation of Cell Wall Chemistry of Della and Its Mutant Sweet Sorghum Stalks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1689-1703. [PMID: 35099962 DOI: 10.1021/acs.jafc.1c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cell wall compositional (lignin and polysaccharides) variation of two sweet sorghum varieties, Della (D) and its variant REDforGREEN (RG), was evaluated at internodes (IN) and nodes (N) using high-performance liquid chromatography (HPLC), pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), X-ray diffraction (XRD), and two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR). The stalks were grown in 2018 (D1 and RG1) and 2019 (D2 and RG2) seasons. In RG1, Klason lignin reductions by 16-44 and 2-26% were detected in IN and N, respectively. The analyses also revealed that lignin from the sorghum stalks was enriched in guaiacyl units and the syringyl/guaiacyl ratio was increased in RG1 and RG2, respectively, by 96% and more than 2-fold at IN and 61 and 23% at N. The glucan content was reduced by 23-27% for RG1 and by 17-22% for RG2 at internodes. Structural variations due to changes in both cellulose- and hemicellulose-based sugars were detected. The nonacylated and γ-acylated β-O-4 linkages were the main interunit linkages detected in lignin. These results indicate compositional variation of stalks due to the RG variation, and the growing season could influence their mechanical and lodging behavior.
Collapse
Affiliation(s)
- Endalkachew Mengistie
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Abdulbaset M Alayat
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Farid Sotoudehnia
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Norbert Bokros
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Seth DeBolt
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Armando G McDonald
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| |
Collapse
|
4
|
Birnbaum KD, Otegui MS, Bailey-Serres J, Rhee SY. The Plant Cell Atlas: focusing new technologies on the kingdom that nourishes the planet. PLANT PHYSIOLOGY 2022; 188:675-679. [PMID: 34935969 PMCID: PMC8825275 DOI: 10.1093/plphys/kiab584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Kenneth D Birnbaum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA Plant Ecophysiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
5
|
Ginsberg L, McDonald R, Lin Q, Hendrickx R, Spigolon G, Ravichandran G, Daraio C, Roumeli E. Cell wall and cytoskeletal contributions in single cell biomechanics of Nicotiana tabacum. QUANTITATIVE PLANT BIOLOGY 2022; 3:e1. [PMID: 37077972 PMCID: PMC10097588 DOI: 10.1017/qpb.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
Studies on the mechanics of plant cells usually focus on understanding the effects of turgor pressure and properties of the cell wall (CW). While the functional roles of the underlying cytoskeleton have been studied, the extent to which it contributes to the mechanical properties of cells is not elucidated. Here, we study the contributions of the CW, microtubules (MTs) and actin filaments (AFs), in the mechanical properties of Nicotiana tabacum cells. We use a multiscale biomechanical assay comprised of atomic force microscopy and micro-indentation in solutions that (i) remove MTs and AFs and (ii) alter osmotic pressures in the cells. To compare measurements obtained by the two mechanical tests, we develop two generative statistical models to describe the cell's behaviour using one or both datasets. Our results illustrate that MTs and AFs contribute significantly to cell stiffness and dissipated energy, while confirming the dominant role of turgor pressure.
Collapse
Affiliation(s)
- Leah Ginsberg
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
| | - Robin McDonald
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
| | - Qinchen Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA98195, USA
| | - Rodinde Hendrickx
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
| | - Giada Spigolon
- Biological Imaging Facility, California Institute of Technology, Pasadena, CA91125, USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
| | - Eleftheria Roumeli
- Department of Materials Science and Engineering, University of Washington, Seattle, WA98195, USA
- Author for correspondence: E. Roumeli, E-mail:
| |
Collapse
|
6
|
In situ ESEM using 3-D printed and adapted accessories to observe living plantlets and their interaction with enzyme and fungus. Micron 2021; 153:103185. [PMID: 34826759 DOI: 10.1016/j.micron.2021.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
This paper describes an innovative way of using environmental scanning electron microscopy (ESEM) and the development of a suitable accessory to perform in situ observation of living seedlings in the ESEM. We provide details on fabrication of an accessory that proved to be essential for such experiments but inexpensive and easy to build in the laboratory, and present our in situ observations of the tissue and cell surfaces. Sample-specific configurations and optimized tuning of the ESEM were defined to maintain Arabidopsis and flax seedlings viable throughout repetitive exposure to the imaging conditions in the microscope chamber. This method permitted us to identify cells and tissues of the live plantlets and characterize their surface morphology during their early stage of growth and development. We could extend the application of this technique, to visualize the response of living cells and tissues to exogenous enzymatic treatments with polygalacturonase in Arabidopsis, and their interaction with hyphae of the wilt fungus Verticillium dahliae during artificial infection in flax plantlets. Our results provide an incentive to the use of the ESEM for in situ studies in plant science and a guide for researchers to optimize their electron microscopy observation in the relevant fields.
Collapse
|
7
|
Biswas S, Barma S. A Large-Scale Fully Annotated Low-Cost Cost Microscopy Image Dataset for Deep Learning Framework. IEEE Trans Nanobioscience 2021; 20:507-515. [PMID: 34228624 DOI: 10.1109/tnb.2021.3095151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work presents a large-scale three-fold annotated, low-cost microscopy image dataset of potato tubers for plant cell analysis in deep learning (DL) framework which has huge potential in the advancement of plant cell biology research. Indeed, low-cost microscopes coupled with new generation smartphones could open new aspects in DL-based microscopy image analysis, which offers several benefits including portability, easy to use, and maintenance. However, its successful implications demand properly annotated large number of diverse microscopy images, which has not been addressed properly- that confines the advanced image processing based plant cell research. Therefore, in this work, a low-cost microscopy image database of potato tuber cells having total 34,657 number of images, has been generated by Foldscope (costs around 1 USD) coupled with a smartphone. This dataset includes 13,369 unstained and 21,288 stained (safranin-o, toluidine blue-o, and lugol's iodine) images with three-fold annotation based on weight, section areas, and tissue zones of the tubers. The physical image quality (e.g., contrast, focus, geometrical attributes, etc.) and its applicability in the DL framework (CNN-based multi-class and multi-label classification) have been examined and results are compared with the traditional microscope image set. The results show that the dataset is highly compatible for the DL framework.
Collapse
|
8
|
Läubli NF, Burri JT, Marquard J, Vogler H, Mosca G, Vertti-Quintero N, Shamsudhin N, deMello A, Grossniklaus U, Ahmed D, Nelson BJ. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nat Commun 2021; 12:2583. [PMID: 33972516 PMCID: PMC8110787 DOI: 10.1038/s41467-021-22718-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.
Collapse
Affiliation(s)
- Nino F Läubli
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - Jan T Burri
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | | | - Hannes Vogler
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gabriella Mosca
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Nadia Vertti-Quintero
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | | | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Daniel Ahmed
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland.
- Acoustic Robotics Systems Lab, ETH Zurich, Rüschlikon, Switzerland.
| | | |
Collapse
|
9
|
Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153388. [PMID: 33706055 DOI: 10.1016/j.jplph.2021.153388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
In angiosperms, mature pollen is wrapped by a pollen wall, which is important for maintaining pollen structure and function. Pollen walls provide protection from various environmental stresses and preserve pollen germination and pollen tube growth. The pollen wall structure has been described since pollen ultrastructure investigations began in the 1960s. Pollen walls, which are the most intricate cell walls in plants, are composed of two layers: the exine layer and intine layer. Pollen wall formation is a complex process that occurs via a series of biological events that involve a large number of genes. In recent years, many reports have described the molecular mechanisms of pollen exine development. The formation process includes the development of the callose wall, the wavy morphology of primexine, the biosynthesis and transport of sporopollenin in the tapetum, and the deposition of the pollen coat. The formation mechanism of the intine layer is different from that of the exine layer. However, few studies have focused on the regulatory mechanisms of intine development. The primary component of the intine layer is pectin, which plays an essential role in the polar growth of pollen tubes. Demethylesterified pectin is mainly distributed in the shank region of the pollen tube, which can maintain the hardness of the pollen tube wall. Methylesterified pectin is mainly located in the top region, which is beneficial for improving the plasticity of the pollen tube top. In this review, we summarize the developmental process of the anther, pollen and pollen wall in Arabidopsis; furthermore, we describe the research progress on the pollen wall formation pattern and its molecular mechanisms in detail.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Kreitschitz A, Kovalev A, Gorb SN. Plant Seed Mucilage as a Glue: Adhesive Properties of Hydrated and Dried-in-Contact Seed Mucilage of Five Plant Species. Int J Mol Sci 2021; 22:ijms22031443. [PMID: 33535533 PMCID: PMC7867067 DOI: 10.3390/ijms22031443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Seed and fruit mucilage is composed of three types of polysaccharides—pectins, cellulose, and hemicelluloses—and demonstrates adhesive properties after hydration. One of the important functions of the mucilage is to enable seeds to attach to diverse natural surfaces. Due to its adhesive properties, which increase during dehydration, the diaspore can be anchored to the substrate (soil) or attached to an animal’s body and dispersed over varied distances. After complete desiccation, the mucilage envelope forms a thin transparent layer around the diaspore creating a strong bond to the substrate. In the present study, we examined the mucilaginous seeds of six different plant taxa (from genera Linum, Lepidium, Ocimum, Salvia and Plantago) and addressed two main questions: (1) How strong is the adhesive bond of the dried mucilage envelope? and (2) What are the differences in adhesion between different mucilage types? Generally, the dried mucilage envelope revealed strong adhesive properties. Some differences between mucilage types were observed, particularly in relation to adhesive force (Fad) whose maximal values varied from 0.58 to 6.22 N. The highest adhesion force was revealed in the cellulose mucilage of Ocimum basilicum. However, mucilage lacking cellulose fibrils, such as that of Plantago ovata, also demonstrated high values of adhesion force with a maximum close to 5.74 N. The adhesion strength, calculated as force per unit contact area (Fad/A0), was comparable between studied taxa. Obtained results demonstrated (1) that the strength of mucilage adhesive bonds strongly surpasses the requirements necessary for epizoochory and (2) that seed mucilage has a high potential as a nontoxic, natural substance that can be used in water-based glues.
Collapse
Affiliation(s)
- Agnieszka Kreitschitz
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
- Department of Plant Morphology and Development, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland
- Correspondence:
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
| | - Stanislav N. Gorb
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
| |
Collapse
|
11
|
Grant KR, Brennan M, Hoad SP. The Structure of the Barley Husk Influences Its Resistance to Mechanical Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:614334. [PMID: 33574825 PMCID: PMC7871009 DOI: 10.3389/fpls.2020.614334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This paper explores the links between genotype, plant development, plant structure and plant material properties. The barley husk has two organs, the lemma and the palea, which protect the grain. When the husk is exposed to mechanical stress, such as during harvesting, it can be damaged or detached. This is known as grain skinning, which is detrimental to grain quality and has a significant economic impact on industry. This study focused on the lemma, the husk organ which is most susceptible to grain skinning. This study tested three hypotheses: (1) genotype and plant development determine lemma structure, (2) lemma structure influences the material properties of the lemma, and (3) the material properties of the lemma determine grain skinning risk. The effect of genotype was investigated by using plant material from four malting barley varieties: two with a high risk of grain skinning, two with a low risk. Plant material was assessed at two stages of plant development (anthesis, GS 65; grain filling, GS 77). Structure was assessed using light microscopy to measure three physiological features: thickness, vasculature and cell area. Material properties were approximated using a controlled impact assay and by analyzing fragmentation behavior. Genotype had a significant effect on lemma structure and material properties from anthesis. This indicates that differences between genotypes were established during floral development. The lemma was significantly thinner in high risk genotypes, compared to low risk genotypes. Consequently, in high risk genotypes, the lemma was significantly more likely to fragment. This indicates a relationship between reduced lemma thickness and increased fragmentation. Traditionally, a thin husk has been considered beneficial for malting quality, due to an association with malt extract. However, this study finds a thin lemma is less resistant to mechanical stress. This may explain the differences in grain skinning risk in the genotypes studied.
Collapse
Affiliation(s)
- Kathryn R. Grant
- School of Biological Sciences, College of Science and Engineering, Institute of Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Maree Brennan
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Stephen P. Hoad
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Abstract
Atomic force microscopy (AFM) is an indentation technique used to reconstruct the topography of various materials and organisms. AFM can also measure the mechanical properties of the sample. In plants, AFM is applied to image cell wall structural details and measure the elastic properties in the outer cell walls. Here, I describe the use of high-resolution AFM to measure the elasticity of resin-embedded ultrathin sections of leaf epidermal cell walls. This approach allows to access the fine details within the wall matrix and eliminate the influence of the topography or the turgor on mechanical measurements. In this chapter, the sample preparation, AFM image acquisition, and processing of force curves are described. Altogether, these methods allow to measure the wall stiffness and compare different cell wall regions.
Collapse
|
13
|
Akita E, Yalikun Y, Okano K, Yamasaki Y, Ohtani M, Tanaka Y, Demura T, Hosokawa Y. In situ measurement of cell stiffness of Arabidopsis roots growing on a glass micropillar support by atomic force microscopy. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:417-422. [PMID: 33850428 PMCID: PMC8034704 DOI: 10.5511/plantbiotechnology.20.1016a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 05/25/2023]
Abstract
Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.
Collapse
Affiliation(s)
- Eri Akita
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0871, Japan
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuki Yamasaki
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Misato Ohtani
- Division of Biological Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0871, Japan
| | - Taku Demura
- Division of Biological Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
14
|
Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana. PLANTS 2020; 9:plants9121715. [PMID: 33291397 PMCID: PMC7762020 DOI: 10.3390/plants9121715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.
Collapse
|
15
|
Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zhou L, Du F, Feng S, Hu J, Lü S, Long M, Jiao Y. Epidermal restriction confers robustness to organ shapes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1853-1867. [PMID: 32725947 DOI: 10.1111/jipb.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The shape of comparable tissues and organs is consistent among individuals of a given species, but how this consistency or robustness is achieved remains an open question. The interaction between morphogenetic factors determines organ formation and subsequent shaping, which is ultimately a mechanical process. Using a computational approach, we show that the epidermal layer is essential for the robustness of organ geometry control. Specifically, proper epidermal restriction allows organ asymmetry maintenance, and the tensile epidermal layer is sufficient to suppress local variability in growth, leading to shape robustness. The model explains the enhanced organ shape variations in epidermal mutant plants. In addition, differences in the patterns of epidermal restriction may underlie the initial establishment of organ asymmetry. Our results show that epidermal restriction can answer the longstanding question of how cellular growth noise is averaged to produce precise organ shapes, and the findings also shed light on organ asymmetry establishment.
Collapse
Affiliation(s)
- Lüwen Zhou
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Jinrong Hu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Biswas S, Barma S. A large-scale optical microscopy image dataset of potato tuber for deep learning based plant cell assessment. Sci Data 2020; 7:371. [PMID: 33110087 PMCID: PMC7591917 DOI: 10.1038/s41597-020-00706-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
We present a new large-scale three-fold annotated microscopy image dataset, aiming to advance the plant cell biology research by exploring different cell microstructures including cell size and shape, cell wall thickness, intercellular space, etc. in deep learning (DL) framework. This dataset includes 9,811 unstained and 6,127 stained (safranin-o, toluidine blue-o, and lugol's-iodine) images with three-fold annotation including physical, morphological, and tissue grading based on weight, different section area, and tissue zone respectively. In addition, we prepared ground truth segmentation labels for three different tuber weights. We have validated the pertinence of annotations by performing multi-label cell classification, employing convolutional neural network (CNN), VGG16, for unstained and stained images. The accuracy has been achieved up to 0.94, while, F2-score reaches to 0.92. Furthermore, the ground truth labels have been verified by semantic segmentation algorithm using UNet architecture which presents the mean intersection of union up to 0.70. Hence, the overall results show that the data are very much efficient and could enrich the domain of microscopy plant cell analysis for DL-framework.
Collapse
Affiliation(s)
- Sumona Biswas
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Guwahati, Guwahati, Assam, India.
| | - Shovan Barma
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
18
|
Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla. Sci Rep 2020; 10:506. [PMID: 31949232 PMCID: PMC6965169 DOI: 10.1038/s41598-019-57365-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/27/2019] [Indexed: 12/01/2022] Open
Abstract
As a physical response to water loss during drought, inner Selaginella lepidophylla stems curl into a spiral shape to prevent photoirradiation damage to their photosynthetic surfaces. Curling is reversible and involves hierarchical deformation, making S. lepidophylla an attractive model with which to study water-responsive actuation. Investigation at the organ and tissue level has led to the understanding that the direction and extent of stem curling can be partially attributed to stiffness gradients between adaxial and abaxial stem sides at the nanoscale. Here, we examine cell wall elasticity to understand how it contributes to the overall stem curling. We compare the measured elastic moduli along the stem length and between adaxial and abaxial stem sides using atomic force microscopy nano-indentation testing. We show that changes in cortex secondary cell wall development lead to cell wall stiffness gradients from stem tip to base, and also between adaxial and abaxial stem sides. Changes in cortical cell wall morphology and secondary cell wall composition are suggested to contribute to the observed stiffness gradients.
Collapse
|
19
|
Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics. Methods Mol Biol 2020; 2160:275-292. [PMID: 32529444 DOI: 10.1007/978-1-0716-0672-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pollen tubes face many obstacles on their way to the ovule. They have to decide whether to navigate around cells or penetrate the cell wall and grow through it or even within it. Besides chemical sensing, which directs the pollen tubes on their path to the ovule, this involves mechanosensing to determine the optimal strategy in specific situations. Mechanical cues then need to be translated into physiological signals, which eventually lead to changes in the growth behavior of the pollen tube. To study these events, we have developed a system to directly quantify the forces involved in pollen tube navigation. We combined a lab-on-a-chip device with a microelectromechanical systems-based force sensor to mimic the pollen tube's journey from stigma to ovary in vitro. A force-sensing plate creates a mechanical obstacle for the pollen tube to either circumvent or attempt to penetrate while measuring the involved forces in real time. The change of growth behavior and intracellular signaling activities can be observed with a fluorescence microscope.
Collapse
|
20
|
B A, Rao S, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin Biomech (Bristol, Avon) 2019; 69:127-140. [PMID: 31344655 DOI: 10.1016/j.clinbiomech.2019.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
From cancer diagnosis to detailed characterization of arterial wall biomechanics, the elastic property of tissues is widely studied as an early sign of disease onset. The fibrous structural features of tissues are a direct measure of its health and functionality. Alterations in the structural features of tissues are often manifested as local stiffening and are early signs for diagnosing a disease. These elastic properties are measured ex vivo in conventional mechanical testing regimes, however, the heterogeneous microstructure of tissues can be accurately resolved over relatively smaller length scales with enhanced spatial resolution using techniques such as micro-indentation, microelectromechanical (MEMS) based cantilever sensors and optical catheters which also facilitate in vivo assessment of mechanical properties. In this review, we describe several probing strategies (qualitative and quantitative) based on the spatial scale of mechanical assessment and also discuss the potential use of machine learning techniques to compute the mechanical properties of soft tissues. This work details state of the art advancement in probing strategies, associated challenges toward quantitative characterization of tissue biomechanics both from an engineering and clinical standpoint.
Collapse
Affiliation(s)
- Alekya B
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India
| | - Sanjay Rao
- Department of Pediatric Surgery, Mazumdar Shaw Multispecialty Hospital, Narayana Health, Bangalore 99, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India.
| |
Collapse
|
21
|
Charrier B, Rabillé H, Billoud B. Gazing at Cell Wall Expansion under a Golden Light. TRENDS IN PLANT SCIENCE 2019; 24:130-141. [PMID: 30472067 DOI: 10.1016/j.tplants.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In plants, cell growth is constrained by a stiff cell wall, at least this is the way textbooks usually present it. Accordingly, many studies have focused on the elasticity and plasticity of the cell wall as prerequisites for expansion during growth. With their specific evolutionary history, cell wall composition, and environment, brown algae present a unique configuration offering a new perspective on the involvement of the cell wall, viewed as an inert material yet with intrinsic mechanical properties, in growth. In light of recent findings, we explore here how much of the functional relationship between cell wall chemistry and intrinsic mechanics on the one hand, and growth on the other hand, has been uncovered in brown algae.
Collapse
Affiliation(s)
- Bénédicte Charrier
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France.
| | - Hervé Rabillé
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - Bernard Billoud
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| |
Collapse
|
22
|
Choi D, Heo J, Hong J. Controllable drug release from nano-layered hollow carrier by non-human enzyme. NANOSCALE 2018; 10:18228-18237. [PMID: 30232482 DOI: 10.1039/c8nr05269g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural polymers are widely used in biomedical applications because of their numerous effects. Especially, plant-derived natural polymers extracted from cell walls, especially wood, which is abundant, inexpensive and nontoxic to cells, have high mechanical strength to retain their turgor pressure. Plant-derived polymers are also unaffected by enzymes present in the human body, having a strong possibility to create a polymeric structure that releases drugs only exactly where needed. Therefore, plant-derived polymers are suitable for use in drug delivery systems (DDS) as they have durability with few drug leakage issues in the body. Here, to improve drug incorporation and release efficiency, we prepared a multilayer nanofilm from tannic acid (TA) and lignin extracted from plants and wood. We used a strategy involving film degradation by tannase and laccase, which are not present in humans, to depolymerize TA and lignin, respectively. The TA and lignin film was highly stable for 7 days at pH 3-7 and was readily degraded after enzyme treatment. We also observed controllable drug release and anticancer effect from the TA and lignin hollow carriers depending on enzymatic activity. By taking advantage of plant-derived polymers and non-toxic enzymatic reactions, we have demonstrated the film growth and degradation mechanism in depth and explored their use in a smart DDS with easily controlled release kinetics, which is useful as a DDS platform.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | | | |
Collapse
|
23
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
24
|
Abstract
In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a "classical" plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.
Collapse
|
25
|
Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK. Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:469-495. [PMID: 29505739 DOI: 10.1146/annurev-arplant-042817-040517] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development is remarkably reproducible, producing organs with the same size, shape, and function repeatedly from individual to individual. For example, every flower on the Antirrhinum stalk has the same snapping dragon mouth. This reproducibility has allowed taxonomists to classify plants and animals according to their morphology. Yet these reproducible organs are composed of highly variable cells. For example, neighboring cells grow at different rates in Arabidopsis leaves, sepals, and shoot apical meristems. This cellular variability occurs in normal, wild-type organisms, indicating that cellular heterogeneity (or diversity in a characteristic such as growth rate) is either actively maintained or, at a minimum, not entirely suppressed. In fact, cellular heterogeneity can contribute to producing invariant organs. Here, we focus on how plant organs are reproducibly created during development from these highly variable cells.
Collapse
Affiliation(s)
- Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Mathilde Dumond
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
- Current affiliation: Department for Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Satoru Tsugawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Olivier Hamant
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
26
|
Cosgrove DJ. Diffuse Growth of Plant Cell Walls. PLANT PHYSIOLOGY 2018; 176:16-27. [PMID: 29138349 PMCID: PMC5761826 DOI: 10.1104/pp.17.01541] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/13/2017] [Indexed: 05/04/2023]
Abstract
Structural and functional roles of cellulose, xyloglucan, and pectins in cell wall enlargement are reappraised with insights from mechanics, atomic force microscopy, and other methods.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
27
|
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, Grossniklaus U. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in
Arabidopsis. Science 2017; 358:1600-1603. [DOI: 10.1126/science.aao5467] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Timing a switch in tissue integrity
In plants, sperm cells travel through the pollen tube as it grows toward the ovule. Successful fertilization depends on the pollen tube rupturing to release the sperm cells (see the Perspective by Stegmann and Zipfel). Ge
et al.
and Mecchia
et al.
elucidated the intercellular cross-talk that maintains pollen tube integrity during growth but destroys it at just the right moment. The signaling peptides RALF4 and RALF19, derived from the pollen tube, maintain its integrity as it grows. Once in reach of the ovule, a related signaling peptide, RALF34, which derives from female tissues, takes over and causes rupture of the pollen tube.
Science
, this issue p.
1596
, p.
1600
; see also p.
1544
Collapse
Affiliation(s)
- Martin A. Mecchia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Gorka Santos-Fernandez
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Nadine N. Duss
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Sofía C. Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | | | - Valeria Gagliardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Andrea Martínez-Bernardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Tohnyui Ndinyanka Fabrice
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Jorge P. Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
28
|
Fessel A, Döbereiner HG. Nonlinear compliance of elastic layers to indentation. Biomech Model Mechanobiol 2017; 17:419-438. [PMID: 29094275 DOI: 10.1007/s10237-017-0969-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 11/26/2022]
Abstract
Thin samples adherent to a rigid substrate are considerably less compliant to indentation when compared to specimens that are not geometrically confined. Analytical corrections to this so-called substrate effect exist for various types of indenters but are not applicable when large deformations are possible, as is the case in biological materials. To overcome this limitation, we construct a nonlinear scaling model characterized by one single exponent, which we explore employing a parametric finite element analysis. The model is based on asymptotes of two length scales in relation to the sample thickness, i.e., indentation depth and radius of the contact area. For small indentation depth, we require agreement with analytical, linear models, whereas for large indentation depth and extensive contact area, we recognize similarity to uniaxial deformation, indicating a divergent force required to indent nonlinear materials. In contrast, we find linear materials not to be influenced by the substrate effect beyond first order, implying that nonlinear effects originating from either the material or geometric confinement are clearly separated only in thin samples. Furthermore, in this regime the scaling model can be derived by following a heuristic argument extending a linear model to large indentation depths. Lastly, in a large indentation setting where the contact is small in comparison with sample thickness, we observe nonlinear effects independent of material type that we attribute to a higher-order influence of geometrical confinement. In this regime, we define a scalar as the ratio of strains along principal axes as obtained by comparison with the case of a point force on a half-space. We find this scalar to be in quantitative agreement with the scaling exponent, indicating an approach to distinguish between nonlinear effects in the scaling model. While we conjecture our findings to be applicable to other flat-ended indenters, we focus on the case of a flat-ended cylinder in normal contact with a thin layer. The analytical solution for small indentation associated with this problem has been given by Hayes et al. (J Biomech 5:541-551, 1972), for which we provide a convenient numerical implementation.
Collapse
Affiliation(s)
- Adrian Fessel
- Institut für Biophysik, Universität Bremen, Bremen, Germany.
| | | |
Collapse
|
29
|
Woolfenden HC, Bourdais G, Kopischke M, Miedes E, Molina A, Robatzek S, Morris RJ. A computational approach for inferring the cell wall properties that govern guard cell dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:5-18. [PMID: 28741858 PMCID: PMC5637902 DOI: 10.1111/tpj.13640] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.
Collapse
Affiliation(s)
- Hugh C. Woolfenden
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Gildas Bourdais
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgrónomicaAlimentaria y de Biosistemas, UPM28040MadridSpain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgrónomicaAlimentaria y de Biosistemas, UPM28040MadridSpain
| | - Silke Robatzek
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
30
|
Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites. Carbohydr Polym 2017; 174:970-979. [DOI: 10.1016/j.carbpol.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023]
|
31
|
González-Bermúdez B, Li Q, Guinea GV, Peñalva MA, Plaza GR. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans. Phys Rev E 2017; 96:022402. [PMID: 28950493 DOI: 10.1103/physreve.96.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 11/07/2022]
Abstract
The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Qingxuan Li
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel A Peñalva
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
32
|
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:765-783. [PMID: 27927995 DOI: 10.1093/jxb/erw428] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
33
|
Hu C, Munglani G, Vogler H, Ndinyanka Fabrice T, Shamsudhin N, Wittel FK, Ringli C, Grossniklaus U, Herrmann HJ, Nelson BJ. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. LAB ON A CHIP 2016; 17:82-90. [PMID: 27883138 DOI: 10.1039/c6lc01145d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.
Collapse
Affiliation(s)
- Chengzhi Hu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Gautam Munglani
- Computational Physics for Engineering Materials, Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| | - Hannes Vogler
- Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Tohnyui Ndinyanka Fabrice
- Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Naveen Shamsudhin
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Falk K Wittel
- Computational Physics for Engineering Materials, Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Hans J Herrmann
- Computational Physics for Engineering Materials, Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
34
|
Brulé V, Rafsanjani A, Pasini D, Western TL. Hierarchies of plant stiffness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:79-96. [PMID: 27457986 DOI: 10.1016/j.plantsci.2016.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 05/24/2023]
Abstract
Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls. These structural parameters and their consequences on plant stiffness are reviewed in the context of work on stems of the genetic reference plant Arabidopsis thaliana (Arabidopsis), and the suitability of Arabidopsis as a model system for consistent investigation of factors controlling plant stiffness is put forward. Moving beyond Arabidopsis, the presence of morphological parameters causing stiffness gradients across length-scales leads to beneficial emergent properties such as increased load-bearing capacity and reversible actuation. Tailoring of plant stiffness for old and new purposes in agriculture and forestry can be achieved through bioengineering based on the knowledge of the morphological and compositional parameters of plant stiffness in combination with gene identification through the use of genetics.
Collapse
Affiliation(s)
- Veronique Brulé
- Department of Biology, McGill University, 1205 Docteur Penfield Ave., Montreal, QC, H3A 1B1, Canada.
| | - Ahmad Rafsanjani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A OC3, Canada.
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A OC3, Canada.
| | - Tamara L Western
- Department of Biology, McGill University, 1205 Docteur Penfield Ave., Montreal, QC, H3A 1B1, Canada.
| |
Collapse
|
35
|
Liu ZH, Chen HZ. Mechanical property of different corn stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis. BIORESOURCE TECHNOLOGY 2016; 214:292-302. [PMID: 27140819 DOI: 10.1016/j.biortech.2016.04.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Selective structure fractionation combined with periodic peristalsis was exploited to improve the conversion performance of corn stover. The increase of glucan and lignin content and the decrease of xylan content in stem pith were highest after SE, whereas they were lowest in stem node. Glucan conversion increased in this order: steam node<stem rind<whole corn stover (WCS)<stem pith<leaf sheath<leaf. Glucan conversion using periodic peristalsis increased by 10-17% before 24h compared with that using incubator shaker. Stem pith, leaf sheath, leaf, and WCS showed lower hardness and total work in texture profile analysis, resulting in higher glucan conversion compared with stem node and stem rind. Periodic peristalsis reduced hardness and total work before 24h, which was consistent with increased glucan conversion. Periodic peristalsis was an effective strategy to increase high solids enzymatic hydrolysis efficiency of different corn stover morphological fractions.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
36
|
Malgat R, Faure F, Boudaoud A. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure. FRONTIERS IN PLANT SCIENCE 2016; 7:1351. [PMID: 27656191 PMCID: PMC5013127 DOI: 10.3389/fpls.2016.01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work.
Collapse
Affiliation(s)
- Richard Malgat
- Institut National de Recherche en Informatique et en AutomatiqueGrenoble, France
- Laboratoire Jean Kuntzmann, Centre National de la Recherche ScientifiqueGrenoble, France
- Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut National de la Recherche Agronomique, Centre National de la Recherche ScientifiqueLyon, France
| | - François Faure
- Institut National de Recherche en Informatique et en AutomatiqueGrenoble, France
- Laboratoire Jean Kuntzmann, Centre National de la Recherche ScientifiqueGrenoble, France
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut National de la Recherche Agronomique, Centre National de la Recherche ScientifiqueLyon, France
- *Correspondence: Arezki Boudaoud
| |
Collapse
|