1
|
Farnaghi M, Poursamar SA, Farzan M, Farzan M, Kouhi M, Rafienia M. Enhancing the biological characteristics of aminolysis surface-modified 3D printed nanocomposite polycaprolactone/nanohydroxyapatite scaffold via gelatin biomacromolecule immobilization: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2025; 249:114505. [PMID: 39799608 DOI: 10.1016/j.colsurfb.2025.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups. Subsequently, gelatin solutions were applied to the scaffolds, and crosslinking with EDC/NHS was performed to increase coating strength. Contact angle measurements revealed a significantly increased surface hydrophilicity post-aminolysis. Aminolysis facilitated uniform gelatin coating formation and distribution. Subsequently, crosslinking enhanced coating durability. The addition of gelatin coating resulted in a notable 20 % increase in scaffold mechanical strength and more than 50 % rise in Young's modulus and exhibited enhancement of biodegradability and bioactivity. Gelatin coated scaffolds also demonstrated improved cell viability and adhesion and over two times higher expression of OPN and ALP genes, suggesting improved biological properties. In addition, in vivo bone formation studies verified the biological enhancement of scaffolds. Utilizing an immobilized crosslinked gelatin biomacromolecule coating effectively enhanced the biological characteristics of 3D printed scaffolds and their potential applications as bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Mohammadhasan Farnaghi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Yadav S, Arya DK, Kanaujiya S, Kumar S, Kushwaha D, Kumar A, Pandey P, Kapoor DD, Kumar A, Gupta RK, Ahmed IZ, Rajinikanth PS. Poly(vinyl alcohol)/Polycaprolactone Nanofiber Enriched with Lichenysin against Multidrug-Resistance Bacterial Infection in Wound Healing: In Vitro Studies and In Vivo Evaluation in Wistar Rats. ACS APPLIED BIO MATERIALS 2025; 8:2847-2866. [PMID: 40074674 DOI: 10.1021/acsabm.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of Bacillus licheniformis, has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats. The LCN-loaded PVA-PCL nanofiber scaffolds were characterized for their physicochemical, antimicrobial, in vitro cell line on L-929, hemocompatibility, flow cytometry, in vivo infectious wound healing, and enzyme-linked immuno sorbent assay (ELISA). Morphological analysis via scanning electron microscopy (SEM) images confirmed smooth and porous nanofibers with diameters in the range 200-300 nm. Fourier transform infrared and X-ray diffraction (XRD) results demonstrated the structural integrity, chemical compatibility, and amorphous nature of developed scaffolds. The scaffolds loaded with LCN demonstrated excellent water retention, moderate biodegradability, and sustained release of LCN for up to 72 h. Mechanical characterization demonstrated a robust tensile strength conducive to wound healing applications. Antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) showed substantial antibacterial and antibiofilm activity. In vitro cell line studies showed enhanced cell adhesion, proliferation, migration, and viability, signifying the cytocompatibility of these scaffolds. In vivo studies demonstrated exceptional infectious wound healing potential in diabetic rats. These findings indicate that LCN-enriched PVA-PCL scaffolds hold significant potential as a therapeutic strategy for the treatment of MDR infectious wounds in diabetic rats through a multifaceted approach.
Collapse
Affiliation(s)
- Swati Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Deepshikha Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Anit Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Deshraj Deepak Kapoor
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Abhishek Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Ravi Kr Gupta
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Iffat Zareen Ahmed
- Department of Bioengineering, Natural Products Laboratory, IIRC 2, Integral University, Lucknow 226026, India
| | - Parauvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
- School of Pharmacy, Taylor's University, Lakeside Campus, Subang Jaya, Kuala Lumpur 47500, Malaysia
| |
Collapse
|
3
|
Pourmadadi M, Abdouss H, Mohammadi Shabestari S, Hosseini SM, Ajalli N, Abdouss M, Esmaeely Neisiany R. Development of Poly(ether sulfone)/Poly(vinyl alcohol)/Magnesium-Doped Carbon Quantum Dot Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2025. [PMID: 40227581 DOI: 10.1021/acsbiomaterials.4c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Bone tissue engineering plays a critical role in overcoming the limitations of traditional bone grafts and implants by enhancing bone integration and regeneration. In this study, we developed a novel membrane scaffold comprising poly(ether sulfone) (PES), poly(vinyl alcohol) (PVA), and magnesium-doped carbon quantum dots (CQDs.Mg) for potential bone tissue engineering applications. Four distinct scaffold formulations (PE-CM0, PE-CM2, PE-CM3, and PE-CM4) were developed using a film applicator machine. The morphology and porosity of the scaffolds, characterized via scanning electron microscopy (SEM), revealed increased porosity with higher CQDs.Mg content. Fourier transform infrared spectroscopy (FTIR) confirmed the successful integration of functional groups from each component. Water contact angle (WCA) measurements indicated improved hydrophilicity with the addition of CQDs.Mg, which is beneficial for cell attachment and proliferation. Mechanical testing demonstrated that the scaffolds maintained adequate tensile strength and flexibility, with PE-CM3 and PE-CM4 exhibiting superior properties. Swelling assays indicated enhanced water absorption with increased CQDs.Mg content, while 14-day degradation studies showed excellent structural stability. Biocompatibility was also assessed using L929 and NIH3T3 cell lines, with cytotoxicity assays demonstrating nearly 100% cell viability across all samples. These findings suggest that the PES/PVA/CQDs.Mg scaffolds exhibit a promising combination of mechanical robustness, hydrophilicity, and biocompatibility, making them strong candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
| |
Collapse
|
4
|
Plath AMS, de Lima PHC, Amicone A, Bissacco EG, Mosayebi M, Berton SBR, Ferguson SJ. Toward low-friction and high-adhesion solutions: Emerging strategies for nanofibrous scaffolds in articular cartilage engineering. BIOMATERIALS ADVANCES 2025; 169:214129. [PMID: 39642717 DOI: 10.1016/j.bioadv.2024.214129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Aging, trauma, pathology, and poor natural tissue regeneration are the leading causes of osteoarthritis (OA), an articular cartilage disease. Electrospun scaffolds have gained attention as potential matrices for the treatment of OA because of their high degree of ECM mimicry, which suits chondrocyte migration, adhesion, and proliferation. However, none of the products recently introduced in the market are nanofiber-based. This study aimed to review the scope and tribology of nanofibrous articular cartilage scaffolds. Herein, we briefly discuss cartilage lubrication and strategies for promoting cell adhesion in electrospun materials. Next, we discuss the emerging need to study the biotribological properties of scaffolds. Finally, we review new perspectives on surface functionalization, surface segregation, Janus membranes, layer-by-layer fabrication, and nanofibrous composites. We conclude that cell adhesion and low-friction conciliation remain poorly explored in the recent literature. The topic intersection might create novelties in the field.
Collapse
Affiliation(s)
| | - Pedro Henrique Correia de Lima
- Department of Physics and Chemistry, São Paulo State University (UNESP), Av. Brasil, 56, 15385007 Ilha Solteira, Brazil.
| | - Alessio Amicone
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| | | | - Mahdieh Mosayebi
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| | | | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Koupai AA, Varshosaz J, Dobakhti F, Shekarchizadeh F, Al-Musawi MH, Kamil MM, Turki SH, Valizadeh H, Sharifianjazi F, Tavakoli M, Mirhaj M. Vanillin and IGF1-loaded dual-layer multifunctional wound dressing with micro-nanofibrous structure for full-thickness wound healing acceleration. Int J Pharm 2025; 671:125231. [PMID: 39824266 DOI: 10.1016/j.ijpharm.2025.125231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Multifunctional dual-layer wound dressings hold significant promise for comprehensive full-thickness wound management by closely mimicking the native skin structure and features. Herein, we employed an innovative approach utilizing electrospinning techniques to develop a dual-layer dressing comprising a microfibrous Ecoflex®-Vanillin (Ex-Vnil) top layer (TL) and a nanofibrous Soluplus®-Insulin-like growth factor-1 (Sol-IGF1) bottom layer (BL). The tensile properties of dual-layer wound dressings were within the standard range for use in skin tissue regeneration. The TL exhibited hydrophobic properties with a contact angle value of 92.4° and significant antibacterial activity, mimicking the epidermis of the skin, thereby preventing fluid and bacterial penetration. Moreover, the dual-layer wound dressing demonstrated standard water vapour transmission rate, with 91.2 % release of IGF1 and 66.8 % release of Vnil within 5 days. Notably, the fabricated dual-layer dressing promoted cell behaviour and exhibited a significant angiogenesis effect and accelerated healing of full-thickness wound, achieving 96.4 % closure after 14 days, attributed to reduced inflammation, early blood vessel formation, and enhanced collagen density. Our findings underscore the potential of the fabricated dual-layer dressing as an innovative solution in full-thickness wound care.
Collapse
Affiliation(s)
- Azin Abedi Koupai
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184 Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Faramarz Dobakhti
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184 Iran.
| | | | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Somya H Turki
- Department of Plant Biotechnology College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia 0171 Tbilisi, Georgia; Department of Civil Engineering, School of Science and Technology, The University of Georgia 0171 Tbilisi, Georgia
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 Iran.
| |
Collapse
|
6
|
Moody A, Bhattarai N. Enhanced Cell Proliferation, Migration, and Fibroblast Differentiation with Electrospun PCL-Zinc Scaffolds Coated with Fibroblast-Derived ECM. ACS OMEGA 2025; 10:4427-4441. [PMID: 39959067 PMCID: PMC11822518 DOI: 10.1021/acsomega.4c07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Despite tremendous improvement in the development of tissue-regenerating materials, a promising solution that provides an optimal environment remains to be accomplished. Here, we report a composite nanofiber biomaterial scaffold as a promising solution that closely mimics the extracellular matrix (ECM) to improve cell viability, proliferation, and migration. Initially, nanofiber composites of polycaprolactone (PCL) and zinc (Zn) metal were fabricated by using electrospinning. The resulting PCL-Zn (PZ) nanofibers effectively guided the growth of NIH3T3 fibroblasts for 7 days, forming a fibroblast cell sheet. The PZ fibers were decellularized to remove autologous and allogenic cellular antigens while leaving an intact ECM with structural and functional components. The resulting nanofiber PCL-Zn-ECM (PZE) showcased a natural ECM bonded to the surface, providing a bioactive element to the interconnected fibers. The reseeding of NIH3T3 fibroblasts demonstrated the scaffold's excellent capacity to direct and support cell proliferation. Furthermore, in vitro cytotoxicity analysis and morphological staining confer the scaffold's biocompatibility. The PZE scaffold presents a promising development in which these scaffolds can be further used for various regenerative medicine applications including wound healing.
Collapse
Affiliation(s)
- Alexis Moody
- Department
of Applied Science and Technology, North
Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Narayan Bhattarai
- Department
of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| |
Collapse
|
7
|
Salahshour Y, Rastegarzadeh S, Motamedi H, Hoveizi E. Fabrication of zein nanofibrous scaffold containing Scrophularia striata extract for biomedical application. J Biol Eng 2025; 19:15. [PMID: 39934856 DOI: 10.1186/s13036-025-00486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Skin wounds have the potential to rapidly become infected, with bacteria having the ability to quickly penetrate to the skin's deeper layers. Then they enter the lymph nodes and spread throughout the body; therefore, all wounds should be cleaned and have a permanent cover. Modern wound dressings with effective antibacterial and therapeutic properties are required to create a sterile environment for the acceleration of healing. The aim of this work was to prepare zein electrospun nanofibers containing Scrophularia striata extract for wound healing promotion. Electrospun nanofibers made of zein, a natural polymer, have attracted a lot of attention due to their biocompatibility and biodegradability. The prepared nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X‑ray analysis (EDX), water contact angle test, and Fourier transform infrared spectroscopy (FT-IR). The parameters affected by the electrospinning process were investigated and optimized. The results revealed that the zein nanofibers (25% w/v, zein) containing Scrophularia striata extract (6.7% w/v) had a smooth and bead-free morphology with improved surface hydrophilicity. The measurement of water contact angle confirmed that nanofibers containing extract showed higher wettability (64.9°) compared to fibers without extract (119.8), so the proposed mat adequately moisturizes the wound environment. The antimicrobial studies show that Scrophularia striata extract incorporated nanofibers has the ability to inhibit the growth of both gram-negative and gram-positive bacteria. The biophenols release profile indicated that nanofibrous mat can release more effective substances to promote wound healing. The biocompatibility and biodegradability of nanofibrous scaffold containing Scrophularia striata extract tested in in vivo and in vitro conditions show a significantly higher survival rate of fibroblast cells. In addition, macroscopic and histological observations confirmed that the implanted nanofibers containing the extract did not exhibit any signs of inflammation or redness after a month when inserted beneath the skin of mice surrounded by vessels containing epidermis.
Collapse
Affiliation(s)
- Yasin Salahshour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saadat Rastegarzadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hossein Motamedi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biorefinery Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Shabanloo R, Montazer M, Farahani A, Karimi N. A review on surface modification of nanofibrous textiles for diverse applications: Focus on medical uses. Heliyon 2025; 11:e41863. [PMID: 39897825 PMCID: PMC11783446 DOI: 10.1016/j.heliyon.2025.e41863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Electrospun nanofibers with a high surface area are attractive materials for biomedical applications. They have potential use in scaffolds, drug delivery, bio face masks, wound dressings, and biosensors. Various surface modifications have been developed to improve their chemical and physical properties. These modifications include physical, chemical, biological, and nano-treatment approaches. The physical modification includes annealing, stretching, and plasma treatment. Chemical modification includes functionalization with chemical groups, while biological modification involves coating with proteins, enzymes, or antibodies. Nanotreatment approaches use nanomaterials to modify the surface of nanofibers. These modifications enhance the characteristics of the biomedical nanofibers, making them more effective and efficient for their intended applications. The review summarizes the latest research on electrospun nanofiber modification procedures, strategies, and utilities for various biomedical applications. It provides insights into the conditions and requirements of each modification approach and their effects on the properties of the nanofibers. Moreover, it emphasizes the importance of functionalizing nanofibers to meet the most important specific requirements and the potential of electrospun nanofibers in various biomedical applications.
Collapse
Affiliation(s)
- Rasool Shabanloo
- Textile Engineering Department, School of Materials and Advanced Processes Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, School of Materials and Advanced Processes Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Ali Farahani
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Nesa Karimi
- Textile Engineering Department, School of Materials and Advanced Processes Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
9
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
11
|
Ding C, Lv H, Huang S, Hu M, Liao Y, Meng X, Gao M, Chen H, Feng X, Wu Z. The Application Progress of Nonthermal Plasma Technology in the Modification of Bone Implant Materials. ACS Biomater Sci Eng 2024; 10:5893-5914. [PMID: 39227180 DOI: 10.1021/acsbiomaterials.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the accelerating trend of global aging, bone damage caused by orthopedic diseases, such as osteoporosis and fractures, has become a shared international event. Traffic accidents, high-altitude falls, and other incidents are increasing daily, and the demand for bone implant treatment is also growing. Although extensive research has been conducted in the past decade to develop medical implants for bone regeneration and healing of body tissues, due to their low biocompatibility, weak bone integration ability, and high postoperative infection rates, pure titanium alloys, such as Ti-6A1-4V and Ti-6A1-7Nb, although widely used in clinical practice, have poor induction of phosphate deposition and wear resistance, and Ti-Zr alloy exhibits a lack of mechanical stability and processing complexity. In contrast, the Ti-Ni alloy exhibits toxicity and low thermal conductivity. Nonthermal plasma (NTP) has aroused widespread interest in synthesizing and modifying implanted materials. More and more researchers are using plasma to modify target catalysts such as changing the dispersion of active sites, adjusting electronic properties, enhancing metal carrier interactions, and changing their morphology. NTP provides an alternative option for catalysts in the modification processes of oxidation, reduction, etching, coating, and doping, especially for materials that cannot tolerate thermodynamic or thermosensitive reactions. This review will focus on applying NTP technology in bone implant material modification and analyze the overall performance of three common types of bone implant materials, including metals, ceramics, and polymers. The challenges faced by NTP material modification are also discussed.
Collapse
Affiliation(s)
- Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hao Lv
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230602, China
| | - Suoni Huang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mengxuan Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanxinyue Liao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xinyue Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaojun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
13
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Liguori A, Zhao J, Di Gesù R, De Marco R, Gualandi C, Calonghi N, Pollicino A, Gentilucci L, Focarete ML. Peptide direct growth on poly(acrylic acid)/poly(vinyl alcohol) electrospun fibers coated with branched poly(ethylenimine): A solid-phase approach for scaffolds biofunctionalization. Colloids Surf B Biointerfaces 2024; 241:114052. [PMID: 38917667 DOI: 10.1016/j.colsurfb.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Due to their resemblance to the fibrillar structure of the extracellular matrix, electrospun nanofibrous meshes are currently used as porous and mechanically stable scaffolds for cell culture. In this study, we propose an innovative methodology for growing peptide sequences directly onto the surface of electrospun nanofibers. To achieve this, electrospun fibers were produced from a poly(acrylic acid)/poly(vinyl alcohol) blend that was thermally crosslinked and subjected to a covalent coating of branched poly(ethylenimine). The exposed amino functionalities on the fiber surface were then used for the direct solid-phase synthesis of the RGD peptide sequence. In contrast to established strategies, mainly involving the grafting of pre-synthesized peptides onto the polymer chains before electrospinning or onto the nanofibers surface, this method allows for the concurrent synthesis and anchoring of peptides to the substrate, with potential applications in combinatorial chemistry. The incorporation of this integrin-binding motive significantly enhanced the nanofibers' ability to capture human cervical carcinoma (HeLa) cells, selected as a proof of concept to assess the functionalities of the developed material.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Roberto Di Gesù
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Ri.MED Foundation, Bandiera st. 11, Palermo 90133, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna 40136, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna 40126, Italy
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, Catania 95125, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| |
Collapse
|
15
|
Shen W, Mao Y, Ge X, Xu J, Hu J, Ao F, Wu S, Yan P. PLA tissue-engineered scaffolds loaded with sustained-release active substance chitosan nanoparticles: Modeling BSA-bFGF as the active substance. Int J Biol Macromol 2024; 274:133120. [PMID: 38876244 DOI: 10.1016/j.ijbiomac.2024.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The utilization of basic fibroblast growth factor (bFGF) in the development of tissue-engineered scaffolds is both challenging and imperative. In our pursuit of creating a scaffold that aligns with the natural healing process, we initially fabricated chitosan-bFGF nanoparticles (CS-bFGF NPs) through electrostatic spraying. Subsequently, polylactic acid (PLA) fiber was prepared using electrospinning technique, and the CS-bFGF NPs were uniformly embedded within the pores of porous PLA fibers. Scanning electron micrographs illustrate the smooth surface of the nanoparticles, showing a porous structure intricately attached to PLA fibers. Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses provided conclusive evidence that the CS-bFGF NPs were uniformly distributed throughout the porous PLA fibers, forming a robust physical bond through electrostatic adsorption. The resultant scaffolds exhibited commendable mechanical properties and hydrophilicity, facilitating a sustained-release for 72 h. Furthermore, the biocompatibility and degradation performance of the scaffolds were substantiated by monitoring conductivity and pH changes in pure water over different time intervals, complemented by scanning electron microscopy (SEM) observations. Cell experiments confirmed the cytocompatibility of the scaffolds. In animal studies, the group treated with 16 % NPs/Scaffold demonstrated the highest epidermal reconstruction rate. In summary, our developed materials present a promising candidate for serving as a tissue engineering scaffold, showcasing exceptional biocompatibility, sustained-release characteristics, and substantial potential for promoting epidermal regeneration.
Collapse
Affiliation(s)
- Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing, Nan Jing 210037, China
| | - Jingwen Xu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaru Hu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pi Yan
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Megha M, Mohan CC, Joy A, Unnikrishnan G, Thomas J, Haris M, Bhatt SG, Kolanthai E, Senthilkumar M. Vanadium and strontium co-doped hydroxyapatite enriched polycaprolactone matrices for effective bone tissue engineering: A synergistic approach. Int J Pharm 2024; 659:124266. [PMID: 38788971 DOI: 10.1016/j.ijpharm.2024.124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Scientific research targeted at enhancing scaffold qualities has increased significantly during the last few decades. This emphasis frequently centres on adding different functions to scaffolds in order to increase their usefulness as instruments in the field of regenerative medicine. This study aims to investigate the efficacy of a multifunctional sustainable polymer scaffold, specifically Polycaprolactone (PCL) embedded with hydroxyapatite co-doped with vanadium and strontium (HVS), for bone tissue engineering applications. Polycaprolactone was used to fabricate the scaffold, while hydroxyapatite co-doped with vanadium and strontium (HVS) served as the nanofiller. A thorough investigation of the physicochemical and biological characteristics of the HVS nanofiller was carried out using cutting-edge techniques including Dynamic Light Scattering (DLS), and X-ray Photoelectron Spectroscopy (XPS) and in vitro cell studies. A cell viability rate of more than 70 % demonstrated that the synthesised nanofiller was cytotoxic, but in an acceptable range. The mechanical, biological, and physicochemical properties of the scaffold were extensively evaluated after the nanofiller was integrated. The water absorption characteristics of scaffold were enhanced by the addition of HVS nanofillers, leading to increased swelling, porosity, and hydrophilicity. These improvements speed up the flow of nutrients and the infiltration of cells into the scaffold. The scaffold has been shown to have important properties that stimulate bone cell activity, including better biodegradability and improved mechanical strength, which increased from 5.30 ± 0.37 to 10.58 ± 0.42 MPa. Further, its considerable antimicrobial qualities, blood-compatible nature, and capacity to promote biomineralization strengthen its appropriateness for usage in biomedical applications. Mainly, enhanced Alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) activity, and excellent cell adhesive properties, indicating the outstanding osteogenic potential observed in rat bone marrow-derived stromal cells (rBMSC). These combined attributes highlight the pivotal role of these nanocomposite scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Chandni C Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India; College of Arts and Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jibu Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Haris
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sarita G Bhatt
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | | |
Collapse
|
17
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
18
|
Melo SF, Nondonfaz A, Aqil A, Pierrard A, Hulin A, Delierneux C, Ditkowski B, Gustin M, Legrand M, Tullemans BME, Brouns SLN, Nchimi A, Carrus R, Dejosé A, Heemskerk JWM, Kuijpers MJE, Ritter J, Steinseifer U, Clauser JC, Jérôme C, Lancellotti P, Oury C. Design, manufacturing and testing of a green non-isocyanate polyurethane prosthetic heart valve. Biomater Sci 2024; 12:2149-2164. [PMID: 38487997 DOI: 10.1039/d3bm01911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity.
Collapse
Affiliation(s)
- Sofia F Melo
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Alicia Nondonfaz
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Céline Delierneux
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Bartosz Ditkowski
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Gustin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Legrand
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Bibian M E Tullemans
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Sanne L N Brouns
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Alain Nchimi
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Raoul Carrus
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Astrid Dejosé
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Johan W M Heemskerk
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Jan Ritter
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Johanna C Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| |
Collapse
|
19
|
González-Duque MI, Flórez AM, Torres MA, Fontanilla MR. Composite Zonal Scaffolds of Collagen I/II for Meniscus Regeneration. ACS Biomater Sci Eng 2024; 10:2426-2441. [PMID: 38549452 DOI: 10.1021/acsbiomaterials.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.
Collapse
Affiliation(s)
- Martha Isabel González-Duque
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Adriana Matilde Flórez
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - María Alejandra Torres
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Marta Raquel Fontanilla
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| |
Collapse
|
20
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
21
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
22
|
Dadashpour M, Kalavi S, Gorgzadeh A, Nosrati R, Firouzi Amandi A, Mohammadikhah M, Rezai Seghin Sara M, Alizadeh E. Preparation and in vitro evaluation of cell adhesion and long-term proliferation of stem cells cultured on silibinin co-embedded PLGA/Collagen electrospun composite nanofibers. Exp Cell Res 2024; 435:113926. [PMID: 38228225 DOI: 10.1016/j.yexcr.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.
Collapse
Affiliation(s)
- Mehdi Dadashpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirsasan Gorgzadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Guilan, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Erdoğan N, Şen Karaman D, Yıldız Ö, Özdemir GD, Ercan UK. Mesoporous silica nanoparticles accommodating electrospun nanofibers as implantable local drug delivery system processed by cold atmospheric plasma and spin coating approaches. Biomed Mater 2024; 19:025015. [PMID: 38181435 DOI: 10.1088/1748-605x/ad1bb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Nanofibers (NF) and nanoparticles are attractive for drug delivery to improve the drug bioavailability and administration. Easy manipulation of NF as macroscopic bulk material give rise to potential usages as implantable local drug delivery systems (LLDS) to overcome the failures of systemic drug delivery systems such as unmet personalized needs, side effects, suboptimal dosage. In this study, poly(ethylene glycol) polyethyleneimine (mPEG:PEI) copolymer blended polyϵ-caprolactone NFs, NFblendaccommodating mesoporous silica nanoparticles (MSN) as the implantable LLDS was achieved by employing spin coating and cold atmospheric plasma (CAP) as the post-process for accommodation on NFblend. The macroporous morphology, mechanical properties, wettability, andin vitrocytocompatibility of NFblendensured their potential as an implantable LLDS and superior features compared to neat NF. The electron microscopy images affirmed of NFblendrandom fiber (average diameter 832 ± 321 nm) alignments and accessible macropores before and after MSN@Cur accommodation. The blending of polymers improved the elongation of NF and the tensile strength which is attributed as beneficial for implantable LLDS. CAP treatment could significantly improve the wettability of NF observed by the contact angle changes from ∼126° to ∼50° which is critical for the accommodation of curcumin-loaded MSN (MSN@Cur) andin vitrocytocompatibility of NF. The combined CAP and spin coating as the post-processes was employed for accommodating MSN@Cur on NFblendwithout interfering with the electrospinning process. The post-processing aided fine-tuning of curcumin dosing (∼3 µg to ∼15 µg) per dose unit and sustained zero-order drug release profile could be achieved. Introducing of MSN@Cur to cells via LLDS promoted the cell proliferation compared to MSN@Cur suspension treatments and assigned as the elimination of adverse effects by nanocarriers by the dosage form integration. All in all, NFblend-MSN@Cur was shown to have high potential to be employed as an implantable LLDS. To the best of our knowledge, this is the first study in which mPEG:PEI copolymer blend NF are united with CAP and spin coating for accommodating nano-drug carriers, which allows for NF both tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Nursu Erdoğan
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| | - Özlem Yıldız
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gizem Dilara Özdemir
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
24
|
Hashemi SS, Mohammadi AA, Kian M, Rafati A, Ghaedi M, Ghafari B. Fabrication and evaluation of the regenerative effect of a polycaprolactone/chitosan nanofibrous scaffold containing bentonite nanoparticles in a rat model of deep second-degree burn injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:223-232. [PMID: 38234665 PMCID: PMC10790295 DOI: 10.22038/ijbms.2023.69930.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/13/2023] [Indexed: 01/19/2024]
Abstract
Objectives In the present study, we evaluated the effect of a nanofibrous scaffold including polycaprolactone (PCL), chitosan (CHT), and bentonite nanoparticles (Ben-NPS) on wound healing in order to introduce a novel dressing for burn wounds. Materials and Methods PCL, PCL/CHT, and PCL/CHT/Ben-NPS nanofibrous scaffolds were fabricated by the electrospinning technique. Their structural and physiochemical characteristics were investigated by Fourier-transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy (SEM), tensile strength, water contact angle, as well as, swelling and degradation profiles test. The disc diffusion assay was carried out to investigate the antibacterial potential of the scaffolds. In addition, the cell viability and proliferation ability of human dermal fibroblasts (HDFs) on the scaffolds were assessed using MTT assay as well as SEM imaging. The wound-healing property of the nanofibrous scaffolds was evaluated by histopathological investigations during 3,7, and 14 days in a rat model of burn wounds. Results SEM showed that all scaffolds had three-dimensional, beadles-integrated structures. Adding Ben-NPS into the PCL/CHT polymeric composite significantly enhanced the mechanical, swelling, and antibacterial properties. HDFs had the most cell viability and proliferation values on the PCL/CHT/Ben-NPS scaffold. Histopathological evaluation in the rat model revealed that dressing animal wounds with the PCL/CHT/Ben-NPS scaffold promotes wound healing. Conclusion The PCL/CHT/Ben-NPS scaffold has promising regenerative properties for accelerating skin wound healing.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
| | - Mojtaba Ghaedi
- Department of Surgery, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Fars, Iran
| | - Behzad Ghafari
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
25
|
Almasi-Jaf A, Shamloo A, Shaygani H, Seifi S. Fabrication of heparinized bi-layered vascular graft with PCL/PU/gelatin co-electrospun and chitosan/silk fibroin/gelatin freeze-dried hydrogel for improved endothelialization and enhanced mechanical properties. Int J Biol Macromol 2023; 253:126807. [PMID: 37689302 DOI: 10.1016/j.ijbiomac.2023.126807] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Fabricating a biocompatible small-diameter vascular graft (< 6 mm) with mechanical properties similar to the natural vein and adding good anti-thrombogenic, endothelialization, and hyperplasia properties remains a challenge. To this end, we fabricated a heparinized bilayer graft to address this problem. The proposed bilayer sample consisted of a heparinized polycaprolactone (PCL), polyurethane (PU), and gelatin (G) co-electrospun inner layer and chitosan, gelatin, and silk fibroin freeze-dried hydrogel crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) outer layer. The samples exhibited great ultimate stress, Young's module, and suture retention of 4.16±0.25MPa, 8.24±2.59MPa and 4.83±0.31N, respectively. The heparin release assay indicated a sustained release profile of around 70% after 4weeks, which can be attributed to the excellent control via emulsion. Furthermore, the heparinized samples demonstrated good anti-thrombogenic properties investigated in the platelet adhesion assay. For the outer layer, the hydrogel crosslinked with non-toxic materials was prepared through the freeze-drying method to achieve high porosity (64.63%), suitable for smooth muscle cell activity. Moreover, inner and outer layers showed high cell viability toward endothelial (78.96%) and smooth muscle cells (57.77%), respectively. Overall, the proposed heparinized graft exhibited excellent potential for vascular graft regeneration.
Collapse
Affiliation(s)
- Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| |
Collapse
|
26
|
Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, Khan R, Wahit MU. Fabrication of amine-functionalized and multi-layered PAN-(TiO 2)-gelatin nanofibrous wound dressing: In-vitro evaluation. Int J Biol Macromol 2023; 253:127169. [PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Center for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| |
Collapse
|
27
|
Patty DJ, Nugraheni AD, Ana ID, Aminatun, Sari YW, Gunawarman, Yusuf Y. The enhanced properties and bioactivity of poly-ε-caprolactone/poly lactic- co-glycolic acid doped with carbonate hydroxyapatite-egg white. RSC Adv 2023; 13:34427-34438. [PMID: 38024968 PMCID: PMC10667861 DOI: 10.1039/d3ra07486b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Synthetic polymers, such as PCL and PLGA, are among the main material choices in tissue engineering because of their stable structures and strong mechanical properties. In this study, we designed polycaprolactone (PCL)/polylactic-co-glycolate acid (PLGA) nanofibers doped with carbonate hydroxyapatite (CHA) and egg white (EW) with enhanced properties. The addition of CHA and EW significantly influenced the properties and morphology of PCL/PLGA nanofibers; whereby the CHA substitution (PCL/PLGA/CHA) greatly increased the mechanical properties related to the Young's modulus and EW doping (PCL/PLGA/CHA/EW) increased the elongation at break. Bioactivity tests of PCL/PLGA/CHA/EW after immersion in the SBF for 3 to 9 days showed increased fiber diameters and a good swelling capacity that could improve cell adhesion, while biocompatibility tests with NIH-3T3 fibroblast cells showed good cell proliferation (85%) after 48 h and antibacterial properties against S. aureus.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura Ambon Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| | - Aminatun
- Department of Physics, Universitas Airlangga Surabaya 60115 Indonesia
| | - Yessie Widya Sari
- Department of Physics, Institut Pertanian Bogor Bogor 16680 Indonesia
| | - Gunawarman
- Department of Mechanical Engineering, Universitas Andalas Padang 25163 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| |
Collapse
|
28
|
Jafar H, Ahmed K, Rayyan R, Sotari S, Buqain R, Ali D, Al Bdour M, Awidi A. Plasma-Treated Electrospun PLGA Nanofiber Scaffold Supports Limbal Stem Cells. Polymers (Basel) 2023; 15:4244. [PMID: 37959924 PMCID: PMC10648479 DOI: 10.3390/polym15214244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence to PLGA membranes. PLGA scaffolds were prepared by electrospinning on a custom-made target drum spinning at a rate of 1000 rpm with a flow rate of 0.5 mL/h and voltage at 20 kV, then treated with oxygen plasma at 30 mA using a vacuum coater. Scaffolds were characterized by SEM, mechanically by tensile testing, and thermally by DSC and TGA. In vitro degradation was measured by weight loss and pH drop. Wettability was assessed through water uptake and contact angles measurements. Human limbal stem cells (hLSCs) were isolated and seeded on the scaffolds. Cell attachment and cytotoxicity assay were evaluated on day 1 and 5 after cell seeding. SEM showed regular fiber morphology with diameters ranging between 150 nm and 950 nm. Tensile strength demonstrated similar average stress values for both plasma- and non-plasma-treated samples. Scaffolds also showed gradual degradability over a period of 7-8 weeks. Water contact angle and water absorption were significantly enhanced for plasma-treated scaffolds, indicating a favorable increase in their hydrophilicity. Scaffolds have also supported hLSCs growth and attachment with no signs of cytotoxicity. We have characterized a nanofiber electrospun plasma-treated PLGA scaffold to investigate the mechanical and biological properties and the ability to support the attachment and maintenance of hLSCs.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (H.J.)
| | - Khalid Ahmed
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rama Rayyan
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Shorouq Sotari
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (H.J.)
| | - Rula Buqain
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (H.J.)
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (H.J.)
| | - Muawyah Al Bdour
- Department of Ophthalmology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (H.J.)
- Thrombosis Homeostasis Laboratory, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
29
|
Khaleghi N, Mojtabapour Z, Rashvandi Z, Mohammadi A, Forouzandeh-Malati M, Ganjali F, Zarei-Shokat S, Kashtiaray A, Taheri-Ledari R, Maleki A. Fast synthesis of [1,2,3]-triazole derivatives on a Fe/Cu-embedded nano-catalytic substrate. NANOSCALE ADVANCES 2023; 5:4911-4924. [PMID: 37705809 PMCID: PMC10496887 DOI: 10.1039/d3na00326d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023]
Abstract
Triazoles are biologically important compounds that play a crucial role in biomedical applications. In this study, we present an innovative and eco-friendly nanocatalyst system for synthesizing compounds via the click reaction. The system is composed of Arabic gum (AG), iron oxide magnetic nanoparticles (Fe3O4 MNPs), (3-chloropropyl) trimethoxysilane (CPTMS), 2-aminopyridine (AP), and Cu(i) ions. Using AP as an anchor for Cu(i) ions and Fe3O4 MNPs allows facile separation using an external magnet. The hydrophilic nature of the Fe3O4@AG/AP-Cu(i) nanocomposite makes it highly efficient in water as a green solvent. The highest reaction efficiency (95.0%) was achieved in H2O solvent with 50.0 mg of nanocatalyst for 60 min at room temperature. The reaction yield remained consistent for six runs, demonstrating the stability and effectiveness of the catalyst.
Collapse
Affiliation(s)
- Nima Khaleghi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahrasadat Mojtabapour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| |
Collapse
|
30
|
Hashemi SS, Mohammadi AA, Rajabi SS, Sanati P, Rafati A, Kian M, Zarei Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BIOIMPACTS : BI 2023; 13:275-287. [PMID: 37645024 PMCID: PMC10460768 DOI: 10.34172/bi.2023.26317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 08/31/2023]
Abstract
Introduction Recently, the application of nanofibrous mats for dressing skin wounds has received great attention. In this study, we aimed to fabricate and characterize an electrospun nanofibrous mat containing polycaprolactone (PCL), chitosan (CTS), and propolis for use as a tissue-engineered skin substitute. Methods Raw propolis was extracted, and its phenolic and flavonoid contents were measured. The physiochemical and biological properties of the fabricated mats, including PCL, PCL/CTS, and PCL/CTS/Propolis were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical analysis, swelling and degradation behaviors, contact angle measurement, cell attachment, DAPI staining, and MTT assay. On the other hand, the drug release pattern of propolis from the PCL/CTS/Propolis scaffold was determined. A deep second-degree burn wound model was induced in rats to investigate wound healing using macroscopical and histopathological evaluations. Results The results revealed that the propolis extract contained high amounts of phenolic and flavonoid compounds. The fabricated scaffold had suitable physicochemical and mechanical properties. Uniform, bead-free, and well-branched fibers were observed in SEM images of mats. AFM analysis indicated that the addition of CTS and propolis to PCL elevated the surface roughness. MTT results revealed that the electrospun PCL/CTS/Propolis mat was biocompatible. The presence of fibroblast cells on the PCL/CTS/Propolis mats was confirmed by DAPI staining and SEM images. Also, propolis was sustainably released from the PCL/CTS/Propolis mat. The animal study revealed that addition of propolis significantly improved wound healing. Conclusion The nanofibrous PCL/CTS/Propolis mat can be applied as a tissue-engineered skin substitute for healing cutaneous wounds, such as burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Seyedeh-Somayeh Rajabi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Iran National Elite Foundation, Tehran, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Zarei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
31
|
Senturk F, Kocum IC, Seyitoglu MI, Aksan ES. A quartz crystal microbalance (QCM)-based easy setup device for real-time mass change detection under high-power RF plasma. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:064704. [PMID: 37862482 DOI: 10.1063/5.0142016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 10/22/2023]
Abstract
Sensing technologies serve a crucial role in monitoring and testing surface properties in biosensors, thin films, and many other industries. Plasma treatments are routinely used in most of these technologies to modify the surfaces of materials. However, due to the high radio frequency (RF) noise in plasma processes, real-time surface tracking is still rather difficult. In this study, we aim to construct an easy-to-set up mass change detection system capable of operating under RF plasma conditions. For this purpose, we have presented a novel technique that utilizes the quartz crystal microbalance sensor to detect mass changes in different plasma environments. The constructed device was then tested under 13.56 MHz, 100 W plasma atmosphere. The results showed that the resonance frequency of a crystal was successfully measured with 1.0 Hz resolution under the impact of plasma-induced high power of RF noise. Moreover, as a preliminary study, we used ethylenediamine (EDA) to track changes in resonance frequency under plasma conditions and observed noise-free signals in frequency-voltage curves. Furthermore, the system's sensitivity was found to be 3.8 ng/Hz, with a test molecule (EDA) deposition of about 380 ng in the RF plasma atmosphere. Overall, this study focused on creating a relatively new approach for detecting the real-time mass change in a strong RF environment, which we believe could be an improved and easy-to-set up technique for plasma-based processes such as surface coating, etching, and activation.
Collapse
Affiliation(s)
- Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Türkiye
| | | | | | - Eda Sevval Aksan
- Department of Biomedical Engineering, Baskent University, Ankara, Türkiye
| |
Collapse
|
32
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
33
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Niemczyk-Soczynska B, Kolbuk D, Mikulowski G, Ciechomska IA, Sajkiewicz P. Methylcellulose/agarose hydrogel loaded with short electrospun PLLA/laminin fibers as an injectable scaffold for tissue engineering/3D cell culture model for tumour therapies. RSC Adv 2023; 13:11889-11902. [PMID: 37077262 PMCID: PMC10107725 DOI: 10.1039/d3ra00851g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
This research aimed at designing and fabricating a smart thermosensitive injectable methylcellulose/agarose hydrogel system loaded with short electrospun bioactive PLLA/laminin fibers as a scaffold for tissue engineering applications or 3D cell culture models. Considering ECM-mimicking morphology and chemical composition, such a scaffold is capable of ensuring a hospitable environment for cell adhesion, proliferation, and differentiation. Its viscoelastic properties are beneficial from the practical perspective of minimally invasive materials that are introduced to the body via injection. Viscosity studies showed the shear-thinning character of MC/AGR hydrogels enabling the potential injection ability of highly viscous materials. Injectability tests showed that by tuning the injection rate, even a high amount of short fibers loaded inside of hydrogel could be efficiently injected into the tissue. Biological studies showed the non-toxic character of composite material with excellent viability, attachment, spreading, and proliferation of fibroblasts and glioma cells. These findings indicate that MC/AGR hydrogel loaded with short PLLA/laminin fibers is a promising biomaterial for both tissue engineering applications and 3D tumor culture models.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawinskiego 5b St. 02-106 Warsaw Poland
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawinskiego 5b St. 02-106 Warsaw Poland
| | - Grzegorz Mikulowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawinskiego 5b St. 02-106 Warsaw Poland
| | - Iwona A Ciechomska
- Nencki Institute of Experimental Biology PAS 3 Pasteur Street 02-093 Warsaw Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawinskiego 5b St. 02-106 Warsaw Poland
| |
Collapse
|
35
|
Chen Z, Xiao L, Hu C, Shen Z, Zhou E, Zhang S, Wang Y. Aligned Lovastatin-loaded Electrospun Nanofibers Regulate Collagen Organization and Reduce Scar Formation. Acta Biomater 2023; 164:240-252. [PMID: 37075962 DOI: 10.1016/j.actbio.2023.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Excessive scar formation caused by cutaneous injury leads to pruritus, pain, contracture, dyskinesia, and unpleasant appearance. Functional wound dressings are designed to accelerate wound healing and reduce scar formation. In this study, we fabricated aligned or random polycaprolactone/silk fibroin electrospun nanofiber membranes with or without lovastatin loading, and then evaluated their scar-inhibitory effects on wounds under a specific tension direction. The nanofiber membranes exhibited good controlled-release performance, mechanical properties, hydrophilicity, and biocompatibility. Furthermore, nanofibers' perpendicular placement to the tension direction of the wound most effectively reduced scar formation (the scar area decreased by 66.9%) and promoted skin regeneration in vivo. The mechanism was associated with its aligned nanofibers regulated collagen organization in the early stage of wound healing. Moreover, lovastatin-loaded nanofibers inhibited myofibroblast differentiation and migration. Both tension direction-perpendicular topographical cues and lovastatin synergistically inhibited mechanical transduction and fibrosis progression, further reducing scar formation. In summary, our study may provide an effective scar prevention strategy in which individualized dressings can be designed according to the local mechanical force direction of patients' wounds, and the addition of lovastatin can further inhibit scar formation. STATEMENT OF SIGNIFICANCE: In vivo, cells and collagen are always arranged parallel to the tension direction. However, the aligned topographic cues themselves promote myofibroblast differentiation and exacerbate scar formation. Electrospun nanofibers' perpendicular placement to the tension direction of the wound most effectively reduces scar formation and promotes skin regeneration in vivo. The mechanism is associated with its tension direction-perpendicular nanofibers reregulate collagen organization in the early stage of wound healing. In addition, tension direction-perpendicular topographical cue and lovastatin could inhibit mechanical transduction and fibrosis progression synergistically, further reducing scar formation. This study proves that combining topographical cues of wound dressing and drugs would be a promising therapy for clinical scar management.
Collapse
Affiliation(s)
- Zuhan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China; Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoyu Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Zixia Shen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
36
|
Wang Q, Ma J, Chen S, Wu S. Designing an Innovative Electrospinning Strategy to Generate PHBV Nanofiber Scaffolds with a Radially Oriented Fibrous Pattern. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071150. [PMID: 37049244 PMCID: PMC10096766 DOI: 10.3390/nano13071150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
Electrospinning has contributed substantially to the construction of nanofibrous scaffolds for potential tissue engineering and regenerative medicine applications. However, conventional electrospinning only has the ability to generate and collect nanofiber scaffolds with a randomly oriented fibrous pattern, which lack the necessary cell alignment guidance function. In this study, a novel electrospinning fiber-collecting device was designed and developed by setting a series of small pin-ring-structured collectors on a large plain plate. Specifically, we demonstrated that the pin-ring-structured collectors, which were constructed by inserting a metal pin into the center of a metal ring, could collect the as-electrospun nanofibers with radially oriented structures in an innovative manner. We first investigated the suitable polymeric concentration for electrospinning poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and the optimum electrospinning concentration of PHBV was found to be 12% (w/v) PHBV dissolved in hexafluoroisopropyl alcohol (HFIP). Then, 12% (w/v) PHBV solution was electrospun into radially oriented nanofiber scaffolds using our novel electrospinning strategy, and their various performances were further compared with conventionally randomly oriented nanofiber scaffolds that were also produced from 12% (w/v) PHBV solution. The results showed that the radially oriented PHBV nanofiber scaffolds exhibited obviously enhanced mechanical properties and decreased hydrophobicity compared with the randomly oriented PHBV nanofiber scaffold controls. Importantly, the biological properties of radially oriented PHBV nanofiber scaffolds were also demonstrated to be enhanced, compared with randomly oriented PHBV nanofiber scaffolds, by effectively inducing cell alignment and significantly promoting cell proliferation. In sum, the present study indicates that our as-prepared nanofiber scaffolds with a radially oriented pattern are of great interest for advanced applications, such as wound dressings and tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Qiuyu Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Shaojuan Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Shaohua Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
37
|
Ravindran Girija A, Strudwick X, Balasubramanian S, Palaninathan V, Nair SD, Cowin AJ. Collagen Functionalization of Polymeric Electrospun Scaffolds to Improve Integration into Full-Thickness Wounds. Pharmaceutics 2023; 15:pharmaceutics15030880. [PMID: 36986741 PMCID: PMC10056316 DOI: 10.3390/pharmaceutics15030880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Electrospun fibers are widely studied in regenerative medicine for their ability to mimic the extracellular matrix (ECM) and provide mechanical support. In vitro studies indicated that cell adhesion and migration is superior on smooth poly(L-lactic acid) (PLLA) electrospun scaffolds and porous scaffolds once biofunctionalized with collagen. Methods: The in vivo performance of PLLA scaffolds with modified topology and collagen biofunctionalization in full-thickness mouse wounds was assessed by cellular infiltration, wound closure and re-epithelialization and ECM deposition. Results: Early indications suggested unmodified, smooth PLLA scaffolds perform poorly, with limited cellular infiltration and matrix deposition around the scaffold, the largest wound area, a significantly larger panniculus gape, and lowest re-epithelialization; however, by day 14, no significant differences were observed. Collagen biofunctionalization may improve healing, as collagen-functionalized smooth scaffolds were smallest overall, and collagen-functionalized porous scaffolds were smaller than non-functionalized porous scaffolds; the highest re-epithelialization was observed in wounds treated with collagen-functionalized scaffolds. Conclusion: Our results suggest that limited incorporation of smooth PLLA scaffolds into the healing wound occurs, and that altering surface topology, particularly by utilizing collagen biofunctionalization, may improve healing. The differing performance of the unmodified scaffolds in the in vitro versus in vivo studies demonstrates the importance of preclinical testing.
Collapse
Affiliation(s)
| | - Xanthe Strudwick
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Vivekanandan Palaninathan
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-0815, Saitama, Japan
| | - Sakthikumar Dasappan Nair
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-0815, Saitama, Japan
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- Correspondence: ; Tel.: +61-883025018
| |
Collapse
|
38
|
Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. BIOMATERIALS ADVANCES 2023; 149:213406. [PMID: 37054582 DOI: 10.1016/j.bioadv.2023.213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.
Collapse
|
39
|
Murugapandian R, Clement S, Uthirapathy V. Fabrication and In Vitro Drug Delivery Evaluation of Cephalexin Monohydrate-Loaded PLA:PVA/HAP:TiO 2 Fibrous Scaffolds for Bone Regeneration. ACS OMEGA 2023; 8:5017-5032. [PMID: 36777593 PMCID: PMC9910077 DOI: 10.1021/acsomega.2c07701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Owing to the excellent osteoconductive property of hydroxyapatite, we aimed to design a cephalexin monohydrate-loaded PLA:PVA/HAP:TiO2 nanofibrous scaffold to improve the drug delivery efficiency toward bone regenerative applications. In this study, HAP:TiO2 (anatase and rutile phases) samples were prepared by a coprecipitation method, which were later blended with PLA:PVA polymeric solution (with and without the drug) to fabricate a nanofibrous matrix via the electrospinning technique. All the prepared samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, porosity, and tensile strength tests. Further, in vitro biodegradation and the drug-releasing ability were examined by varying the concentration of cephalexin monohydrate in the composite matrix. Deposition of the apatite layer on the scaffolds was examined after incubation in simulated body fluid solution to confirm the bioactivity of the prepared nanofibers. Biocompatibility by the MTT assay and osteogenic differentiation by ARS staining were evaluated by culturing MG63 cells on PLA:PVA/HAP:TiO2 nanofibers, which could ensue better support for cell proliferation. Consequently, the sustained release profile and better biocompatibility of the scaffolds revealed a strong potential use in bone regenerative applications.
Collapse
Affiliation(s)
- Rama Murugapandian
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| | - Simona Clement
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Vijayalakshmi Uthirapathy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| |
Collapse
|
40
|
Hamdan N, Khodir WKWA, Hamid SA, Nasir MHM, Hamzah AS, Cruz-Maya I, Guarino V. PCL/Gelatin/Graphene Oxide Electrospun Nanofibers: Effect of Surface Functionalization on In Vitro and Antibacterial Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:488. [PMID: 36770449 PMCID: PMC9921190 DOI: 10.3390/nano13030488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of resistance to pathogenic bacteria has resulted from the misuse of antibiotics used in wound treatment. Therefore, nanomaterial-based agents can be used to overcome these limitations. In this study, polycaprolactone (PCL)/gelatin/graphene oxide electrospun nanofibers (PGO) are functionalized via plasma treatment with the monomeric groups diallylamine (PGO-M1), acrylic acid (PGO-M2), and tert-butyl acrylate (PGO-M3) to enhance the action against bacteria cells. The surface functionalization influences the morphology, surface wettability, mechanical properties, and thermal stability of PGO nanofibers. PGO-M1 and PGO-M2 exhibit good antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas PGO-M3 tends to reduce their antibacterial properties compared to PGO nanofibers. The highest proportion of dead bacteria cells is found on the surface of hydrophilic PGO-M1, whereas live cells are colonized on the surface of hydrophobic PGO-M3. Likewise, PGO-M1 shows a good interaction with L929, which is confirmed by the high levels of adhesion and proliferation with respect to the control. All the results confirm that surface functionalization can be strategically used as a tool to engineer PGO nanofibers with controlled antibacterial properties for the fabrication of highly versatile devices suitable for different applications (e.g., health, environmental pollution).
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
41
|
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of
3D
printed sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
42
|
Shadman-Manesh V, Gholipour-Kanani A, Najmoddin N, Rabbani S. Preclinical evaluation of the polycaprolactone-polyethylene glycol electrospun nanofibers containing egg-yolk oil for acceleration of full thickness burns healing. Sci Rep 2023; 13:919. [PMID: 36650249 PMCID: PMC9845205 DOI: 10.1038/s41598-023-28065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Considering the great potential of egg yolk oil (EYO) in management of burn wounds and superb biological properties of polycaprolactone (PCL) and polyethylene glycol (PEG), hereby, a PCL-PEG-EYO scaffold was developed by electrospinning method for burn healing. The physico-chemical characterizations were performed using SEM, FTIR and contact angle tests. The biological properties of the fabricated scaffolds were evaluated by antibacterial test, in vitro cell culturing, MTT assay and in vivo experiments. The SEM images of PCL-PEG-EYO nanofibers demonstrated a uniform bead-free morphology with 191 ± 61 nm diameter. The fabricated scaffold revealed hydrophilicity with the water contact angel of 77°. No cytotoxicity was observed up to 7 days after cell culturing onto the PCL-PEG-EYO nanofibrous surface. The presence of EYO in the PCL-PEG-EYO scaffold meaningfully improved the cell viability, proliferation and attachment compared to PCL-PEG scaffold. Moreover, the PCL-PEG-EYO scaffolds demonstrated antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa bacteria strain. Finally, a statistically significant enhancement in wound closure, re-epithelialization, angiogenesis and collagen synthesis was observed at the end of 21-day treatment period using PCL-PEG-EYO nanofibrous scaffold. Overall, the PCL-PEG-EYO nanofibrous scaffolds demonstrated a great potential in management of full thickness burn wounds in vivo.
Collapse
Affiliation(s)
- Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Gholipour-Kanani
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran.
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Rabbani
- Research Center of Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
43
|
Surface Modified Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2023. [DOI: 10.1007/12_2022_143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Asl MA, Karbasi S, Beigi-Boroujeni S, Benisi SZ, Saeed M. Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications. Int J Biol Macromol 2022; 223:524-542. [PMID: 36356869 DOI: 10.1016/j.ijbiomac.2022.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Blend nanofibers composed of synthetic and natural polymers with carbon nanomaterial, have a great potential for bone tissue engineering. In this study, the electrospun nanocomposite scaffolds based on polyhydroxybutyrate(PHB)-Starch-multiwalled carbon nanotubes (MWCNTs) were fabricated with different concentrations of MWCNTs including 0.5, 0.75 and 1 wt%. The synthesized scaffolds were characterized in terms of morphology, porosity, thermal and mechanical properties, biodegradation, bioactivity, and cell behavior. The effect of the developed structures on MG63 cells was determined by real-time PCR quantification of collagen type I, osteocalcin, osteopontin and osteonectin genes. Our results showed that the scaffold containing 1 wt% MWCNTs presented the lowest fiber diameter (124 ± 44 nm) with a porosity percentage above 80 % and the highest tensile strength (24.37 ± 0.22 MPa). The addition of MWCNTs has a positive effect on surface roughness and hydrophilicity. The formation of calcium phosphate sediments on the surface of the scaffolds after immersion in SBF is observed by SEM and verified by EDS and XRD analysis.MG63 cells were well cultured on the scaffold containing MWCNTs and presented more cell viability, ALP secretion, calcium deposition and gene expression compared to the scaffolds without MWCNTs. The PHB-starch-1wt.%MWCNTs scaffold can be considerable for studies of supplemental bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Abdollahi Asl
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 1469669191, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
46
|
Pérez-Nava A, Espino-Saldaña AE, Pereida-Jaramillo E, Hernández-Vargas J, Martinez-Torres A, Vázquez-Lepe MO, Mota-Morales JD, Frontana Uribe BA, Betzabe González-Campos J. Surface collagen functionalization of electrospun poly(vinyl alcohol) scaffold for tissue engineering. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022; 28:3337-3350. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023]
Abstract
The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.
Collapse
Affiliation(s)
- Janani Indrakumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
48
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
49
|
Murugarren N, Roig‐Sanchez S, Antón‐Sales I, Malandain N, Xu K, Solano E, Reparaz JS, Laromaine A. Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201947. [PMID: 35861401 PMCID: PMC9475533 DOI: 10.1002/advs.202201947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i.e., using the well-known 3ω-method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1.63 W mK-1 in the direction of the aligned fibers versus 0.3 W mK-1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials.
Collapse
Affiliation(s)
- Nerea Murugarren
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Soledad Roig‐Sanchez
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Irene Antón‐Sales
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Nanthilde Malandain
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Kai Xu
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Eduardo Solano
- NCD‐SWEET beamlineALBA Synchrotron Light SourceCarrer de la Llum 2−26Cerdanyola del VallèsBarcelona08290Spain
| | | | - Anna Laromaine
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| |
Collapse
|
50
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|