1
|
Kong F, Kou Y, Zhang X, Tian Y, Yang B, Wang W. Comparative Analysis of Metabolites of Wild and Cultivated Notopterygium incisum from Different Origins and Evaluation of Their Anti-Inflammatory Activity. Molecules 2025; 30:468. [PMID: 39942574 PMCID: PMC11820002 DOI: 10.3390/molecules30030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
The dried rhizome of Notopterygium incisum (NI) from the Umbelliferae family, genuinely produced in Sichuan, China, is a classic traditional Chinese medicinal herb for treating wind-dampness arthralgia. Due to scarce natural resources, wild NI is gradually being replaced by cultivated types. However, knowledge is limited regarding the differences in chemical composition and pharmacological effects between wild and cultivated NI and between Sichuan-grown and other-region-grown NI. In this study, a plant metabolomics strategy, based on GC-MS and UHPLC-Orbitrap MS, was employed to compare metabolic profiles between wild and cultivated NI and between cultivated NI from Sichuan and cultivated NI from Gansu and Qinghai. In total, 195 metabolites were identified, and the biosynthetic pathways of coumarins and phenolic acids, which were the most abundant secondary metabolites in NI, were summarized. Additionally, seven key metabolic intermediates were uncovered, revealing the reasons for the differences in metabolic profiles between wild and cultivated NI. The anti-inflammatory effect of wild and cultivated NI was verified by inflammatory gene expression and neutrophil count using a zebrafish yolk sac inflammation model. Overall, this study presents information on the types and synthesis of pharmacodynamic substances in NI and provides a basis for its cultivation and applications.
Collapse
Affiliation(s)
- Fukang Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.K.); (Y.K.); (X.Z.)
| | - Yannan Kou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.K.); (Y.K.); (X.Z.)
| | - Xu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.K.); (Y.K.); (X.Z.)
| | - Yue Tian
- School of Biomedicine, Beijing City University, No. 6 Huanghoudian Road, Haidian District, Beijing 100094, China;
| | - Bin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.K.); (Y.K.); (X.Z.)
| | - Weihao Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.K.); (Y.K.); (X.Z.)
| |
Collapse
|
2
|
Tsochatzis ED, Gika H, Theodoridis G, Maragou N, Thomaidis N, Corredig M. Microplastics and nanoplastics: Exposure and toxicological effects require important analysis considerations. Heliyon 2024; 10:e32261. [PMID: 38882323 PMCID: PMC11180319 DOI: 10.1016/j.heliyon.2024.e32261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) pervade both the environment and the food chain, originating from the degradation of plastic materials from various sources. Their ubiquitous presence raises concerns for ecosystem safety, as well as the health of animals and humans. While evidence suggests their infiltration into mammalian and human tissues and their association with several diseases, the precise toxicological effects remain elusive and require further investigation. MPs and NPs sample preparation and analytical methods are quite scattered without harmonized strategies to exist at the moment. A significant challenge lies in the limited availability of methods for the chemical characterization and quantification of these contaminants. MPs and NPs can undergo further degradation, driven by abiotic or biotic factors, resulting in the formation of cyclic or linear oligomers. These oligomers can serve as indicative markers for the presence or exposure to MPs and NPs. Moreover, recent finding concerning the aggregation of oligomers to form NPs, makes their analysis as markers very important. Recent advancements have led to the development of sensitive and robust analytical methods for identifying and (semi)quantifying these oligomers in environmental, food, and biological samples. These methods offer a valuable complementary approach for determining the presence of MPs and NPs and assessing their risk to human health and the environment.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Niki Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Milena Corredig
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
| |
Collapse
|
3
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
4
|
Xu L, Li Z, Wang L, Xu Z, Zhang S, Zhang Q. Progress in polystyrene biodegradation by insect gut microbiota. World J Microbiol Biotechnol 2024; 40:143. [PMID: 38530548 DOI: 10.1007/s11274-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
He L, Yang SS, Ding J, Chen CX, Yang F, He ZL, Pang JW, Peng BY, Zhang Y, Xing DF, Ren NQ, Wu WM. Biodegradation of polyethylene terephthalate by Tenebrio molitor: Insights for polymer chain size, gut metabolome and host genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133446. [PMID: 38219578 DOI: 10.1016/j.jhazmat.2024.133446] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Polyethylene terephthalate (PET or polyester) is a commonly used plastic and also contributes to the majority of plastic wastes. Mealworms (Tenebrio molitor larvae) are capable of biodegrading major plastic polymers but their degrading ability for PET has not been characterized based on polymer chain size molecular size, gut microbiome, metabolome and transcriptome. We verified biodegradation of commercial PET by T. molitor larvae in a previous report. Here, we reported that biodegradation of commercial PET (Mw 29.43 kDa) was further confirmed by using the δ13C signature as an indication of bioreaction, which was increased from - 27.50‰ to - 26.05‰. Under antibiotic suppression of gut microbes, the PET was still depolymerized, indicating that the host digestive enzymes could degrade PET independently. Biodegradation of high purity PET with low, medium, and high molecular weights (MW), i.e., Mw values of 1.10, 27.10, and 63.50 kDa with crystallinity 53.66%, 33.43%, and 4.25%, respectively, showed a mass reduction of > 95%, 86%, and 74% via broad depolymerization. Microbiome analyses indicated that PET diets shifted gut microbiota to three distinct structures, depending on the low, medium, and high MW. Metagenome sequencing, transcriptomic, and metabolic analyses indicated symbiotic biodegradation of PET by the host and gut microbiota. After PET was fed, the host's genes encoding degradation enzymes were upregulated, including genes encoding oxidizing, hydrolyzing, and non-specific CYP450 enzymes. Gut bacterial genes for biodegrading intermediates and nitrogen fixation also upregulated. The multiple-functional metabolic pathways for PET biodegradation ensured rapid biodegradation resulting in a half-life of PET less than 4 h with less negative impact by PET MW and crystallinity.
Collapse
Affiliation(s)
- Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Li He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Bhanot V, Mamta, Gupta S, Panwar J. Phylloplane fungus Curvularia dactyloctenicola VJP08 effectively degrades commercially available PS product. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119920. [PMID: 38157570 DOI: 10.1016/j.jenvman.2023.119920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Polystyrene (PS), a widely produced plastic with an extended carbon (C-C) backbone that resists microbial attack, is produced in enormous quantities throughout the World. Naturally occurring plasticizers such as plant cuticle and lignocelluloses share similar properties to synthetic plastics such as hydrophobicity, structural complexity, and higher recalcitrance to degradation. In due course of time, phytopathogenic fungi have evolved strategies to overcome these limitations and utilize lignocellulosic waste for their nutrition. The present investigation focuses on the utilization of phylloplane fungus, Curvularia dactyloctenicola VJP08 towards its ability to colonize and degrade commercially available PS lids. The fungus was observed to densely grow onto PS samples over an incubation period of 30 days. The morphological changes showcased extensive fungal growth with mycelial imbrication invading the PS surface for carbon extraction leading to the appearance of cracks and holes in the PS surface. It was further confirmed by EDS analysis which indicated that carbon was extracted from PS for the fungal growth. Further, 3.57% decrease in the weight, 8.8% decrease in the thickness and 2 °C decrease in the glass transition temperature (Tg) confirmed alterations in the structural integrity of PS samples by the fungal action. GC-MS/MS analysis of the treated PS samples also showed significant decrease in the concentration of benzene and associated aromatic derivatives confirming the degradation of PS samples and subsequent utilization of generated by-products by the fungus for growth. Overall, the present study confirmed the degradation and utilization of commercially available PS samples by phylloplane fungus C. dactyloctenicola VJP08. These findings establish a clear cross-assessment of the phylloplane fungi for their prospective use in the development of degradation strategies of synthetic plastics.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Mamta
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
7
|
Lv S, Li Y, Zhao S, Shao Z. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int J Mol Sci 2024; 25:593. [PMID: 38203764 PMCID: PMC10778777 DOI: 10.3390/ijms25010593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.
Collapse
Affiliation(s)
- Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
8
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
9
|
Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:173. [PMID: 38204025 PMCID: PMC10779931 DOI: 10.3390/ma17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Dominika Piwowarska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-237 Łódź, Poland
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-232 Łódź, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna Str., 90-364 Łódź, Poland
| | - Natalia Festinger
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
10
|
Spínola-Amilibia M, Illanes-Vicioso R, Ruiz-López E, Colomer-Vidal P, Rodriguez-Ventura F, Peces Pérez R, Arias CF, Torroba T, Solà M, Arias-Palomo E, Bertocchini F. Plastic degradation by insect hexamerins: Near-atomic resolution structures of the polyethylene-degrading proteins from the wax worm saliva. SCIENCE ADVANCES 2023; 9:eadi6813. [PMID: 37729416 PMCID: PMC10511194 DOI: 10.1126/sciadv.adi6813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Plastic waste management is a pressing ecological, social, and economic challenge. The saliva of the lepidopteran Galleria mellonella larvae is capable of oxidizing and depolymerizing polyethylene in hours at room temperature. Here, we analyze by cryo-electron microscopy (cryo-EM) G. mellonella's saliva directly from the native source. The three-dimensional reconstructions reveal that the buccal secretion is mainly composed of four hexamerins belonging to the hemocyanin/phenoloxidase family, renamed Demetra, Cibeles, Ceres, and a previously unidentified factor termed Cora. Functional assays show that this factor, as its counterparts Demetra and Ceres, is also able to oxidize and degrade polyethylene. The cryo-EM data and the x-ray analysis from purified fractions show that they self-assemble primarily into three macromolecular complexes with striking structural differences that likely modulate their activity. Overall, these results establish the ground to further explore the hexamerins' functionalities, their role in vivo, and their eventual biotechnological application.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ramiro Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Elena Ruiz-López
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Pere Colomer-Vidal
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Francisco Rodriguez-Ventura
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Rosa Peces Pérez
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Clemente F. Arias
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, GISC, Madrid, Spain
| | - Tomas Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Federica Bertocchini
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
11
|
Cherkashina NI, Pavlenko ZV, Pushkarskaya DV, Denisova LV, Domarev SN, Ryzhikh DA. Synthesis and Properties of Polystyrene Composite Material with Hazelnut Shells. Polymers (Basel) 2023; 15:3212. [PMID: 37571106 PMCID: PMC10422431 DOI: 10.3390/polym15153212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we evaluated the potential use of hazelnut shell powder in the production of a composite material. Polystyrene was used as a polymer matrix. This work presents the results of modifying hazelnut powder particles to create a polystyrene shell on their surfaces. Modification of the filler increased its contact angle wetted with water from θ=60.16±1.03° to θ=87.02±1.10°. Composite materials containing from 10 to 50 wt.% of modified hazelnut shell powder were prepared and studied. As a result of the experiments, it was found that the composites have optimal physical, mechanical, and operational properties at the following ratio: polystyrene 60-80 wt.%, modified hazelnut shell powder 20-40 wt.%. If the introduction of polystyrene was more than 90 wt.%, the flexural strength and Vickers hardness were quite low at the load of 200 g, and accordingly, the durability of such materials was not satisfactory. These samples are characterized by small percentages of hazelnut shells; therefore, the resulting material will be of pale, unsaturated color. The upper limit of the working temperature range for the composite lies between 265.0-376.0 °C, depending on the percentage of the hazelnut shell powder filling.
Collapse
Affiliation(s)
- Natalia Igorevna Cherkashina
- Department of Theoretical and Applied Chemistry, Belgorod State Technological University Named after V.G. Shukhov, 308012 Belgorod, Russia; (Z.V.P.); (D.V.P.); (L.V.D.); (S.N.D.); (D.A.R.)
| | | | | | | | | | | |
Collapse
|
12
|
Zhu Y, Xie Q, Ye J, Wang R, Yin X, Xie W, Li D. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3068. [PMID: 36833759 PMCID: PMC9965259 DOI: 10.3390/ijerph20043068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1'-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ruzhen Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xudong Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
13
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
14
|
Rodríguez-Fonseca MF, Ruiz-Balaguera S, Valero MF, Sánchez-Suárez J, Coy-Barrera E, Díaz LE. Freshwater-Derived Streptomyces: Prospective Polyvinyl Chloride (PVC) Biodegraders. ScientificWorldJournal 2022; 2022:6420003. [PMID: 36419778 PMCID: PMC9678452 DOI: 10.1155/2022/6420003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2024] Open
Abstract
Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6-61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.
Collapse
Affiliation(s)
- Maria Fernanda Rodríguez-Fonseca
- Process Design and Management, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Sonia Ruiz-Balaguera
- Conservation, Bioprospecting, and Sustainable Development Group, Environmental Engineering Program, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Manuel Fernando Valero
- Energy, Materials and Environment Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Jeysson Sánchez-Suárez
- Environmental Engineering Program, School of Exact Sciences and Engineering, Universidad Sergio Arboleda, Bogotá 111071, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luis Eduardo Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
15
|
Wang X, Tang T. Effects of Polystyrene Diet on the Growth and Development of Tenebrio molitor. TOXICS 2022; 10:608. [PMID: 36287887 PMCID: PMC9610515 DOI: 10.3390/toxics10100608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of Tenebrio molitor in degrading polystyrene foam through its gut microbes has become the focus of research. However, little literature has reported the effect of feeding on polystyrene foam on the growth and development of Tenebrio molitor. In this study, we investigated the impacts of different polystyrene by evaluating the vital signs of Tenebrio molitor fed in the intestines and excrement fluids using RNA-Seq t.echnology and then verifying the transcriptome sequencing findings using qRT-PCR technology. The average weight of Tenebrio molitor larvae in the wheat bran group increased significantly. Tenebrio molitor larvae in the PS group, on the other hand, didn't grow as much and had a much lower average weight than those in the wheat bran group. Compared to the bran group, the excrement of Tenebrio molitor fed only on polystyrene foam was flaky and coarse, increased nitrogen and phosphorus atomic concentration ratios by about 50%, decreased potassium atomic concentration ratios by 63%, with the enterocytes and circular muscle of Tenebrio molitor falling as well. Kyoto Encyclopedia of Genes and Genomes enrichment indicated that the differential genes were mainly related to metabolic pathways. There was an agreement between qRT-PCR and RNA-Seq analyses for the growth and development genes chitinase, heat shock protein 70, and cytochrome P450. Only feeding polystyrene foam shall lead to the growth and development retardation of Tenebrio molitor.
Collapse
Affiliation(s)
- Xiaosu Wang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Tianle Tang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
16
|
Sanluis-Verdes A, Colomer-Vidal P, Rodriguez-Ventura F, Bello-Villarino M, Spinola-Amilibia M, Ruiz-Lopez E, Illanes-Vicioso R, Castroviejo P, Aiese Cigliano R, Montoya M, Falabella P, Pesquera C, Gonzalez-Legarreta L, Arias-Palomo E, Solà M, Torroba T, Arias CF, Bertocchini F. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat Commun 2022; 13:5568. [PMID: 36195604 PMCID: PMC9532405 DOI: 10.1038/s41467-022-33127-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Plastic degradation by biological systems with re-utilization of the by-products could be a future solution to the global threat of plastic waste accumulation. Here, we report that the saliva of Galleria mellonella larvae (wax worms) is capable of oxidizing and depolymerizing polyethylene (PE), one of the most produced and sturdy polyolefin-derived plastics. This effect is achieved after a few hours’ exposure at room temperature under physiological conditions (neutral pH). The wax worm saliva can overcome the bottleneck step in PE biodegradation, namely the initial oxidation step. Within the saliva, we identify two enzymes, belonging to the phenol oxidase family, that can reproduce the same effect. To the best of our knowledge, these enzymes are the first animal enzymes with this capability, opening the way to potential solutions for plastic waste management through bio-recycling/up-cycling. The crucial first step in the biodegradation of polyethylene plastic is oxidation of the polymer. This has traditionally required abiotic pre-treatment, but now Bertocchini and colleagues report two wax worm enzymes capable of catalyzing this oxidation and subsequent degradation at room temperature.
Collapse
Affiliation(s)
- A Sanluis-Verdes
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - P Colomer-Vidal
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - F Rodriguez-Ventura
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - M Bello-Villarino
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | | | - E Ruiz-Lopez
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - R Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - P Castroviejo
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | | | - M Montoya
- CIB-CSIC, Department of Molecular Biomedicine, Madrid, Spain
| | - P Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - C Pesquera
- Department of Chemistry and Process & Resource Engineering, Inorganic Chemistry Group-University of Cantabria, Nanomedicine-IDIVAL, Santander, Spain
| | - L Gonzalez-Legarreta
- Department of Chemistry and Process & Resource Engineering, Inorganic Chemistry Group-University of Cantabria, Nanomedicine-IDIVAL, Santander, Spain
| | - E Arias-Palomo
- CIB-CSIC, Department of Structural and Chemical Biology, Madrid, Spain
| | - M Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - T Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - C F Arias
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain.
| | - F Bertocchini
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain.
| |
Collapse
|
17
|
Du Y, Yao C, Dou M, Wu J, Su L, Xia W. Oxidative degradation of pre-oxidated polystyrene plastics by dye decolorizing peroxidases from Thermomonospora curvata and Nostocaceae. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129265. [PMID: 35739782 DOI: 10.1016/j.jhazmat.2022.129265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of PS has attracted lots of public attentions due to its environmental friendliness. However, no specific PS degrading enzyme has been identified yet. Dye decolorizing peroxidases (DyPs) are heme-containing peroxidases named for the ability to degrade a variety of organic dyes. Herein, the abilities of two DyPs from Thermomonospora curvata (TcDyP) and Nostocaceae (AnaPX) to degrade PS were evaluated. Preoxidation methods by ultraviolet (UV) irradiation and chemical oxidants were developed to initially activate C-C bonds in the PS skeleton. DyPs degradation caused obvious etching and enhanced hydrophilicity of UV-PS films, and also generated new CO and C-OH groups. The cleavage of activated C-C bonds by DyPs was experimentally proven by analyzing the degradation products of UV-PS and model substrates. Furthermore, better pre-oxidation was obtained by using chemical oxidants KMnO4/H2SO4 and mCPBA to oxidize PS materials in dissolved state. And AnaPX exhibited stronger degradation effects on KMnO4/H2SO4-PS and mCPBA-PS by causing greater changes in functional groups CO, C-O, -OH groups and substituted benzenes and higher molecular weight reductions of 19.7% and 31.0%, respectively. To our knowledge, this is the first report on the identification of PS-degrading enzymes that provides experimental evidence.
Collapse
Affiliation(s)
- Yanyi Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Congyu Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingde Dou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
18
|
Tsochatzis ED, Berggreen IE, Vidal NP, Roman L, Gika H, Corredig M. Cellular lipids and protein alteration during biodegradation of expanded polystyrene by mealworm larvae under different feeding conditions. CHEMOSPHERE 2022; 300:134420. [PMID: 35367488 DOI: 10.1016/j.chemosphere.2022.134420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The present study reports the biodegradation of polystyrene (PS) by mealworm (Tenebrio molitor) following different feeding regimes. Changes in lipids and protein were studied to evaluate possible differences in the growth and metabolic pathways of the insects depending on the diets. Thermo-gravimetric analysis of the excretions (frass) revealed a decrease in the molecular mass of the PS polymers. The insects' biomass contained less protein when PS was part of the diet, suggesting that the insects undergo a certain level of stress compared to control diets. The frass also contained lower amount of nitrogen content compared to that from insects fed a control diet. NH4+ and other cations involved in biochemical processes were also measured in insects' frass, including potassium, sodium, magnesium, and calcium, combined with a small pH change. The decrease in the mineral content of the frass was attributed to increased cellular activity in PS-fed insects. A higher amount of ceramides and cardiolipins, biomarkers of apoptosis, were also found in association with PS consumption. It was concluded that the insects could metabolize PS, but this caused an increase in its stress levels.
Collapse
Affiliation(s)
- E D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| | - I E Berggreen
- Aarhus University, Department of Animal Science, Blichers Alle 20, 8830, Tjele, Denmark
| | - N Prieto Vidal
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000, Aarhus, Denmark
| | - L Roman
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - H Gika
- Food Omics GR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - M Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| |
Collapse
|
19
|
Przemieniecki SW, Kosewska A, Kosewska O, Purwin C, Lipiński K, Ciesielski S. Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154758. [PMID: 35339543 DOI: 10.1016/j.scitotenv.2022.154758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to identify the extent to which a diet of oatmeal and polymers affects the development of mealworms, their microbiome, the biochemical activity of their digestive system, and their feed-metabolizing capacity. With a polystyrene diet, feed loss was most significant, as indicated by FTIR (Fourier-transform infrared spectroscopy) of frass, which showed that polystyrene was the only compound that was chemically modified. Compared to the control diet, mealworm larvae developed best on polyethylene regranulate (PE-reg), quickly transiting from one developmental stage to another with minor mass loss. A lignocellulose-based diet was the least beneficial for mealworm development. A polystyrene diet was most beneficial in terms of the protein content in larvae, but the contents and quality (usefulness as food) of fatty acids in the insects fed these wastes were significantly lower than in the control insects. For each diet, specific microbial cultures formed, and the presence of protozoa and various biochemical activities suggested different survival strategies and assimilation mechanisms facilitating survival. Despite profound changes in the microbiota and biochemistry of the digestive tract of mealworms fed waste-based diets, this study indicates their potential for utilizing PE-reg and polystyrene.
Collapse
Affiliation(s)
- Sebastian Wojciech Przemieniecki
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
| | - Agnieszka Kosewska
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Olga Kosewska
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krzysztof Lipiński
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Sławomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| |
Collapse
|
20
|
Yang SS, Ding MQ, Ren XR, Zhang ZR, Li MX, Zhang LL, Pang JW, Chen CX, Zhao L, Xing DF, Ren NQ, Ding J, Wu WM. Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154458. [PMID: 35278547 DOI: 10.1016/j.scitotenv.2022.154458] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Yellow and dark mealworms (Tenebrio molitor and Tenebrio obscurus) biodegrade commercial polyethylene (PE) materials at a high rate. We examined the impact of physical and chemical properties on biodegradation using high purity microplastics (MPs). These included high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE), all with different weight average molecular weights (Mw) and different crystallinity degrees in T. molitor and T. obscurus larvae. The biodegradation extent in the two mealworms was similar but strongly depended on the polymer type in sequence, since LDPE > LLDPE> HDPE (with respective Mw of 222.5, 110.5 and 182 kDa). When LDPE MPs with Mw of 0.84, 6.4 and 106.8 kDa and HDPE with Mw of 52, 105 and 132.7 kDa were tested, the PE MPs with lower Mw showed a greater extent of depolymerization. The results of dominance analysis indicated that less branching structure and higher crystallinity degree negatively impacted depolymerization and biodegradation. Py-GC/MS analysis confirmed the breaking of the macromolecule backbone as well as the formation of oxidized functional groups after all the tested PE materials passed through the mealworm intestine. The results demonstrated that molecular weight, PE type, branching, and crystallinity degree significantly affect the biodegradation capability of PE by the mealworms, and possibly by other biological systems as well.
Collapse
Affiliation(s)
- Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin-Ran Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Li Zhang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Zhang Y, Pedersen JN, Eser BE, Guo Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol Adv 2022; 60:107991. [PMID: 35654281 DOI: 10.1016/j.biotechadv.2022.107991] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
The global production of plastics has continuously been soaring over the last decades due to their extensive use in our daily life and in industries. Although synthetic plastics offer great advantages from packaging to construction and electronics, their low biodegradability induce serious plastic pollution that damage the environment, human health and make irreversible changes in the ecological cycle. In particular, plastics containing only carbon-carbon (C-C) backbone are less susceptible to degradation due to the lack of hydrolysable groups. The representative polyethylene (PE) and polystyrene (PS) account for about 40% of the total plastic production. Various chemical and biological processes with great potential have been developed for plastic recycle and reuse, but biodegradation seems to be the most attractive and eco-friendly method to combat this growing environmental problem. In this review, we first summarize the current advances in PE and PS biodegradation, including isolation of microbes and potential degrading enzymes from different sources. Next, the state-of-the-art techniques used for evaluating and monitoring PE and PS degradation, the scientific toolboxes for enzyme discovery as well as the challenges and strategies for plastic biodegradation are intensively discussed. In return, it inspires a further technological exploration in expanding the diversity of species and enzymes, disclosing the essential pathways and developing new approaches to utilize plastic waste as feedstock for recycling and upcycling.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | | | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
22
|
Wang S, Shi W, Huang Z, Zhou N, Xie Y, Tang Y, Hu F, Liu G, Zheng H. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127213. [PMID: 34844347 DOI: 10.1016/j.jhazmat.2021.127213] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/26/2023]
Abstract
Biodegradation of plastic polymers by plastic-eating insects such as the greater wax moth (Galleria mellonella) might be promising for reducing plastic pollution, but direct in vivo evidence along with the related metabolic pathways and role of gut microbiota require further investigation. In this study, we investigated the in vivo degradation process, underlying potential metabolic pathways, and involvement of the gut microbiota in polystyrene (PS) biodegradation via enforcing injection of G. mellonella larvae (Tianjin, China) with PS microbeads (0.5 mg/larva; Mn: 540 and Mw: 550) and general-purpose PS powders (2.5 mg/larva; Mn: 95,600 and Mw: 217,000). The results indicated that the PS microplastics were depolymerized and completely digested independent of gut microbiota in G. mellonella although the metabolism could be enhanced by gut microbiota. Based on comparative metabolomic and liquid chromatography analyses, we proposed two potential metabolic pathways of PS in the intestine of G. mellonella larvae: the styrene oxide-phenylacetaldehyde and 4-methylphenol-4-hydroxybenzaldehyde-4-hydroxybenzoate pathways. These results suggest that the enzymes of G. mellonella are responsible for the efficient biodegradation of PS. Further study is needed to identify these enzymes and investigate the underlying catalytic mechanisms.
Collapse
Affiliation(s)
- Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Tsochatzis E, Berggreen IE, Tedeschi F, Ntrallou K, Gika H, Corredig M. Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules 2021; 26:molecules26247568. [PMID: 34946661 PMCID: PMC8708845 DOI: 10.3390/molecules26247568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Polystyrene (PS) is a plastic polymer extensively used for food packaging. PS is difficult to decompose and has low recycling rates, resulting in its accumulation in the environment, in the form of microplastic particles causing pollution and harming oceans and wildlife. Degradation of PS by mealworms (Tenebrio molitor) has been suggested as a possible biological strategy for plastic contamination; however, the biodegradation mechanism of PS by mealworms is poorly understood. It is hypothesized that the gut microbiome plays an important role in the degradation of PS by mealworms. This study carried out a comparative analysis of the gut microbiome of Tenebrio molitor larvae under different feeding strategies, and of the formation of degradation compounds (monomers, oligomers). A diet of bran:PS at 4:1 and 20:1 ratios was tested. The diet with the low ratio of bran:PS led to the presence of higher amounts of these compounds, compared to that with the high ratio. In addition, it was demonstrated that the addition of H2O significantly improved the biodegradation of PS monomer and oligomer residues, which could be identified only in the frass. The protein and nitrogen contents in insects’ biomass and frass varied amongst treatments. The diets resulted in differences in the gut microbiota, and three potential bacterial strains were identified as candidates involved in the biodegradation of PS.
Collapse
Affiliation(s)
- Emmanouil Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
- CiFOOD—Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +39-33-3539-0061
| | - Ida Elizabeth Berggreen
- Department of Animal Science, Aarhus University, Blichers Alle 20, Tjele, Foulum, 8830 Viborg, Denmark;
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark;
| | - Konstantina Ntrallou
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (K.N.); (H.G.)
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (K.N.); (H.G.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
- CiFOOD—Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| |
Collapse
|
24
|
Sangiorgio P, Verardi A, Dimatteo S, Spagnoletta A, Moliterni S, Errico S. Tenebrio molitor in the circular economy: a novel approach for plastic valorisation and PHA biological recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52689-52701. [PMID: 34453255 PMCID: PMC8476375 DOI: 10.1007/s11356-021-15944-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 05/21/2023]
Abstract
The increase in the world population leads to rising demand and consumption of plastic raw materials; only a small percentage of plastics is recovered and recycled, increasing the quantity of waste released into the environment and losing its economic value. The plastics represent a great opportunity in the circular perspective of their reuse and recycling. Research is moving, on the one hand, to implement sustainable systems for plastic waste management and on the other to find new non-fossil-based plastics such as polyhydroxyalkanoates (PHAs). In this review, we focus our attention on Tenebrio molitor (TM) as a valuable solution for plastic biodegradation and biological recovery of new biopolymers (e.g. PHA) from plastic-producing microorganisms, exploiting its highly diversified gut microbiota. TM's use for plastic pollution management is controversial. However, TM microbiota is recognised as a source of plastic-degrading microorganisms. TM-based plastic degradation is improved by co-feeding with food loss and waste as a dietary energy source, thus valorising these low-value substrates in a circular economy perspective. TM as a bioreactor is a valid alternative to traditional PHA recovery systems with the advantage of obtaining, in addition to highly pure PHA, protein biomass and rearing waste from which to produce fertilisers, chitin/chitosan, biochar and biodiesel. Finally, we describe the critical aspects of these TM-based approaches, mainly related to TM mass production, eventual food safety problems, possible release of microplastics and lack of dedicated legislation.
Collapse
Affiliation(s)
- Paola Sangiorgio
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy.
| | - Alessandra Verardi
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy
| | - Salvatore Dimatteo
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy
| | - Anna Spagnoletta
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy
| | - Stefania Moliterni
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy
| | - Simona Errico
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, km 419,500, 75026, Rotondella, MT, Italy
| |
Collapse
|