1
|
Fatima M, Aqib AI, Faraz H, Talib N, Muneer A, Rab SO, Saeed M. Neutering pathogens through green synthesized nanoparticles. Microb Pathog 2025; 203:107495. [PMID: 40118298 DOI: 10.1016/j.micpath.2025.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The rise of multidrug-resistant (MDR) pathogens in animal diseases poses a severe threat to veterinary care and public health, necessitating the development of alternative therapeutic strategies. Traditional antimicrobial treatments are becoming increasingly less effective, creating an urgent need for innovative solutions. One among several other promising avenues is the use of plant-based nanoparticles (NPs), which exhibit powerful antimicrobial properties while offering a sustainable and low-toxicity approach. These nanoparticles, synthesized via green methods using plant-derived phytochemicals as natural reducing and stabilizing agents, provide an eco-friendly, cost-effective, and biocompatible option for addressing MDR pathogens. Additionally, the physicochemical properties of these nanoparticles, including size, shape, and surface characteristics, can be fine-tuned to enhance their antimicrobial potency and target-specific action. This review explores the potential of plant-based nanoparticles as a groundbreaking strategy for tackling MDR pathogens in animal diseases, focusing on their mechanisms of action, green synthesis techniques, and applications in veterinary medicine. By optimizing synthesis processes, assessing toxicity, and evaluating in vivo efficacy, plant-based nanoparticles could emerge as an essential tool in the fight against antimicrobial resistance (AMR) in animals, with implications for global health.
Collapse
Affiliation(s)
- Mahreen Fatima
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Habiba Faraz
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Namel Talib
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Al-Zu'bi M, Fan M. Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals - A Review. J Biomed Mater Res B Appl Biomater 2025; 113:e35585. [PMID: 40260730 DOI: 10.1002/jbm.b.35585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/23/2025] [Accepted: 04/05/2025] [Indexed: 04/24/2025]
Abstract
This review provides a comprehensive analysis of nanocellulose production, characterization, and applications, with a particular focus on its use in membranes and films for healthcare applications. The diverse sources of nanocellulose, including wood-based materials, agricultural byproducts, algae, and bacteria, are explored, highlighting their renewability, environmental benefits, and adaptability for specialized applications. The review also examines various pretreatment and processing methods, such as mechanical, chemical, and enzymatic treatments, outlining their roles in achieving desirable nanocellulose properties. Additionally, surface modification techniques, including amidation and esterification, are discussed for enhancing compatibility, stability, and performance when nanocellulose is integrated into composite materials. A novel mechanochemical approach is highlighted as a sustainable and energy-efficient fibrillation technique that reduces the environmental impact of nanocellulose production. Furthermore, the chemical modification and functionalization of nanocellulose are analyzed to expand its capabilities in advanced biomedical applications, including tissue engineering scaffolds that provide structural support for cell growth, wound dressings that leverage nanocellulose's antimicrobial and moisture-retentive properties, and drug delivery systems that utilize its biocompatibility and tunable release characteristics. The review concludes with future research directions, emphasizing the need for continued optimization of processing techniques, hybrid material development, and stimuli-responsive nanocellulose systems to unlock new biomedical and industrial applications.
Collapse
Affiliation(s)
- Mohammad Al-Zu'bi
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Mizi Fan
- Department of Civil and Environmental Engineering, Brunel University of London, London, UK
| |
Collapse
|
3
|
Ikhtiarini N, Kamil MZ, Bukit BF, Juliadmi D, Prasetiyo KW, Fransiska D, Sedayu BB, Subiyanto B, Sulastiningsih IM, Rochima E, Arivendan A, Syamani FA. Biocompatible composites based on alginate, polycaprolactone, and nanocellulose - A review. Int J Biol Macromol 2025:143423. [PMID: 40274166 DOI: 10.1016/j.ijbiomac.2025.143423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Biocompatible composite materials are gaining attention for biomedical applications due to their biodegradability, mechanical strength, and tunability. The fabrication techniques and applications significantly impact composite performance. This paper explores the synthesis of composites from alginate, polycaprolactone (PCL), and nanocellulose, emphasizing their distinct properties for biomedical use. Alginate provides excellent biocompatibility and gelling ability, PCL offers controlled mechanical strength, and nanocellulose enhances stability due to its superior mechanical properties. Key fabrication techniques include solution mixing, hot pressing, melt mixing/extrusion, electrospinning, and 3D printing, each influencing structural integrity, mechanical properties, and material dispersion. Optimizing fabrication methods is crucial for achieve desirable properties in specific applications. The choice of synthesis technique directly affects the final use, such as drug delivery systems, tissue engineering scaffolds, or wound dressings. This review discusses the challenges and prospects of developing alginate-, PCL-, and nanocellulose-based composites, offering insights into their future biomedical applications.
Collapse
Affiliation(s)
- Nur Ikhtiarini
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Muhammad Zhorifansyah Kamil
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Indonesia, Depok, West Java 16424, Indonesia
| | - Bunga Fisikanta Bukit
- Faculty of Science and Technology, Universitas Quality Berastagi, North Sumatera 22152, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Kurnia Wiji Prasetiyo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Dina Fransiska
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Lombok 83352, Indonesia
| | - Bakti Berlyanto Sedayu
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Bambang Subiyanto
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Ignasia Maria Sulastiningsih
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; Research Collaboration Center for Marine Biomaterials, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Ajithram Arivendan
- International Joint Laboratory on Human-Centric Intelligence and Systems, Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China
| | - Firda Aulya Syamani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia.
| |
Collapse
|
4
|
Nawaz A, Taj MB, Tasleem M, Ahmad Z, Ihsan A. Study of factors affecting cellulose derivatives composite in anticancer drug delivery: A comprehensive review. Int J Biol Macromol 2025; 310:143220. [PMID: 40250680 DOI: 10.1016/j.ijbiomac.2025.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The targeted distribution of therapeutic molecules in cancer cells poses several challenges for biomedical applications. Drug delivery systems (DDS) are primarily designed to target cancer cells effectively to achieve maximum therapeutic effects. Cellulose is a well-known organic molecule owing to its biodegradability, biocompatibility, low toxicity, prolonged stability, and superior loading characteristics. However, cellulose composites have faced numerous drawbacks, such as higher molecular size, non-covalent interactions, poor mechanical strength, and limited water solubility. In contrast, cellulose derivatization has enhanced drug loading and release efficiency, improved mechanical strength, and mitigated drug solubility issues. This review summarized the recent advancement in cellulose-based composites such as DDS for cancer cell treatment and discussed responsive factors. The pH, temperature, magnetic nanoparticles, solubility, porosity, mechanical strength, nanoparticle size, increased time of drug release, crosslinking efficiency, etc., are major responsive assays that influence the therapeutic potential of anticancer drugs. Furthermore, overviewed the cellulose nanoformulations in sustained anticancer drug release and successfully illustrated the synthesizing methodologies as well as challenges in efficient DDS applications. Moreover, a brief overview of the interdisciplinary industrial uses of cellulose composites, including paper, textiles, and nanotechnology, is presented. Finally, cellulose-based composites provide a novel way of producing excellent DDS with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Aamir Nawaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tasleem
- Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Zia Ahmad
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aaysha Ihsan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Azhakesan A, Kern J, Mishra A, Selhuber‐Unkel C, Affolter A, Gatenholm P, Rotter N, Bieback K. 3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink. Adv Healthc Mater 2025; 14:e2403114. [PMID: 39801216 PMCID: PMC11912098 DOI: 10.1002/adhm.202403114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 03/18/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro. To establish long-term HNSCC bioprinted constructs for personalized drug-testing, this proof-of-principle study aims to compare two different innovative tunicate-derived nanocellulose (NC) hydrogels against the widely used semi-synthetic gelatin methacryloyl (GelMA). Cell lines of different tumor origin sites are printed in TEMPO and Carboxy-NC, and GelMA in alginate (GelMAA). Both NC hydrogels show higher bioprintability than GelMAA. Carboxy-NC supported long-term HNSCC survival, proliferation, and maintenance of epithelial phenotype in 3D bioprinted constructs similar to GelMAA. The hydrogel microstructure revealed differences in pore size. Importantly, the established HNSCC bioprinted model allowed the testing of radiochemotherapy (RCT) both in cell lines and patient-derived cultures. Compared to a spheroid model, the cytotoxic effects are less, better reflecting the response in patients. The proof-of-principle findings indicate that Carboxy-NC is a viable alternative to gelatin-based bioink with improved bioprintability allowing personalized drug-testing. By adding other cell-types of the TME, this model can be advanced to a heterotypic one.
Collapse
Affiliation(s)
- Alexya Azhakesan
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Johann Kern
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Ankit Mishra
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Annette Affolter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Paul Gatenholm
- 3D Bioprinting CentreDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Nicole Rotter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Karen Bieback
- Institute of Transfusion Medicine and ImmunologyMedical Faculty MannheimHeidelberg UniversityGerman Red Cross Blood Donor Service Baden‐Württemberg – Hessen68167MannheimGermany
| |
Collapse
|
6
|
de Avila Goncalves S, Ceccato BT, Moraes-Lacerda T, de Jesus MB, de la Torre LG, Vieira RP. Synthesis of poly[2-(dimethylamino)ethyl methacrylate] grafting from cellulose nanocrystals for DNA complexation employing a 3D-twisted cross-sectional microchannel microfluidic device. Int J Biol Macromol 2025; 305:140992. [PMID: 39952531 DOI: 10.1016/j.ijbiomac.2025.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Developing effective and safe non-viral gene vectors poses a challenge in gene therapy. A promising strategy emerged addressing this challenge, involving a synergistic approach combining biopolymers and cationic synthetic polymers to enhance gene delivery systems. In this study, for the first time, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was grafted from cellulose nanocrystals (CNC) using metal-free organocatalyzed atom-transfer radical polymerization (O-ATRP). The synthesis was confirmed through morphological, spectroscopic, and thermal analysis. The reaction achieved a 34 % monomer conversion and 15 % grafting, resulting in a CNC-g-PDMAEMA copolymer with impressive responsiveness to pH and temperature. Furthermore, CNC-g-PDMAEMA was utilized to obtain copolymer/pDNA polyplexes using a microfluidic device, providing a practical and efficient method for producing uniform, stable, and reproducible gene delivery systems. These polyplexes had sizes around 160 nm and a low PDI (<0.250). As a proof of concept, preliminary cell viability and transfection assays were conducted to demonstrate the biomaterial's applicability. These findings suggest that polyplexes (N/P = 15) at a 10 μg/mL concentration may serve as an upper limit threshold and a starting point for further in vivo studies. In summary, this research advances the development of gene delivery platforms through innovative and straightforward synthesis methods, opening up potential applications in gene therapy.
Collapse
Affiliation(s)
- Sayeny de Avila Goncalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Bruno Telli Ceccato
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Thaís Moraes-Lacerda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Zúñiga P, Aravena M, Ponce S, Hernandez-Montelongo J. A Finite Element Method for Modeling Diffusion and Drug Release from Nanocellulose/Nanoporous Silicon Composites. Pharmaceutics 2025; 17:120. [PMID: 39861767 PMCID: PMC11768136 DOI: 10.3390/pharmaceutics17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background and Objective: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system. Methods: Release profiles of MB from NC/nPSi composites with varying nPSi concentrations (0%, 0.1%, 0.5%, and 1.0%) were experimentally measured in triplicate using phosphate-buffered saline (PBS) at 37 °C, pH 7.4, and 100 rpm. Mathematical models incorporating linear and quadratic dependencies of the diffusion coefficient on the MB concentration were developed and tested using the FE method. Model parameters were refined by minimizing the error between simulated and experimental MB release profiles. Results: The proposed FE method closely matched experimental data, validating its accuracy and robustness in simulating the diffusion and release processes. Conclusions: This study emphasizes the significant impact of the nPSi concentration on enhancing release control and highlights the importance of material composition in designing drug delivery systems. The findings suggest that the FE method can be effectively applied to model other complex systems, paving the way for advancements in precision drug delivery and broader biomedical applications.
Collapse
Affiliation(s)
- Paulo Zúñiga
- Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile;
| | - Marcelo Aravena
- Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile;
| | - Silvia Ponce
- Institute of Scientific Research IDIC, University of Lima, Lima 15023, Peru;
| | - Jacobo Hernandez-Montelongo
- Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile;
- Department of Chemical Engineering, University of Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
8
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
9
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
10
|
Du H, Zhao K, Cheng Z, Liu Y, Sun X, Wang Y, Shang R, Lin Z, Wang H, Liu H. Mussel-Inspired Adhesive and Tough Composite Hydrogel Based on Polydopamine-Modified Nanocellulose for Strain and Wireless Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26137-26146. [PMID: 39609658 DOI: 10.1021/acs.langmuir.4c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Adhesive composite hydrogels have received increasing attention in the fields of wearable sensors, electronic skin, and bioelectronic interfaces. However, combining good adhesiveness and high strength in a single composite hydrogel remains challenging. To address this issue, a polydopamine (PDA)-modified nanocellulose (PCNF)/polyacrylamide (PAM) composite hydrogel was developed, which exhibits good adhesiveness (40 kPa), good durability (1500 rpm), excellent frost resistance (-42 °C), and good sensitivity (GF = 1.6). The composite hydrogel exhibits self-healing and conductive properties, making it suitable for sensing and Morse code applications. The obtained composite hydrogels have potential applications in various wearable devices, wireless human computer interfaces, human activity monitoring, and remote encrypted transmissions.
Collapse
Affiliation(s)
- Hong Du
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kangyao Zhao
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengbai Cheng
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., Pinghu, Zhejiang 314214, China
| | - Yingying Liu
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianhao Sun
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Shang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhaoyun Lin
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huihui Wang
- School of chemical and chemistry engineering, Hainan University, Haikou 570228, China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering/State Key Laboratory of Biobased Fiber Manufacturing Technology Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
Li Z, Wang X, Wan W, Zhang N, Zhang L, Wang X, Lin K, Yang J, Hao J, Tian F. Rational design of pH-responsive nano-delivery system with improved biocompatibility and targeting ability from cellulose nanocrystals via surface polymerization for intracellular drug delivery. Int J Biol Macromol 2024; 281:136435. [PMID: 39414191 DOI: 10.1016/j.ijbiomac.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Cellulose nanocrystals (CNCs), derived from diverse sources and distinguished by their inherent biodegradability, excellent biocompatibility, and facile cellular engulfment due to their rod-like structure, hold great promise as carriers for the development of nano-delivery systems. In this work, highly efficient rod-like CNCs were employed as substrates for grafting glycidyl onto their surfaces through ring-opening polymerization, forming hyperbranched polymers with superior cell uptake properties. Subsequently, 4-vinylbenzeneboronic acid (VB) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) were employed as monomers in the polymerization process to fabricate a pH-responsive targeted nano-delivery system, denoted as CNCs-VB-PEGMA, via single electron transfer reactive radical polymerization (SET-LRP) reaction. The CNCs-VB-PEGMA was successfully prepared and used for the loading of curcumin (Cur) to form a pH-responsive nano-delivery system (CNCs-VB-PEGMA-Cur), and the loading rate of Cur was as high as 70.0 %. Studies showed that this drug delivery system could actively targeting liver cancer cells with the 2D cells model and 3D tumor microsphere model, showing efficient liver cancer cell-killing ability. Collectively, the CNCs-VB-PEGMA drug delivery system has potential applications in liver cancer therapy as an actively targeting and pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Ziqi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Jiangxi 330103, PR China
| | - Xi Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Weimin Wan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Na Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Limeng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jia Hao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
12
|
Li J, Xie J, Wang Y, Li X, Yang L, Zhao M, Chen C. Development of Biomaterials to Modulate the Function of Macrophages in Wound Healing. Bioengineering (Basel) 2024; 11:1017. [PMID: 39451393 PMCID: PMC11504998 DOI: 10.3390/bioengineering11101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Wound healing is a complex and precisely regulated process that encompasses multiple stages, including inflammation, anti-inflammation, and tissue repair. It involves various cells and signaling molecules, with macrophages demonstrating a significant degree of plasticity and playing a crucial regulatory role at different stages. In recent years, the use of biomaterials, which include both natural and synthetic polymers or macromolecules, has proliferated for the purpose of enhancing wound healing. This review summarizes how these diverse biomaterials promote wound healing by modulating macrophage behavior and examines the broader implications of these modulations. Additionally, we discuss the limitations associated with the clinical application of immunomodulatory biomaterials and propose potential solutions. Finally, we look towards future developments in the design of immunomodulatory biomaterials intended to enhance wound healing.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Jiatong Xie
- The Second Clinical College, Dalian Medical University, Dalian 116044, China;
| | - Yaming Wang
- The First Affiliated Hospital, Dalian Medical University, Dalian 116014, China;
| | - Xixian Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry, Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110022, China;
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Chaoxian Chen
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Babaei-Ghazvini A, Patel R, Vafakish B, Yazdi AFA, Acharya B. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. Int J Biol Macromol 2024; 278:135200. [PMID: 39256122 DOI: 10.1016/j.ijbiomac.2024.135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Nanocellulose, a versatile biopolymer renowned for its exceptional physicochemical attributes including lightweight, biocompatibility, biodegradability, and higher mechanical strength properties has captured significant attention in biomedical research. This renewable material, extracted from widely abundant biosources including plants, bacteria, and algae, exists in three primary forms: cellulose-based nanocrystals (CNCs), nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are characterized by their highly crystalline, needle-shaped structure, while CNFs possess a blend of amorphous and crystalline regions. BNC stands out as the purest form of nanocellulose. Chemical functionalization enables precise tuning of nanocellulose properties, enhancing its suitability for diverse biomedical applications. In drug delivery systems, nanocellulose's unique structure and surface chemistry offer opportunities for targeted delivery of active molecules. Surface-modified nanocellulose can effectively deliver drugs to specific sites, utilizing its inherent properties to control drug release kinetics and improve therapeutic outcomes. Despite these advantages, challenges such as achieving optimal drug loading capacity and ensuring sustained drug release remain. Future research aims to address these challenges and explore novel applications of nano-structured cellulose in targeted drug delivery, highlighting the continued evolution of this promising biomaterial in biomedicine. Furthermore, the review delves into the impact of chemical, physical, and enzymatic methods for CNC surface modifications, showcasing how these approaches enhance the functionalization of CNCs for targeted delivery of different compounds in biological systems.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Abbas Fazel Anvari Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon S7K 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
14
|
Yupanqui-Mendoza SL, Arantes V. An enzymatic hydrolysis-based platform technology for the efficient high-yield production of cellulose nanospheres. Int J Biol Macromol 2024; 278:134602. [PMID: 39127282 DOI: 10.1016/j.ijbiomac.2024.134602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study evaluates the feasibility of using enzymatic technology to produce novel nanostructures of cellulose nanomaterials, specifically cellulose nanospheres (CNS), through enzymatic hydrolysis with endoglucanase and xylanase of pre-treated cellulose fibers. A statistical experimental design facilitated a comprehensive understanding of the process parameters, which enabled high yields of up to 82.7 %, while maintaining a uniform diameter of 54 nm and slightly improved crystallinity and thermal stability. Atomic force microscopy analyses revealed a distinct CNS formation mechanism, where initial fragmentation of rod-like nanoparticles and subsequent self-assembly of shorter rod-shaped nanoparticles led to CNS formation. Additionally, adjustments in process parameters allowed precise control over the CNS diameter, ranging from 20 to 100 nm, highlighting the potential for customization in high-performance applications. Furthermore, this study demonstrates how the process framework, originally developed for cellulose nanocrystals (CNC) production, was successfully adapted and optimized for CNS production, ensuring scalability and efficiency. In conclusion, this study emphasizes the versatility and efficiency of the enzyme-based platform for producing high-quality CNS, providing valuable insights into energy consumption for large-scale economic and environmental assessments.
Collapse
Affiliation(s)
- Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, SP 12602-810, Brazil
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, SP 12602-810, Brazil.
| |
Collapse
|
15
|
Deng Z, Liu H, Chen G, Deng H, Dong X, Wang L, Tao F, Dai F, Cheng Y. Coaxial nanofibrous aerogel featuring porous network-structured channels for ovarian cancer treatment by sustained release of chitosan oligosaccharide. Int J Biol Macromol 2024; 276:133824. [PMID: 39002906 DOI: 10.1016/j.ijbiomac.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Ovarian cancer, the deadliest gynecological malignancy, primarily treated with chemotherapy. However, systemic chemotherapy often leads to severe toxic side effects and chemoresistance. Drug-loaded aerogels have emerged as a promising method for drug delivery, as they can improve drug solubility and bioavailability, control drug release, and reduce drug distribution in non-targeted tissues, thereby minimizing side effects. In this research, chitosan oligosaccharide (COS)-loaded nanofibers composite chitosan (CS) aerogels (COS-NFs/CS) with a porous network structure were created using nanofiber recombination and freeze-drying techniques. The core layer of the aerogel has a COS loading rate of 60 %, enabling the COS-NFs/CS aerogel to significantly inhibit the migration and proliferation of ovarian cancer cells (resulting in a decrease in the survival rate of ovarian cancer cells to 33.70 % after 48 h). The coaxial fiber's unique shell-core structure and the aerogel's porous network structure enable the COS-NFs/CS aerogels to release COS steadily and slowly over 30 days, effectively reducing the initial burst release of COS. Additionally, the COS-NFs/CS aerogels exhibit good biocompatibility, degradability (only retaining 18.52 % of their weight after 6 weeks of implantation), and promote angiogenesis, thus promoting wound healing post-oophorectomy. In conclusion, COS-NFs/CS aerogels show great potential for application in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
16
|
Shishparenok AN, Koroleva SA, Dobryakova NV, Gladilina YA, Gromovykh TI, Solopov AB, Kudryashova EV, Zhdanov DD. Bacterial cellulose films for L-asparaginase delivery to melanoma cells. Int J Biol Macromol 2024; 276:133932. [PMID: 39025173 DOI: 10.1016/j.ijbiomac.2024.133932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
L-asparaginase (L-ASNase) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia and is used to treat acute lymphoblastic leukemia. It is also toxic to the cells of some solid tumors, including melanoma cells. Immobilization of this enzyme can improve its activity against melanoma tumor cells. In this work, the properties of bacterial cellulose (BC) and feasibility of BC films as a new carrier for immobilized L-ASNase were investigated. Different values of growth time were used to obtain BC films with different thicknesses and porosities, which determine the water content and the ability to adsorb and release L-ASNase. Fourier transform infrared spectroscopy confirmed the adsorption of the enzyme on the BC films. The total activity of adsorbed L-ASNase and its release were investigated for films grown for 48, 72 or 96 h. BC films grown for 96 h showed the most pronounced release as described by zero-order and Korsmayer-Peppas models. The release was characterized by controlled diffusion where the drug was released at a constant rate. BC films with immobilized L-ASNase could induce cytotoxicity in A875 human melanoma cells. With further development, immobilization of L-ASNase on BC may become a potent strategy for anticancer drug delivery to superficial tumors.
Collapse
Affiliation(s)
- Anastasiya N Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Svetlana A Koroleva
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia; Institute of Biochemical Technology and Nanotechnology, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Natalya V Dobryakova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Yulia A Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Tatiana I Gromovykh
- ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Alexey B Solopov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia
| | - Dmitry D Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
17
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
18
|
Zimowska K, Filipovic V, Nikodinovic-Runic J, Simic J, Ilic-Tomic T, Zimowska M, Gurgul J, Ponjavic M. Modulating the Release Kinetics of Natural Product Actinomycin from Bacterial Nanocellulose Films and Their Antimicrobial Activity. Bioengineering (Basel) 2024; 11:847. [PMID: 39199804 PMCID: PMC11352114 DOI: 10.3390/bioengineering11080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The present study aimed to create a more sustainable and controlled delivery system based on natural biopolymer bacterial nanocellulose (BNC) and bacterial natural product actinomycin (Act), with the applicative potential in the biomedical field. In order to provide improved interaction between BNC and the active compound, and thus to modulate the release kinetics, the TEMPO oxidation of BNC support was carried out. A mix of actinomycins from bacterial fermentation (ActX) were used as natural antimicrobial agents with an established bioactivity profile and clinical use. BNC and TEMPO-oxidized BNC films with incorporated active compounds were obtained and analyzed by FTIR, SEM, XPS, and XRD. The ActX release profiles were determined in phosphate-buffer solution, PBS, at 37 °C over time. FTIR analysis confirmed the improved incorporation and efficiency of ActX adsorption on oxidized BNC due to the availability of more active sites provided by oxidation. SEM analysis indicated the incorporation of ActX into the less-dense morphology of the TEMPO-oxidized BNC in comparison to pure BNC. The release kinetics of ActX were significantly affected by the BNC structure, and the activated BNC sample indicated the sustained release of active compounds over time, corresponding to the Fickian diffusion mechanism. Antimicrobial tests using Staphylococcus aureus NCTC 6571 confirmed the potency of this BNC-based system for biomedical applications, taking advantage of the capacity of modified BNC to control and modulate the release of bioactive compounds.
Collapse
Affiliation(s)
- Katarzyna Zimowska
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Vuk Filipovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Jelena Simic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Malgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.Z.); (J.G.)
| | - Jacek Gurgul
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.Z.); (J.G.)
| | - Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| |
Collapse
|
19
|
Garrido-Miranda KA, Pesenti H, Contreras A, Vergara-Figueroa J, Recio-Sánchez G, Chumpitaz D, Ponce S, Hernandez-Montelongo J. Nanocellulose/Nanoporous Silicon Composite Films as a Drug Delivery System. Polymers (Basel) 2024; 16:2055. [PMID: 39065372 PMCID: PMC11280883 DOI: 10.3390/polym16142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocellulose (NC) is a promising material for drug delivery due to its high surface area-to-volume ratio, biocompatibility, biodegradability, and versatility in various formats (nanoparticles, hydrogels, microspheres, membranes, and films). In this study, nanocellulose films were derived from "Bolaina blanca" (Guazuma crinita) and combined with nanoporous silicon microparticles (nPSi) in concentrations ranging from 0.1% to 1.0% (w/v), using polyvinyl alcohol (PVA) as a binding agent to create NC/nPSi composite films for drug delivery systems. The physicochemical properties of the samples were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mechanical properties and drug release capabilities were also evaluated using methylene blue (MB) as an antibacterial drug model. Antibacterial assays were conducted against S. aureus and E. coli bacteria. The results show that NC/nPSi composites with 1% nPSi increased the T50% by 10 °C and enhanced mechanical properties, such as a 70% increase in the elastic modulus and a 372% increase in elongation, compared to NC films. Additionally, MB released from NC/nPSi composites effectively inhibited the growth of both bacteria. It was also observed that the diffusion coefficients were inversely proportional to the % nPSi. These findings suggest that this novel NC/nPSi-based material can serve as an effective controlled drug release system.
Collapse
Affiliation(s)
- Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Héctor Pesenti
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Temuco 4813302, Chile;
| | - Angel Contreras
- Departamento de Ciencias Biológicas y Químicas, Universidad Católica de Temuco, Temuco 4813302, Chile;
| | - Judith Vergara-Figueroa
- Departamento de Ingeniería en Madera, Centro Biomateriales y Nanotecnología (CBN), Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile;
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile
- Grupo de Investigación en Materiales Avanzados (GIMAF), Universidad del Bío-Bío, Concepción 4030000, Chile
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad de San Sebastián, Concepción 4080871, Chile;
| | - Dalton Chumpitaz
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Silvia Ponce
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima 15023, Peru;
| | - Jacobo Hernandez-Montelongo
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Temuco 4813302, Chile;
- Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
20
|
Fate AS, Maheshwari Y, Shekhar Tiwari S, Das P, Bal M. Exploring nanocellulose's role in revolutionizing the pharmaceutical and biomedical fields. Int J Biol Macromol 2024; 272:132837. [PMID: 38848844 DOI: 10.1016/j.ijbiomac.2024.132837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
The increasing global demand for eco-friendly products derived from natural resources has spurred intensive research into biomaterials. Among these materials, nanocellulose stands out as a highly efficient option, consisting of tightly packed cellulose fibrils derived from lignocellulosic biomass. Nanocellulose boasts a remarkable combination of attributes, including a high specific surface area, impressive mechanical strength, abundant hydroxyl groups for easy modification, as well as non-toxic, biodegradable, and environmentally friendly properties. Consequently, nanocellulose has been extensively studied for advanced applications. This paper provides a comprehensive overview of the various sources of nanocellulose derived from diverse natural sources and outlines the wide array of production methods available. Furthermore, it delves into the extensive utility of nanocellulose within the biomedical and pharmaceutical industries, shedding light on its potential role in these fields. Additionally, it highlights the significance of nanocellulose composites and their applications, while also addressing key challenges that must be overcome to enable widespread utilization of nanocellulose.
Collapse
Affiliation(s)
- Abhay Sandip Fate
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Yash Maheshwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Shashank Shekhar Tiwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India.
| |
Collapse
|
21
|
Alizade A, Reich T, Jantschke A. Cellulose from dinoflagellates as a versatile and environmentally friendly platform for the production of functionalised cellulose nanofibres. Int J Biol Macromol 2024; 272:132804. [PMID: 38825272 DOI: 10.1016/j.ijbiomac.2024.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Cellulose nanofibres (CNFs), also known as nano-fibrillated cellulose, have emerged as highly promising sustainable biomaterials owing to their numerous advantages, including high accessibility, long-term sustainability, low toxicity, and mechanical properties. Recently, marine organisms have been explored as novel and environmentally friendly sources of cellulose fibers (CFs) due to their easy cultivation, extraction and biocompatibility. Dinoflagellates, a group of marine phytoplankton, have gained particular attention due to their unique cellulosic morphology and lignin-free biomass. Previously, we showed that the unique amorphous nature of dinoflagellate-derived cellulose offers various benefits. This study further explores the potential of dinoflagellate-derived CFs as a sustainable and versatile CNF source. Extracted dinoflagellate cellulose is effectively converted into CNFs via one-step TEMPO oxidation without significant polymer degradation. In addition, the biological compatibility of the CNFs is improved by amine-grafting using putrescine and folic acid. The products are characterised by conductometric titration, zeta potential measurements, TGA, GPC, FTIR, SEM/TEM, XRD, and XPS. Finally, in a proof-of-principle study, the application of the functionalised CNFs in drug delivery is tested using methylene blue as a drug model. Our findings suggest that dinoflagellate-derived CNFs provide an eco-friendly platform that can be easily functionalised for various applications, including drug delivery.
Collapse
Affiliation(s)
- Amina Alizade
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| | - Tobias Reich
- Department of Chemistry - Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Anne Jantschke
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| |
Collapse
|
22
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
23
|
Chiriac AP, Ghilan A, Croitoriu A, Serban A, Bercea M, Stoleru E, Nita LE, Doroftei F, Stoica I, Bargan A, Rusu AG, Chiriac VM. Study on cellulose nanofibrils/copolymacrolactone based nano-composites with hydrophobic behaviour, self-healing ability and antioxidant activity. Int J Biol Macromol 2024; 262:130034. [PMID: 38340942 DOI: 10.1016/j.ijbiomac.2024.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The multiple uses of cellulose nanofibrils (CNFs) originate from their availability from renewable resources, and are due to their physico-chemical properties, biodegradability and biocompatibility. At the same time, reducing sensitivity to humidity, increasing interfacial adhesion and hydrophobic modification of the CNF surface to diversify applications and improve operation, are current targets pursued. This study focuses on the preparation of a novel gel structure using cellulose nanofibrils (CNFs) and poly(ethylene brassylate-co-squaric acid) (PEBSA50/50), a bio-based copolymacrolactone. The primary goal is to achieve the gel with reduced sensitivity to humidity and enhanced hydrophobic behaviour. The new system was characterized in comparison to its constituent components using various techniques, such as Fourier transform infrared spectroscopy, thermal analysis, X-ray diffraction, and NIR - chemical imaging. Rheological tests demonstrated the formation of the CNF_PEBSA50/50 gel as a result of physical interactions between the two polymeric partners and revealed self-healing abilities for the prepared gels. Determination of the contact angle, surface free energy, as well as dynamic measurements of the vapour sorption of the CNF_PEBSA50/50 system, confirmed the achievement of the study's aim. Furthermore, the CNF_PEBSA50/50 network was utilized to encapsulate citric acid, resulting in the creation of a new bioactive composite with both antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Aurica P Chiriac
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Alina Ghilan
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Croitoriu
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandru Serban
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena Stoleru
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Loredana Elena Nita
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Stoica
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Bargan
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Gabriela Rusu
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vlad Mihai Chiriac
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
24
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
25
|
Kim M, Doh H. Upcycling Food By-products: Characteristics and Applications of Nanocellulose. Chem Asian J 2024:e202301068. [PMID: 38246883 DOI: 10.1002/asia.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Rising global food prices and the increasing prevalence of food insecurity highlight the imprudence of food waste and the inefficiencies of the current food system. Upcycling food by-products holds significant potential for mitigating food loss and waste within the food supply chain. Food by-products can be utilized to extract nanocellulose, a material that has obtained substantial attention recently due to its renewability, biocompatibility, bioavailability, and a multitude of remarkable properties. Cellulose nanomaterials have been the subject of extensive research and have shown promise across a wide array of applications, including the food industry. Notably, nanocellulose possesses unique attributes such as a surface area, aspect ratio, rheological behavior, water absorption capabilities, crystallinity, surface modification, as well as low possibilities of cytotoxicity and genotoxicity. These qualities make nanocellulose suitable for diverse applications spanning the realms of food production, biomedicine, packaging, and beyond. This review aims to provide an overview of the outcomes and potential applications of cellulose nanomaterials derived from food by-products. Nanocellulose can be produced through both top-down and bottom-up approaches, yielding various types of nanocellulose. Each of these variants possesses distinctive characteristics that have the potential to significantly enhance multiple sectors within the commercial market.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| |
Collapse
|
26
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
27
|
Yang C, Zhu Y, Tian Z, Zhang C, Han X, Jiang S, Liu K, Duan G. Preparation of nanocellulose and its applications in wound dressing: A review. Int J Biol Macromol 2024; 254:127997. [PMID: 37949262 DOI: 10.1016/j.ijbiomac.2023.127997] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Nanocellulose, as a nanoscale polymer material, has garnered significant attention worldwide due to its numerous advantages including excellent biocompatibility, thermal stability, non-toxicity, large specific surface area, and good hydrophilicity. Various methods can be employed for the preparation of nanocellulose. Traditional approaches such as mechanical, chemical, and biological methods possess their own distinct characteristics and limitations. However, with the growing deterioration of our living environment, several green and environmentally friendly preparation techniques have emerged. These novel approaches adopt eco-friendly technologies or employ green reagents to achieve environmental sustainability. Simultaneously, there is a current research focus on optimizing traditional nanocellulose preparation methods while addressing their inherent drawbacks. The combination of mechanical and chemical methods compensates for the limitations associated with using either method alone. Nanocellulose is widely used in wound dressings owing to its exceptional properties, which can accelerate the wound healing process and reduce patient discomfort. In this paper, the principle, advantages and disadvantages of each preparation method of nanocellulose and the research findings in recent years are introduced Moreover, this review provides an overview of the utilization of nanocellulose in wound dressing applications. Finally, the prospective trends in its development alongside corresponding preparation techniques are discussed.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqin Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
29
|
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr Polym 2023; 321:121298. [PMID: 37739531 DOI: 10.1016/j.carbpol.2023.121298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
Chronic wounds, especially diabetic ulcers, pose a significant challenge in regenerative medicine. Cellulose derivatives offer remarkable wound management properties, such as effective absorption and retention of wound exudates, maintaining an optimal moisture environment crucial for successful chronic wound regeneration. However, conventional dressings have limited efficacy in managing and healing these types of skin lesions, driving scientists to explore innovative approaches. The emergence of 3D printing has enabled personalized dressings that meet individual patient needs, improving the healing process and patient comfort. Cellulose derivatives meet the demanding requirements for biocompatibility, printability, and biofabrication necessary for 3D printing of biologically active scaffolds. However, the potential applications of nanocellulose and cellulose derivative-based inks for wound regeneration remain largely unexplored. Thus, this review provides a comprehensive overview of recent advancements in cellulose-based inks for 3D printing of personalized wound dressings. The composition and biofabrication approaches of cellulose-based wound dressings are thoroughly discussed, including the functionalization with bioactive molecules and antibiotics for improved wound regeneration. Similarly, the in vitro and in vivo performance of these dressings is extensively examined. In summary, this review aims to highlight the exceptional advantages and diverse applications of 3D printed cellulose-based dressings in personalized wound care.
Collapse
Affiliation(s)
- Maria Pita-Vilar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Thodikayil AT, Yadav A, Hariprasad P, Saha S. TEMPO-oxidized nanofibrillated cellulose as potential carrier for sustained antibacterial delivery. Int J Biol Macromol 2023; 254:127604. [PMID: 39492499 DOI: 10.1016/j.ijbiomac.2023.127604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Designing a suitable, cost-effective nanocarrier with an ability to capture and deliver antibiotics for restricting microbial spread remains an unmet need. A simple two-stepped strategy involving citric acid-induced hydrolysis of cellulose pulp (NFC) followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) mediated oxidation to obtain carboxylated nano fibrillated cellulose (TNFC-5) with high carboxyl content (1.12 mmol/g) has been explored. TNFC-5 so obtained was able to capture remarkable extent of antibiotics (drug loading (DL) > 40 % and entrapment efficiency (EE) >80 %) irrespective of their hydrophilicity as in, triclosan (hydrophobic) and ampicillin sodium (hydrophilic). In silico molecular docking study revealed the excess carboxyl content in nanocellulose imparted the strongest binding affinity to antibiotics via H-bonding. A slower and sustained release of triclosan was observed for TNFC-5 than that of NFC, reiterating the enhanced binding efficiency of the drugs with TNFC-5. Well-dispersed triclosan loaded TNFC-5 displayed sustained antibacterial activity against Escherichia coli and Staphylococcus aureus up to one week. Thus, TNFC-5 has been demonstrated as a green, cheap, and eco-friendly alternative to the other biodegradable nanocarriers for carrying antibiotics with high DL and EE, thereby reducing the wastage of expensive drugs while ensuring a sustained antibacterial effect. Our study established that the drug loaded nanofibers (TNFC-5) might act as a promising candidate to penetrate through biofilm for treating serious bacterial infections by retarding their growth and eventually eradicating bacterial colonies.
Collapse
Affiliation(s)
| | - Ajay Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
31
|
Pacheco A, Evangelista-Osorio A, Muchaypiña-Flores KG, Marzano-Barreda LA, Paredes-Concepción P, Palacin-Baldeón H, Dos Santos MSN, Tres MV, Zabot GL, Olivera-Montenegro L. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass. Polymers (Basel) 2023; 15:4046. [PMID: 37896290 PMCID: PMC10610583 DOI: 10.3390/polym15204046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and lignin. To improve the properties and functions of polymeric materials, cellulose is subjected to a variety of modifications. The most common modifications are surface modification, grafting, chemical procedures, and molecule chemical grafting. Injection molding and extrusion technologies are crucial in shaping and manufacturing polymer composites, with precise control over the process and material selection. Furthermore, injection molding involves four phases: plasticization, injection, cooling, and ejection, with a focus on energy efficiency. Fundamental aspects of an injection molding machine, such as the motor, hopper, heating units, nozzle, and clamping unit, are discussed. Extrusion technology, commonly used as a preliminary step to injection molding, presents challenges regarding fiber reinforcement and stress accumulation, while lignin-based polymeric materials are challenging due to their hydrophobicity. The diverse applications of these biodegradable materials include automotive industries, construction, food packaging, and various consumer goods. Polymeric materials are positioned to offer even bigger contributions to sustainable and eco-friendly solutions in the future, as research and development continues.
Collapse
Affiliation(s)
- Ada Pacheco
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Arian Evangelista-Osorio
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Katherine Gabriela Muchaypiña-Flores
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Luis Alejandro Marzano-Barreda
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Perla Paredes-Concepción
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| | - Heidy Palacin-Baldeón
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Maicon Sérgio Nascimento Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Luis Olivera-Montenegro
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| |
Collapse
|
32
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
33
|
Abdul Khalil HPS, Jha K, Yahya EB, Panchal S, Patel N, Garai A, Kumari S, Jameel M. Insights into the Potential of Biopolymeric Aerogels as an Advanced Soil-Fertilizer Delivery Systems. Gels 2023; 9:666. [PMID: 37623121 PMCID: PMC10453695 DOI: 10.3390/gels9080666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Soil fertilizers have the potential to significantly increase crop yields and improve plant health by providing essential nutrients to the soil. The use of fertilizers can also help to improve soil structure and fertility, leading to more resilient and sustainable agricultural systems. However, overuse or improper use of fertilizers can lead to soil degradation, which can reduce soil fertility, decrease crop yields, and damage ecosystems. Thus, several attempts have been made to overcome the issues related to the drawbacks of fertilizers, including the development of an advanced fertilizer delivery system. Biopolymer aerogels show promise as an innovative solution to improve the efficiency and effectiveness of soil-fertilizer delivery systems. Further research and development in this area could lead to the widespread adoption of biopolymer aerogels in agriculture, promoting sustainable farming practices and helping to address global food-security challenges. This review discusses for the first time the potential of biopolymer-based aerogels in soil-fertilizer delivery, going through the types of soil fertilizer and the advert health and environmental effects of overuse or misuse of soil fertilizers. Different types of biopolymer-based aerogels were discussed in terms of their potential in fertilizer delivery and, finally, the review addresses the challenges and future directions of biopolymer aerogels in soil-fertilizer delivery.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Kanchan Jha
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Sandeep Panchal
- Department of Civil Engineering, Government Polytechnic Mankeda, Agra 283102, Uttar Pradesh, India;
| | - Nidhi Patel
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Arindam Garai
- Department of Mathematics, Sonarpur Mahavidyalaya, Kolkata 700149, West Bengal, India;
| | - Soni Kumari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Asir, Saudi Arabia;
| |
Collapse
|
34
|
Wu Y, Wang X, Yao L, Chang S, Wang X. Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review. Molecules 2023; 28:5836. [PMID: 37570806 PMCID: PMC10421090 DOI: 10.3390/molecules28155836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Energy problems have become increasingly prominent. The use of thermal insulation materials is an effective measure to save energy. As an efficient energy-saving material, nanocellulose aerogels have broad application prospects. However, nanocellulose aerogels have problems such as poor mechanical properties, high flammability, and they easily absorbs water from the environment. These defects restrict their thermal insulation performance and severely limit their application. This review analyzes the thermal insulation mechanism of nanocellulose aerogels and summarizes the methods of preparing them from biomass raw materials. In addition, aiming at the inherent defects of nanocellulose aerogels, this review focuses on the methods used to improve their mechanical properties, flame retardancy, and hydrophobicity in order to prepare high-performance thermal insulation materials in line with the concept of sustainable development, thereby promoting energy conservation, rational use, and expanding the application of nanocellulose aerogels.
Collapse
Affiliation(s)
| | | | - Lihong Yao
- College of Materials Science and Art Design, Wood Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (X.W.); (S.C.); (X.W.)
| | | | | |
Collapse
|
35
|
Nitodas S(S, Skehan M, Liu H, Shah R. Current and Potential Applications of Green Membranes with Nanocellulose. MEMBRANES 2023; 13:694. [PMID: 37623755 PMCID: PMC10456796 DOI: 10.3390/membranes13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products.
Collapse
Affiliation(s)
- Stefanos (Steve) Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Meredith Skehan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| | - Henry Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Raj Shah
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| |
Collapse
|
36
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
37
|
Popescu M, Ungureanu C. Green Nanomaterials for Smart Textiles Dedicated to Environmental and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4075. [PMID: 37297209 PMCID: PMC10254517 DOI: 10.3390/ma16114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Smart textiles recently reaped significant attention owing to their potential applications in various fields, such as environmental and biomedical monitoring. Integrating green nanomaterials into smart textiles can enhance their functionality and sustainability. This review will outline recent advancements in smart textiles incorporating green nanomaterials for environmental and biomedical applications. The article highlights green nanomaterials' synthesis, characterization, and applications in smart textile development. We discuss the challenges and limitations of using green nanomaterials in smart textiles and future perspectives for developing environmentally friendly and biocompatible smart textiles.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
38
|
Younes K, Kharboutly Y, Antar M, Chaouk H, Obeid E, Mouhtady O, Abu-Samha M, Halwani J, Murshid N. Application of Unsupervised Learning for the Evaluation of Aerogels' Efficiency towards Dye Removal-A Principal Component Analysis (PCA) Approach. Gels 2023; 9:gels9040327. [PMID: 37102939 PMCID: PMC10137516 DOI: 10.3390/gels9040327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Water scarcity is a growing global issue, particularly in areas with limited freshwater sources, urging for sustainable water management practices to insure equitable access for all people. One way to address this problem is to implement advanced methods for treating existing contaminated water to offer more clean water. Adsorption through membranes technology is an important water treatment technique, and nanocellulose (NC)-, chitosan (CS)-, and graphene (G)- based aerogels are considered good adsorbents. To estimate the efficiency of dye removal for the mentioned aerogels, we intend to use an unsupervised machine learning approach known as "Principal Component Analysis". PCA showed that the chitosan-based ones have the lowest regeneration efficiencies, along with a moderate number of regenerations. NC2, NC9, and G5 are preferred where there is high adsorption energy to the membrane, and high porosities could be tolerated, but this allows lower removal efficiencies of dye contaminants. NC3, NC5, NC6, and NC11 have high removal efficiencies even with low porosities and surface area. In brief, PCA presents a powerful tool to unravel the efficiency of aerogels towards dye removal. Hence, several conditions need to be considered when employing or even manufacturing the investigated aerogels.
Collapse
Affiliation(s)
- Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Yahya Kharboutly
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mayssara Antar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hamdi Chaouk
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Omar Mouhtady
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mahmoud Abu-Samha
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Jalal Halwani
- Water and Environment Sciences Lab, Lebanese University, Tripoli 22100, Lebanon
| | - Nimer Murshid
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
39
|
Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023; 231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department Innovations in Circular Economy, Leuven, Belgium.
| | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamideh Najarzadeh
- Department of Textile Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
40
|
Aigaje E, Riofrio A, Baykara H. Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review. Polymers (Basel) 2023; 15:polym15051219. [PMID: 36904460 PMCID: PMC10006885 DOI: 10.3390/polym15051219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The increasing concerns about plastic pollution and climate change have encouraged research into bioderived and biodegradable materials. Much attention has been focused on nanocellulose due to its abundance, biodegradability, and excellent mechanical properties. Nanocellulose-based biocomposites are a viable option to fabricate functional and sustainable materials for important engineering applications. This review addresses the most recent advances in composites, with a particular focus on biopolymer matrices such as starch, chitosan, polylactic acid, and polyvinyl alcohol. Additionally, the effects of the processing methods, the influence of additives, and the outturn of nanocellulose surface modification on the biocomposite's properties are outlined in detail. Moreover, the change in the composites' morphological, mechanical, and other physiochemical properties due to reinforcement loading is reviewed. Further, mechanical strength, thermal resistance, and the oxygen-water vapor barrier properties are enhanced with the incorporation of nanocellulose into biopolymer matrices. Furthermore, the life cycle assessment of nanocellulose and composites were considered to analyze their environmental profile. The sustainability of this alternative material is compared through different preparation routes and options.
Collapse
Affiliation(s)
- Elizabeth Aigaje
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Correspondence: (E.A.); (H.B.)
| | - Ariel Riofrio
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
| | - Haci Baykara
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Correspondence: (E.A.); (H.B.)
| |
Collapse
|
41
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
42
|
Lim YY, Zaidi AMA, Miskon A. Composing On-Program Triggers and On-Demand Stimuli into Biosensor Drug Carriers in Drug Delivery Systems for Programmable Arthritis Therapy. Pharmaceuticals (Basel) 2022; 15:1330. [PMID: 36355502 PMCID: PMC9698912 DOI: 10.3390/ph15111330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
Medication in arthritis therapies is complex because the inflammatory progression of rheumatoid arthritis (RA) and osteoarthritis (OA) is intertwined and influenced by one another. To address this problem, drug delivery systems (DDS) are composed of four independent exogenous triggers and four dependent endogenous stimuli that are controlled on program and induced on demand, respectively. However, the relationships between the mechanisms of endogenous stimuli and exogenous triggers with pathological alterations remain unclear, which results in a major obstacle in terms of clinical translation. Thus, the rationale for designing a guidance system for these mechanisms via their key irritant biosensors is in high demand. Many approaches have been applied, although successful clinical translations are still rare. Through this review, the status quo in historical development is highlighted in order to discuss the unsolved clinical difficulties such as infiltration, efficacy, drug clearance, and target localisation. Herein, we summarise and discuss the rational compositions of exogenous triggers and endogenous stimuli for programmable therapy. This advanced active pharmaceutical ingredient (API) implanted dose allows for several releases by remote controls for endogenous stimuli during lesion infections. This solves the multiple implantation and local toxic accumulation problems by using these flexible desired releases at the specified sites for arthritis therapies.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
43
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|