1
|
Raj A, Sharmin S, Jannat S, Ahmed S, Ihsan AB. Innovative approaches in bioadhesive design: A comprehensive review of crosslinking methods and mechanical performance. BIOMATERIALS ADVANCES 2025; 173:214287. [PMID: 40112674 DOI: 10.1016/j.bioadv.2025.214287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
In biomedical applications, bioadhesives have become a game-changer, offering novel approaches to tissue engineering, surgical adhesion, and wound healing. This comprehensive review paper provides a thorough analysis of bioadhesives and their categorization according to application site and crosslinking process, bonding efficacy, and mechanical characteristics. The use of bioadhesives to stop bleeding and seal leaks is also covered in the review. The article delves into the various crosslinking techniques used in bioadhesives, including chemical, physical, and hybrid approaches. It emphasizes on how these mechanisms control the adhesive's elasticity, durability, and structural integrity. In addition, the review looks at the mechanical strength of bioadhesives, taking important characteristics like shear strength, toughness, elasticity, and tensile strength into account. It is highlighted how important bioadhesives are to the life sciences because they drive innovation and interdisciplinary cooperation, address present healthcare issues, and create new avenues for therapeutic development. The paper also explores some vital characteristics of bioadhesives that, when strategically combined with one another, improve their efficacy and usefulness in a variety of surgical and medical applications. The analysis concludes by examining nature-inspired adhesives, including those based on geckos, mussels, and tannic acid, and their unique bonding mechanisms and potential for use in advanced biomedical applications.
Collapse
Affiliation(s)
- Asef Raj
- Department of Pharmaceutical Chemistry, University of Dhaka, Bangladesh; School of Pharmacy, BRAC University, Bangladesh
| | | | - Safrin Jannat
- Department of Pharmacy, International Islamic University Chattogram, Bangladesh
| | - Saika Ahmed
- Department of Chemistry, University of Dhaka, Bangladesh
| | - Abu Bin Ihsan
- Department of Pharmacy, Faculty of Life Science, Eastern University, Dhaka, Bangladesh.
| |
Collapse
|
2
|
Rumon MMH. Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications. RSC Adv 2025; 15:11688-11729. [PMID: 40236573 PMCID: PMC11997669 DOI: 10.1039/d5ra00521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Cellulose-derived hydrogels have emerged as game-changing materials in biomedical research, offering an exceptional combination of water absorption capacity, mechanical resilience, and innate biocompatibility. This review explores the intricate mechanisms that drive their swelling behaviour, unravelling how molecular interactions and network architectures work synergistically to enable efficient water retention and adaptability. Their mechanical properties are explored in depth, with a focus on innovative chemical modifications and cross-linking techniques that enhance strength, elasticity, and functional versatility. The versatility of cellulose-based hydrogels shines in applications such as wound healing, precision drug delivery, and tissue engineering, where their biodegradability, biocompatibility, and adaptability meet the demands of cutting-edge healthcare solutions. By weaving together recent breakthroughs in their development and application, this review highlights their transformative potential to redefine regenerative medicine and other biomedical fields. Ultimately, it emphasizes the urgent need for continued research to unlock the untapped capabilities of these extraordinary biomaterials, paving the way for new frontiers in healthcare innovation.
Collapse
Affiliation(s)
- Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| |
Collapse
|
3
|
Khosrowshahi ND, Amini H, Khoshfetrat AB, Rahbarghazi R. Oxidized pectin/collagen self-healing hydrogel accelerated the regeneration of acute hepatic injury in a mouse model. Int J Biol Macromol 2025; 304:140931. [PMID: 39947540 DOI: 10.1016/j.ijbiomac.2025.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The high-rate incidence of hepatic tissue pathologies and lack of enough donors necessitate the development of de novo liver therapeutic protocols and tissue engineering modalities. Due to unique chemical structure, and biological properties, the application of pectin-based hydrogels has been extended in different pathological conditions. Using ozonation [O3 gas (25 mg/h) a flow rate of 1 l/min] for 20, 40, 60, and 80 min, the hepatogenic properties of green synthesized hydrogel containing 6 % oxidized pectin (OP) 1 % collagen (Col) were studied in vitro and acute liver injury mice model. Data confirmed suitable gel content, swelling rate, porosity, Young's modulus, and self-healing capacity of OP-Col hydrogel. Ozonation time can influence the viability and function of human HepG2 cells via the generation-free aldehyde groups in which 40 min-ozonation yielded better biological outcomes (migration↑, and albumin production↑) after neutralization with glycine. The transplantation of glycine-treated liver cells-laden OP-Col hydrogel with 40 min-ozonation protocol reduced the progression of fibrotic changes, and unwanted in situ immune system response in acute liver injury mice model after 14 days. Besides, the systemic levels of albumin and urea were increased coinciding with the reduction of liver cell damage enzymes. OP-based hydrogels can appropriately mimic suitable microenvironments for the regulation of hepatocyte dynamic growth and function in in vitro conditions and following acute injuries. The synthesis of OP-based hydrogel with a specific synthesis protocol promotes the biological activity of transplanted liver cells at the site of injury.
Collapse
Affiliation(s)
- Nafiseh Didar Khosrowshahi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Tissue Engineering and Stem Cell Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Tissue Engineering and Stem Cell Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Tu Y, Zheng W, Ding Z, Xiang J, Yang Q, Liu Y, Cao J, Shen Y, Tang Z, Lin S, Fan L, Xu Y, Chen B. Exosome-loaded tannic acid-thioctic acid hydrogel enhances wound healing in coagulation disorders. Mater Today Bio 2025; 31:101496. [PMID: 39990738 PMCID: PMC11846942 DOI: 10.1016/j.mtbio.2025.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
Hemophilia poses distinct challenges to wound healing, primarily due to uncontrolled bleeding and delayed tissue repair. This study explored a novel tannic acid-thioctic acid (TATA) hydrogel, enriched with exosomes derived from bone marrow mesenchymal stem cells, as a therapeutic strategy for enhancing skin wound healing in a hemophilia model. The hydrogel exhibited robust hemostatic efficacy, potent antioxidant activity, and the capacity to modulate the inflammatory microenvironment. Both in vitro and in vivo assessments demonstrated significantly accelerated wound closure, increased collagen deposition, and pronounced angiogenesis in the TATA Hydrogel-Exosome(TATA Hydrogel-Exos) treatment group relative to controls. Rheological evaluations confirmed the self-healing properties and mechanical durability, of the hydrogel, underscoring its potential for sustained therapeutic application. Importantly, no significant systemic toxicity was observed, indicating favorable biocompatibility. These multifunctional TATA Hydrogel-Exos present a promising therapeutic avenue for hemophilia-related wounds by integrating hemostasis, inflammation regulation, and tissue regeneration.
Collapse
Affiliation(s)
- Yuesheng Tu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weixin Zheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zichu Ding
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Xiang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuchen Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jue Cao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuling Shen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zinan Tang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shen Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Xu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Chen SY, Feng T, Wu ZQ, Bao N. Recent applications and advancement of conductive hydrogels in biosensing, bioelectronics and bioengineering. Mikrochim Acta 2025; 192:263. [PMID: 40148690 DOI: 10.1007/s00604-025-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Conductive hydrogels (CHs) are characterized by their distinctive three-dimensional (3D) network architecture enhanced by physically entangled or chemically cross-linked polymer chains. In recent years, these materials have garnered significant scientific interest owing to their unique combination of inherent electrical conductivity and remarkable capability to transduce external stimuli into measurable electronic signals. The immense potentials of those CHs in a number of applications catalyzed this review to summarize their specific properties and applications in biosensing, bioelectronics and bioengineering. Firstly, the preparation and unique properties of CHs were summarized, including mechanical properties, adhesion properties, self-healing capabilities, conductivity, biodegradability, and biocompatibility. We demonstrated tremendous potentials of CHs in the real world by showcasing their broad applications in biosensing (such as nerve sensing, strain sensing, glucose sensing, tumor sensing, temperature sensing, and environmental sensing), bioelectronics and bioengineering (such as treatment of cardiac and wound healing). Finally, by presenting current challenges and issues of CHs, future potential research directions were outlined for their applications in the study of biosensing, bioelectronics and bioengineering.
Collapse
Affiliation(s)
- Shi-Yu Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Tao Feng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| |
Collapse
|
6
|
Risangud N, Lertwimol T, Sitthisang S, Wongvitvichot W, Uppanan P, Tanodekaew S. The preparation of 3D-printed self-healing hydrogels composed of carboxymethyl chitosan and oxidized dextran via stereolithography for biomedical applications. Int J Biol Macromol 2025; 292:139251. [PMID: 39732244 DOI: 10.1016/j.ijbiomac.2024.139251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study presents a new approach for fabricating 3D-printed self-healing hydrogels via light-assisted 3D printing, utilizing Schiff-base and covalent bonding formations resulting from the reaction between amine and aldehyde functional groups alongside the photopolymerization of methacrylate groups. Two distinct polymers, carboxymethyl chitosan (CMCs) and dextran, were first modified to yield methacrylate-modified carboxymethyl chitosan (CMCs-MA) and oxidized dextran (OD). The structural modifications of these polymers were confirmed using spectroscopic techniques, including 1H NMR and FTIR analyses. Variations in polymer concentration and degree of oxidation resulted in significant differences in the physical properties of resulting hydrogels (e.g., mechanical performance, swelling ratio, and microstructure) and biological responses. The compressive moduli revealed in the range of 14.31 ± 1.38 to 26.20 ± 3.31 kPa. Chondrocytes cultured with various hydrogel formulations exhibited distinct cell morphology and adhesion differences, driven by the interaction between the mechanical and biochemical properties of the hydrogel. We have developed a strategy for fabricating 3D-printed self-healing hydrogels with tunable stiffness, enabling the regulation of chondrocyte morphology and demonstrating significant potential for biomedical applications.
Collapse
Affiliation(s)
- Nuttapol Risangud
- Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Tareerat Lertwimol
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Sonthikan Sitthisang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wasupon Wongvitvichot
- Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Uppanan
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Siriporn Tanodekaew
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Song HS, Rumon MMH, Rahman Khan MM, Jeong JH. Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices. Polymers (Basel) 2025; 17:542. [PMID: 40006203 PMCID: PMC11859541 DOI: 10.3390/polym17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Flexible sensors are revolutionizing wearable and implantable devices, with conductive hydrogels emerging as key materials due to their biomimetic structure, biocompatibility, tunable transparency, and stimuli-responsive electrical properties. However, their fragility and limited durability pose significant challenges for broader applications. Drawing inspiration from the self-healing capabilities of natural organisms like mussels, researchers are embedding self-repair mechanisms into hydrogels to improve their reliability and lifespan. This review highlights recent advances in self-healing (SH) conductive hydrogels, focusing on synthesis methods, healing mechanisms, and strategies to enhance multifunctionality. It also explores their wide-ranging applications, including in vivo signal monitoring, wearable biochemical sensors, supercapacitors, flexible displays, triboelectric nanogenerators, and implantable bioelectronics. While progress has been made, challenges remain in balancing self-healing efficiency, mechanical strength, and sensing performance. This review offers insights into overcoming these obstacles and discusses future research directions for advancing SH hydrogel-based bioelectronics, aiming to pave the way for durable, high-performance devices in next-generation wearable and implantable technologies.
Collapse
Affiliation(s)
- Han-Seop Song
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | | | - Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Jae-Ho Jeong
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
8
|
Rahman Khan MM, Rumon MMH. Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels 2025; 11:88. [PMID: 39996631 PMCID: PMC11854265 DOI: 10.3390/gels11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
There is ongoing research for biomedical applications of polyvinyl alcohol (PVA)-based hydrogels; however, the execution of this has not yet been achieved at an appropriate level for commercialization. Advanced perception is necessary for the design and synthesis of suitable materials, such as PVA-based hydrogel for biomedical applications. Among polymers, PVA-based hydrogel has drawn great interest in biomedical applications owing to their attractive potential with characteristics such as good biocompatibility, great mechanical strength, and apposite water content. By designing the suitable synthesis approach and investigating the hydrogel structure, PVA-based hydrogels can attain superb cytocompatibility, flexibility, and antimicrobial activities, signifying that it is a good candidate for tissue engineering and regenerative medicine, drug delivery, wound dressing, contact lenses, and other fields. In this review, we highlight the current progresses on the synthesis of PVA-based hydrogels for biomedical applications explaining their diverse usage across a variety of areas. We explain numerous synthesis techniques and related phenomena for biomedical applications based on these materials. This review may stipulate a wide reference for future acumens of PVA-based hydrogel materials for their extensive applications in biomedical fields.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
9
|
Xu J, Dai P, Zhang C, Dong N, Li C, Tang C, Jin Z, Lin S, Ye L, Sun T, Jin Y, Wu F, Luo L, Wu P, Li S, Li X, Hsu S, Jiang D, Wang Z. Injectable Hierarchical Bioactive Hydrogels with Fibroblast Growth Factor 21/Edaravone/Caffeic Acid Asynchronous Delivery for Treating Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412020. [PMID: 39630931 PMCID: PMC11775539 DOI: 10.1002/advs.202412020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Parkinson's disease (PD) is one of the most common long-term neurodegenerative disorders, with multiple comorbid psychiatric and behavioral abnormalities. The combination of clinical drugs targeting different symptoms with smart hydrogels to achieve asynchronous releases is highly translational and challenging. Here, a hierarchical bioactive hydrogel (OACDP) is designed with asynchronous release based on PD pathology. The hydrogel with caffeic acid-grafted polymer main chain is crosslinked using a micellar nanocrosslinker, with sufficient modulus (≈167 Pa), antioxidant activity (> 50%), injectability (30-gauge syringe needle), and shape-adaptability. Each of the three drugs (caffeic acid, fibroblast growth factor 21, and Edaravone) is separately engaged in different micro- or nanostructures of the hydrogel and released with asynchronous kinetics of first-order release, zero-order release, or matching Korsmeyer-Peppas model. The triple-loaded hydrogel is injected into the brains of PD rats, showing behavioral improvement. Histological analysis revealed that the triple-loaded OACDP hydrogels are effective in achieving immediate neuroprotection, i.e., reduction the loss of tyrosine hydroxylase in substantia nigra compacta and striatum (retained ≈10-fold versus control), decreasing oxidative stress, reducing astrocyte and microglia activation, and stimulating the AMPK/PGC-1α axis to regulate the mitochondrial function, providing a multi-dimensional PD therapy. The asynchronous release of OACDP hydrogel provides a new conception for PD treatment and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chen Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Na Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chonghui Tang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Zhihao Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shih‐Ho Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
| | - Luyang Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Tianmiao Sun
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Yukai Jin
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Fenzan Wu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shengcun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- Rehabilitation Medicine CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan350401Republic of China
| | - Dawei Jiang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhouguang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
10
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
11
|
Rumon MM, Akib AA, Sarkar SD, Khan MAR, Uddin MM, Nasrin D, Roy CK. Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications. ACS POLYMERS AU 2024; 4:463-486. [PMID: 39679058 PMCID: PMC11638789 DOI: 10.1021/acspolymersau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, numerous applications of hydrogels using polysaccharides have evolved, benefiting from their widespread availability, excellent biodegradability, biocompatibility, and nonpoisonous nature. These natural polymers are typically sourced from renewable materials or from manufacturing processes, contributing collaboratively to waste management and demonstrating the potential for enhanced and enduring sustainability. In the field of novel bioactive molecule carriers for biotherapeutics, natural polymers are attracting attention due to their inherent properties and adaptable chemical structures. These polymers offer versatile matrices with a range of architectures and mechanical properties, while retaining the bioactivity of incorporated biomolecules. However, conventional polysaccharide-based hydrogels suffer from inadequate mechanical toughness with large swelling properties, which prohibit their efficacy in real-world applications. This review offers insights into the latest advancements in the development of diverse polysaccharide-based hydrogels for biotherapeutic administrations, either standalone or in conjunction with other polymers or drug delivery systems, in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Md. Mahamudul
Hasan Rumon
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Anwarul Azim Akib
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Stephen Don Sarkar
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | | | - Md. Mosfeq Uddin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Victoria, Victoria 3800, Canada
| | - Dina Nasrin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
12
|
Lu K, Lan X, Folkersma R, Voet VSD, Loos K. Borax Cross-Linked Acrylamide-Grafted Starch Self-Healing Hydrogels. Biomacromolecules 2024; 25:8026-8037. [PMID: 39582338 PMCID: PMC11632664 DOI: 10.1021/acs.biomac.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The biocompatibility and renewability of starch-based hydrogels have made them popular for applications across various sectors. Their tendency to incur damage after repeated use limits their effectiveness in practical applications. Improving the mechanical properties and self-healing of hydrogels simultaneously remains a challenge. This study introduces a new self-healing hydrogel, synthesized by grafting acrylamide onto starch using ceric ammonium nitrate (CAN) as an initiator, followed by borax cross-linking. We systematically examined how the starch-to-monomer ratio, borax concentration, and CAN concentration impact the grafting reactions and overall performance of the hydrogels. The addition of borax significantly reinforced the strength of the hydrogel; the maximum storage modulus increased by 1.8 times. Thanks to dynamic borate ester and hydrogen bonding, the hydrogel demonstrated remarkable recovery properties and responsiveness to temperature. We expect that the present research could broaden the application of starch-based hydrogels in agriculture, sensors, and wastewater treatment.
Collapse
Affiliation(s)
- Kai Lu
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Xiaohong Lan
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
| | - Rudy Folkersma
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Vincent S. D. Voet
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
| |
Collapse
|
13
|
Cui L, Perini G, Minopoli A, Augello A, De Spirito M, Palmieri V, Papi M. Plant-derived extracellular vesicles release combined with systemic DOX exhibits synergistic effects in 3D bioprinted triple-negative breast cancer. Biomed Pharmacother 2024; 181:117637. [PMID: 39481327 DOI: 10.1016/j.biopha.2024.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, lacking targeted therapeutic options. Hydrogels, particularly gelatin methacrylate (GelMA), have emerged as promising materials for localized drug delivery due to their biocompatibility and tunable properties. This study investigates a dual-delivery system for enhancing the treatment efficacy of triple-negative breast cancer (TNBC) using a combination of extracellular vesicles (EVs) derived from Citrus limon L. and the chemotherapeutic drug doxorubicin (DOX). We fabricated 3D bioprinted GelMA scaffolds to achieve localized and controlled release of EVs and evaluated their synergistic effects with systemic DOX delivery on both primary and metastatic 3D TNBC models. The GelMA scaffolds, especially those with 95 % methacrylation, exhibited higher stiffness, which enhanced their sustained release. Following 48-h incubation, the combination of EVs and DOX significantly increased cytotoxicity in the primary 3D TNBC model, reducing cell viability to approximately 30 % compared to controls. This was notably more effective than treatments with DOX or EVs alone. During the extended 7-day incubation period, the combination treatment continued to show superior efficacy, with persistently high levels of ROS generation and further reduction in cell viability. In a metastatic 3D TNBC model, a significant sensitivity to the combined treatment was observed, which notably inhibited aggregate formation and migration. Importantly, EVs-embedded scaffolds promoted the proliferation of human fibroblasts, highlighting their non-toxic nature, while concurrently inhibiting TNBC cell growth. This approach provides a promising strategy to improve the treatment outcomes of TNBC by exploiting the synergistic effects of local EVs release and systemic chemotherapy.
Collapse
Affiliation(s)
- Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Antonio Minopoli
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy; Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, Rome 00185, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy; Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, Rome 00185, Italy.
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| |
Collapse
|
14
|
Kurdtabar M, Mirashrafi NS, Bagheri Marandi G, Ghobadifar V. Synthesis and characterization of self-healable supramolecular hydrogel based on carboxymethyl cellulose for biomedical applications. Int J Biol Macromol 2024; 281:136532. [PMID: 39406321 DOI: 10.1016/j.ijbiomac.2024.136532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels have been widely used in biomedical fields including tissue engineering, drug delivery and cell delivery and 3D cell delivery due to abundant water content in their hydrophilic three-dimensional networks and having soft tissue similar to the human body. In recent years, supramolecular hydrogels (SHG) formed by the inclusion complex between polyethylene glycol (PEG) and macrocycles such as cyclodextrin (CD) have attracted much interest due to their excellent biocompatibility and great potential in biomedical. In this research, a carboxymethyl cellulose (CMC)-based graft copolymer was prepared by using acrylic acid (AA) and maleic anhydride functionalized β-CD (β-CD-MA) as comonomers and ammonium persulfate (APS) as initiator. Then, a self-healable supramolecular hydrogel was synthesized by formation of a host-guest inclusion complex between CMC-g-poly (AA-co-β-CD-MA) as host molecule and cytosine- and guanine-modified PEG as guest molecules. The prepared hydrogel was characterized by Scanning Electron Microscope (SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (1H NMR). The thermal stability of hydrogel was also determined by thermal gravimetric (TGA) and differential scanning calorimetry (DSC) methods. In addition, the loading and release profiles of metformin hydrochloride (MH) drug as a model on hydrogel was investigated. The results indicated that the drug release from the hydrogel peaks around 360 min and aligns with the Ritger-Peppas model. The hydrogel's self-healing property was examined at ambient temperature and 37 °C. It showed 70 % healing in 1.5 h and completed recovery after 9 h.
Collapse
Affiliation(s)
- Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | | | | - Vahid Ghobadifar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
15
|
Choi H, Choi WS, Jeong JO. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024; 10:693. [PMID: 39590049 PMCID: PMC11594258 DOI: 10.3390/gels10110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels are known for their high water retention capacity and biocompatibility and have become essential materials in tissue engineering and drug delivery systems. This review explores recent advancements in hydrogel technology, focusing on innovative types such as self-healing, tough, smart, and hybrid hydrogels, each engineered to overcome the limitations of conventional hydrogels. Self-healing hydrogels can autonomously repair structural damage, making them well-suited for applications in dynamic biomedical environments. Tough hydrogels are designed with enhanced mechanical properties, enabling their use in load-bearing applications such as cartilage regeneration. Smart hydrogels respond to external stimuli, including changes in pH, temperature, and electromagnetic fields, making them ideal for controlled drug release tailored to specific medical needs. Hybrid hydrogels, made from both natural and synthetic polymers, combine bioactivity and mechanical resilience, which is particularly valuable in engineering complex tissues. Despite these innovations, challenges such as optimizing biocompatibility, adjusting degradation rates, and scaling up production remain. This review provides an in-depth analysis of these emerging hydrogel technologies, highlighting their transformative potential in both tissue engineering and drug delivery while outlining future directions for their development in biomedical applications.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wan-Sun Choi
- Department of Orthopaedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
16
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
18
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
19
|
Bakadia BM, Zheng R, Qaed Ahmed AA, Shi Z, Babidi BL, Sun T, Li Y, Yang G. Teicoplanin-Decorated Reduced Graphene Oxide Incorporated Silk Protein Hybrid Hydrogel for Accelerating Infectious Diabetic Wound Healing and Preventing Diabetic Foot Osteomyelitis. Adv Healthc Mater 2024; 13:e2304572. [PMID: 38656754 DOI: 10.1002/adhm.202304572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Developing hybrid hydrogel dressings with anti-inflammatory, antioxidant, angiogenetic, and antibiofilm activities with higher bone tissue penetrability to accelerate diabetic wound healing and prevent diabetic foot osteomyelitis (DFO) is highly desirable in managing diabetic wounds. Herein, the glycopeptide teicoplanin is used for the first time as a green reductant to chemically reduce graphene oxide (GO). The resulting teicoplanin-decorated reduced graphene oxide (rGO) is incorporated into a mixture of silk proteins (SP) and crosslinked with genipin to yield a physicochemically crosslinked rGO-SP hybrid hydrogel. This hybrid hydrogel exhibits high porosity, self-healing, shear-induced thinning, increased cell proliferation and migration, and mechanical properties suitable for tissue engineering. Moreover, the hybrid hydrogel eradicates bacterial biofilms with a high penetrability index in agar and hydroxyapatite disks covered with biofilms, mimicking bone tissue. In vivo, the hybrid hydrogel accelerates the healing of noninfected wounds in a diabetic rat and infected wounds in a diabetic mouse by upregulating anti-inflammatory cytokines and downregulating matrix metalloproteinase-9, promoting M2 macrophage polarization and angiogenesis. The implantation of hybrid hydrogel into the infected site of mouse tibia improves bone regeneration. Hence, the rGO-SP hybrid hydrogel can be a promising wound dressing for treating infectious diabetic wounds, providing a further advantage in preventing DFO.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100, Italy
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bakamona Lyna Babidi
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, 4748, Democratic Republic of the Congo
| | - Tun Sun
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Kang M, Park J, Kim SA, Kim TY, Kim JY, Kim DW, Park K, Seo J. Modulus-tunable multifunctional hydrogel ink with nanofillers for 3D-Printed soft electronics. Biosens Bioelectron 2024; 255:116257. [PMID: 38574560 DOI: 10.1016/j.bios.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Seamless integration and conformal contact of soft electronics with tissue surfaces have emerged as major challenges in realizing accurate monitoring of biological signals. However, the mechanical mismatch between the electronics and biological tissues impedes the conformal interfacing between them. Attempts have been made to utilize soft hydrogels as the bioelectronic materials to realize tissue-comfortable bioelectronics. However, hydrogels have several limitations in terms of their electrical and mechanical properties. In this study, we present the development of a 3D-printable modulus-tunable hydrogel with multiple functionalities. The hydrogel has a cross-linked double network, which greatly improves its mechanical properties. Functional fillers such as XLG or functionalized carbon nanotubes (fCNT) can be incorporated into the hydrogel to provide tunable mechanics (Young's modulus of 10-300 kPa) and electrical conductivity (electrical conductivity of ∼20 S/m). The developed hydrogel exhibits stretchability (∼1000% strain), self-healing ability (within 5 min), toughness (400-731 kJ/m3) viscoelasticity, tissue conformability, and biocompatibility. Upon examining the rheological properties in the modulated region, hydrogels can be 3D printed to customize the shape and design of the bioelectronics. These hydrogels can be fabricated into ring-shaped strain sensors for wearable sensor applications.
Collapse
Affiliation(s)
- Minkyong Kang
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo A Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae Young Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ju Yeon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kijun Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jungmok Seo
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Mohandoss S, Velu KS, Manoharadas S, Ahmad N, Palanisamy S, You S, Akhtar MS, Lee YR. Synthesis, Characterization, and Evaluation of Silver Nanoparticle-Loaded Carboxymethyl Chitosan with Sulfobetaine Methacrylate Hydrogel Nanocomposites for Biomedical Applications. Polymers (Basel) 2024; 16:1513. [PMID: 38891459 PMCID: PMC11174863 DOI: 10.3390/polym16111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, nanocomposites of AgNPs encapsulated in carboxymethyl chitosan (CMCS) with sulfobetaine methacrylate (SB) hydrogel (AgNPs/CMCS-SB) were synthesized. The UV-Vis spectra indicated the presence of AgNPs, with a broad peak at around 424 nm, while the AgNPs-loaded CMCS-SB nanocomposite exhibited absorption peaks at 445 nm. The size and dispersion of AgNPs varied with the concentration of the AgNO3 solution, affecting swelling rates: 148.37 ± 15.63%, 172.26 ± 18.14%, and 159.17 ± 16.59% for 1.0 mM, 3.0 mM, and 5.0 mM AgNPs/CMCS-SB, respectively. Additionally, water absorption capacity increased with AgNPs content, peaking at 11.04 ± 0.54% for the 3.0 mM AgNPs/CMCS-SB nanocomposite. Silver release from the nanocomposite was influenced by AgNO3 concentration, showing rapid initial release followed by a slower rate over time for the 3.0 mM AgNPs/CMCS-SB. XRD patterns affirmed the presence of AgNPs, showcasing characteristic peaks indicative of a face-centered cubic (fcc) structure. The FTIR spectra highlighted interactions between AgNPs and CMCS-SB, with noticeable shifts in characteristic bands. In addition, SEM and TEM images validated spherical AgNPs within the CMCS-SB hydrogel network, averaging approximately 70 and 30 nm in diameter, respectively. The nanocomposite exhibited significant antibacterial activity against S. aureus and E. coli, with inhibition rates of 98.9 ± 0.21% and 99.2 ± 0.14%, respectively, for the 3.0 mM AgNPs/CMCS-SB nanocomposite. Moreover, cytotoxicity assays showcased the efficacy of AgNPs/CMCS-SB against human colorectal cancer cells (HCT-116 cells), with the strongest cytotoxicity (61.7 ± 4.3%) at 100 μg/mL. These results suggest the synthesized AgNPs/CMCS-SB nanocomposites possess promising attributes for various biomedical applications, including antimicrobial and anticancer activities, positioning them as compelling candidates for further advancement in biomedicine.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (S.P.); (S.Y.)
| | - SangGuan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (S.P.); (S.Y.)
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| |
Collapse
|
22
|
Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:2660-2676. [PMID: 38723276 DOI: 10.1021/acsabm.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wound healing, particularly for chronic wounds, presents a considerable difficulty due to differences in biochemical and cellular processes that occur in different types of wounds. Recent technological breakthroughs have notably advanced the understanding of diagnostic and therapeutic approaches to wound healing. The evolution in wound care has seen a transition from traditional textile dressings to a variety of advanced alternatives, including self-healing hydrogels, hydrofibers, foams, hydrocolloids, environment responsive dressings, growth factor-based therapy, bioengineered skin substitutes, and stem cell and gene therapy. Technological advancements, such as 3D printing and electronic skin (e-skin) therapy, contribute to the customization of wound healing. Despite these advancements, effectively managing chronic wounds remains challenging. This necessitates the development of treatments that consider performance, risk-benefit balance, and cost-effectiveness. This review discusses innovative strategies for the healing of chronic wounds. Incorporating biomarkers into advanced dressings, coupled with corresponding biosensors and drug delivery formulations, enables the theranostic approach to the treatment of chronic wounds. Furthermore, integrating advanced dressings with power sources and user interfaces like near-field communication, radio frequency identification, and Bluetooth enhances real-time monitoring and on-demand drug delivery. It also provides a thorough evaluation of the advantages, patient compliance, costs, and durability of advanced dressings, emphasizing smart formulations and their preparation methods.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Aniket Kushare
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
23
|
Dallaev R. Advances in Materials with Self-Healing Properties: A Brief Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2464. [PMID: 38793530 PMCID: PMC11123491 DOI: 10.3390/ma17102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The development of materials with self-healing capabilities has garnered considerable attention due to their potential to enhance the durability and longevity of various engineering and structural applications. In this review, we provide an overview of recent advances in materials with self-healing properties, encompassing polymers, ceramics, metals, and composites. We outline future research directions and potential applications of self-healing materials (SHMs) in diverse fields. This review aims to provide insights into the current state-of-the-art in SHM research and guide future efforts towards the development of innovative and sustainable materials with enhanced self-repair capabilities. Each material type showcases unique self-repair mechanisms tailored to address specific challenges. Furthermore, this review investigates crack healing processes, shedding light on the latest developments in this critical aspect of self-healing materials. Through an extensive exploration of these topics, this review aims to provide a comprehensive understanding of the current landscape and future directions in self-healing materials research.
Collapse
Affiliation(s)
- Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
| |
Collapse
|
24
|
Taylor L. Self-healing hydrogels for enhancing chemotherapy drug efficacy: Advancements in anti-sarcoma and carcinoma therapies and clinical trial feasibility. CANCER PATHOGENESIS AND THERAPY 2024; 2:132-134. [PMID: 38601480 PMCID: PMC11002744 DOI: 10.1016/j.cpt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 04/12/2024]
Abstract
•Site-specific administration is key for optimizing anticancer drug administration; self-healing hydrogels may allow this at reasonable costs and reproducibility.•Self-healing hydrogels have several real-world therapeutic applications, including drug administration.•Self-healing hydrogels are yet to be utilized for chemotherapy drug administration in clinical trials.•Clinical research on using self-healing hydrogels in anticancer therapeutics is feasible and valid compared to other advances in anticancer drug administration.
Collapse
Affiliation(s)
- Luc Taylor
- Cerebrovascular Health, Exercise, and Environmental Research Sciences (CHEERS) Laboratory, Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
25
|
Chiriac AP, Ghilan A, Croitoriu A, Serban A, Bercea M, Stoleru E, Nita LE, Doroftei F, Stoica I, Bargan A, Rusu AG, Chiriac VM. Study on cellulose nanofibrils/copolymacrolactone based nano-composites with hydrophobic behaviour, self-healing ability and antioxidant activity. Int J Biol Macromol 2024; 262:130034. [PMID: 38340942 DOI: 10.1016/j.ijbiomac.2024.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The multiple uses of cellulose nanofibrils (CNFs) originate from their availability from renewable resources, and are due to their physico-chemical properties, biodegradability and biocompatibility. At the same time, reducing sensitivity to humidity, increasing interfacial adhesion and hydrophobic modification of the CNF surface to diversify applications and improve operation, are current targets pursued. This study focuses on the preparation of a novel gel structure using cellulose nanofibrils (CNFs) and poly(ethylene brassylate-co-squaric acid) (PEBSA50/50), a bio-based copolymacrolactone. The primary goal is to achieve the gel with reduced sensitivity to humidity and enhanced hydrophobic behaviour. The new system was characterized in comparison to its constituent components using various techniques, such as Fourier transform infrared spectroscopy, thermal analysis, X-ray diffraction, and NIR - chemical imaging. Rheological tests demonstrated the formation of the CNF_PEBSA50/50 gel as a result of physical interactions between the two polymeric partners and revealed self-healing abilities for the prepared gels. Determination of the contact angle, surface free energy, as well as dynamic measurements of the vapour sorption of the CNF_PEBSA50/50 system, confirmed the achievement of the study's aim. Furthermore, the CNF_PEBSA50/50 network was utilized to encapsulate citric acid, resulting in the creation of a new bioactive composite with both antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Aurica P Chiriac
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Alina Ghilan
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Croitoriu
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandru Serban
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena Stoleru
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Loredana Elena Nita
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Stoica
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Bargan
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Gabriela Rusu
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vlad Mihai Chiriac
- Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
26
|
Wang QX, Shi RH. Prospects of polyglycolic acid sheets for the treatment of esophageal stricture after esophageal endoscopic submucosal dissection. World J Gastrointest Endosc 2024; 16:1-4. [PMID: 38313459 PMCID: PMC10835476 DOI: 10.4253/wjge.v16.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024] Open
Abstract
Esophageal cancer is the seventh most common type of cancer and the sixth leading cause of cancer -related mortality worldwide. Endoscopic submucosal dissection (ESD) is widely used for the resection of early esophageal cancer. However, post-ESD esophageal stricture is a common long-term complication, which requires attention. Patients with post-ESD esophageal stricture often experience dysphagia and require multiple dilatations, which greatly affects their quality of life and increases healthcare costs. Therefore, to manage post-ESD esophageal stricture, researchers are actively exploring various strategies, such as pharmaceutical interventions, endoscopic balloon dilation, and esophageal stenting. Although steroids-based therapy has achieved some success, steroids can lead to complications such as osteoporosis and infection. Meanwhile, endoscopic balloon dilatation is effective in the short term, but is prone to recurrence and perforation. Additionally, esophageal stenting can alleviate the stricture, but is associated with discomfort during stenting and the complication of easy displacement also present challenges. Tissue engineering has evolved rapidly in recent years, and hydrogel materials have good biodegradability and biocompatibility. A novel type of polyglycolic acid (PGA) sheets has been found to be effective in preventing esophageal stricture after ESD, with the advantages of a simple operation and low complication rate. PGA membranes act as a biophysical barrier to cover the wound as well as facilitate the delivery of medications to promote wound repair and healing. However, there is still a lack of multicenter, large-sample randomized controlled clinical studies focused on the treatment of post-ESD esophageal strictures with PGA membrane, which will be a promising direction for future advancements in this field.
Collapse
Affiliation(s)
- Qing-Xia Wang
- Department of Gastroenterology, Southeast University Affiliated Zhongda Hospital, Medical School, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Southeast University Affiliated Zhongda Hospital, Medical School, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
27
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
28
|
Choi K, Noh A, Kim J, Hong PH, Ko MJ, Hong SW. Properties and Applications of Self-Healing Polymeric Materials: A Review. Polymers (Basel) 2023; 15:4408. [PMID: 38006132 PMCID: PMC10674826 DOI: 10.3390/polym15224408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Self-healing polymeric materials, engineered to autonomously self-restore damages from external stimuli, are at the forefront of sustainable materials research. Their ability to maintain product quality and functionality and prolong product life plays a crucial role in mitigating the environmental burden of plastic waste. Historically, initial research on the development of self-healing materials has focused on extrinsic self-healing systems characterized by the integration of embedded healing agents. These studies have primarily focused on optimizing the release of healing agents and ensuring rapid self-healing capabilities. In contrast, recent advancements have shifted the focus towards intrinsic self-healing systems that utilize their inherent reactivity and interactions within the matrix. These systems offer the advantage of repeated self-healing over the same damaged zone, which is attributed to reversible chemical reactions and supramolecular interactions. This review offers a comprehensive perspective on extrinsic and intrinsic self-healing approaches and elucidates their unique properties and characteristics. Furthermore, various self-healing mechanisms are surveyed, and insights from cutting-edge studies are integrated.
Collapse
Affiliation(s)
- Kiwon Choi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ahyeon Noh
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinsil Kim
- Department of Chemical Engineering, University of Montreal, 2900 Edouard Montpeit Blvc, Montreal, QC H3T 1J4, Canada
| | - Pyong Hwa Hong
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Chungcheongnam-do, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Woo Hong
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Chungcheongnam-do, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
29
|
Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: translation in brain diseases. J Biomed Sci 2023; 30:43. [PMID: 37340481 DOI: 10.1186/s12929-023-00939-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Tissue engineering biomaterials are aimed to mimic natural tissue and promote new tissue formation for the treatment of impaired or diseased tissues. Highly porous biomaterial scaffolds are often used to carry cells or drugs to regenerate tissue-like structures. Meanwhile, self-healing hydrogel as a category of smart soft hydrogel with the ability to automatically repair its own structure after damage has been developed for various applications through designs of dynamic crosslinking networks. Due to flexibility, biocompatibility, and ease of functionalization, self-healing hydrogel has great potential in regenerative medicine, especially in restoring the structure and function of impaired neural tissue. Recent researchers have developed self-healing hydrogel as drug/cell carriers or tissue support matrices for targeted injection via minimally invasive surgery, which has become a promising strategy in treating brain diseases. In this review, the development history of self-healing hydrogel for biomedical applications and the design strategies according to different crosslinking (gel formation) mechanisms are summarized. The current therapeutic progress of self-healing hydrogels for brain diseases is described as well, with an emphasis on the potential therapeutic applications validated by in vivo experiments. The most recent aspect as well as the design rationale of self-healing hydrogel for different brain diseases is also addressed.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 350401, Taiwan, Republic of China.
| |
Collapse
|
30
|
Reys LL, Silva SS, Soares da Costa D, Rodrigues LC, Reis RL, Silva TH. Building Fucoidan/Agarose-Based Hydrogels as a Platform for the Development of Therapeutic Approaches against Diabetes. Molecules 2023; 28:molecules28114523. [PMID: 37298999 DOI: 10.3390/molecules28114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Current management for diabetes has stimulated the development of versatile 3D-based hydrogels as in vitro platforms for insulin release and as support for the encapsulation of pancreatic cells and islets of Langerhans. This work aimed to create agarose/fucoidan hydrogels to encapsulate pancreatic cells as a potential biomaterial for diabetes therapeutics. The hydrogels were produced by combining fucoidan (Fu) and agarose (Aga), marine polysaccharides derived from the cell wall of brown and red seaweeds, respectively, and a thermal gelation process. The agarose/fucoidan (AgaFu) blended hydrogels were obtained by dissolving Aga in 3 or 5 wt % Fu aqueous solutions to obtain different proportions (4:10; 5:10, and 7:10 wt). The rheological tests on hydrogels revealed a non-Newtonian and viscoelastic behavior, while the characterization confirmed the presence of the two polymers in the structure of the hydrogels. In addition, the mechanical behavior showed that increasing Aga concentrations resulted in hydrogels with higher Young's modulus. Further, the ability of the developed materials to sustain the viability of human pancreatic cells was assessed by encapsulation of the 1.1B4HP cell line for up to 7 days. The biological assessment of the hydrogels revealed that cultured pancreatic beta cells tended to self-organize and form pseudo-islets during the period studied.
Collapse
Affiliation(s)
- Lara L Reys
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Li X, Xu M, Geng Z, Liu Y. Functional hydrogels for the repair and regeneration of tissue defects. Front Bioeng Biotechnol 2023; 11:1190171. [PMID: 37260829 PMCID: PMC10227617 DOI: 10.3389/fbioe.2023.1190171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tissue defects can be accompanied by functional impairments that affect the health and quality of life of patients. Hydrogels are three-dimensional (3D) hydrophilic polymer networks that can be used as bionic functional tissues to fill or repair damaged tissue as a promising therapeutic strategy in the field of tissue engineering and regenerative medicine. This paper summarises and discusses four outstanding advantages of hydrogels and their applications and advances in the repair and regeneration of tissue defects. First, hydrogels have physicochemical properties similar to the extracellular matrix of natural tissues, providing a good microenvironment for cell proliferation, migration and differentiation. Second, hydrogels have excellent shape adaptation and tissue adhesion properties, allowing them to be applied to a wide range of irregularly shaped tissue defects and to adhere well to the defect for sustained and efficient repair function. Third, the hydrogel is an intelligent delivery system capable of releasing therapeutic agents on demand. Hydrogels are capable of delivering therapeutic reagents and releasing therapeutic substances with temporal and spatial precision depending on the site and state of the defect. Fourth, hydrogels are self-healing and can maintain their integrity when damaged. We then describe the application and research progress of functional hydrogels in the repair and regeneration of defects in bone, cartilage, skin, muscle and nerve tissues. Finally, we discuss the challenges faced by hydrogels in the field of tissue regeneration and provide an outlook on their future trends.
Collapse
|
32
|
Grytsenko O, Dulebova L, Spišák E, Pukach P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers (Basel) 2023; 15:polym15102259. [PMID: 37242834 DOI: 10.3390/polym15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This paper presents research results on the properties of composite materials based on cross-linked grafted copolymers of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) and their hydrogels filled with finely dispersed metal powders (Zn, Co, Cu). Metal-filled pHEMA-gr-PVP copolymers in the dry state were studied for surface hardness and swelling ability, which was characterized by swelling kinetics curves and water content. Copolymers swollen in water to an equilibrium state were studied for hardness, elasticity, and plasticity. The heat resistance of dry composites was evaluated by the Vicat softening temperature. As a result, materials with a wide range of predetermined properties were obtained, including physico-mechanical properties (surface hardness 240 ÷ 330 MPa, hardness number 0.06 ÷ 2.8 MPa, elasticity number 75 ÷ 90%), electrical properties (specific volume resistance 102 ÷ 108 Ω⋅m), thermophysical properties (Vicat heat resistance 87 ÷ 122 °C), and sorption (swelling degree 0.7 ÷ 1.6 g (H2O)/g (polymer)) at room temperature. Resistance to the destruction of the polymer matrix was confirmed by the results concerning its behavior in aggressive media such as solutions of alkalis and acids (HCl, H2SO4, NaOH), as well as some solvents (ethanol, acetone, benzene, toluene). The obtained composites are characterized by electrical conductivity, which can be adjusted within wide limits depending on the nature and content of the metal filler. The specific electrical resistance of metal-filled pHEMA-gr-PVP copolymers is sensitive to changes in moisture (with a moisture increase from 0 to 50%, ρV decreases from 108 to 102 Ω⋅m), temperature (with a temperature change from 20 °C to 175 °C, ρV of dry samples decreases by 4.5 times), pH medium (within pH from 2 to 9, the range of ρV change is from 2 to 170 kΩ⋅m), load (with a change in compressive stress from 0 kPa to 140 kPa, ρV of swollen composites decreases by 2-4 times), and the presence of low molecular weight substances, which is proven by the example involving ethanol and ammonium hydroxide. The established dependencies of the electrical conductivity of metal-filled pHEMA-gr-PVP copolymers and their hydrogels on various factors, in combination with high strength, elastic properties, sorption capacity, and resistance to aggressive media, suggest the potential for further research as a platform for the manufacture of sensors for various purposes.
Collapse
Affiliation(s)
- Oleksandr Grytsenko
- Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, 12, St. Bandera Str., 79013 Lviv, Ukraine
| | - Ludmila Dulebova
- Department of Technologies, Materials and Computer Aided Production, Technical University of Košice, 74 Mäsiarska, 04001 Košice, Slovakia
| | - Emil Spišák
- Department of Technologies, Materials and Computer Aided Production, Technical University of Košice, 74 Mäsiarska, 04001 Košice, Slovakia
| | - Petro Pukach
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12, St. Bandera Str., 79013 Lviv, Ukraine
| |
Collapse
|
33
|
Fletes-Vargas G, Espinosa-Andrews H, Cervantes-Uc JM, Limón-Rocha I, Luna-Bárcenas G, Vázquez-Lepe M, Morales-Hernández N, Jiménez-Ávalos JA, Mejía-Torres DG, Ramos-Martínez P, Rodríguez-Rodríguez R. Porous Chitosan Hydrogels Produced by Physical Crosslinking: Physicochemical, Structural, and Cytotoxic Properties. Polymers (Basel) 2023; 15:2203. [PMID: 37177348 PMCID: PMC10180930 DOI: 10.3390/polym15092203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan hydrogels are biomaterials with excellent potential for biomedical applications. In this study, chitosan hydrogels were prepared at different concentrations and molecular weights by freeze-drying. The chitosan sponges were physically crosslinked using sodium bicarbonate as a crosslinking agent. The X-ray spectroscopy (XPS and XRD diffraction), equilibrium water content, microstructural morphology (confocal microscopy), rheological properties (temperature sweep test), and cytotoxicity of the chitosan hydrogels (MTT assay) were investigated. XPS analysis confirmed that the chitosan hydrogels obtained were physically crosslinked using sodium bicarbonate. The chitosan samples displayed a semi-crystalline nature and a highly porous structure with mean pore size between 115.7 ± 20.5 and 156.3 ± 21.8 µm. In addition, the chitosan hydrogels exhibited high water absorption, showing equilibrium water content values from 23 to 30 times their mass in PBS buffer and high thermal stability from 5 to 60 °C. Also, chitosan hydrogels were non-cytotoxic, obtaining cell viability values ≥ 100% for the HT29 cells. Thus, physically crosslinked chitosan hydrogels can be great candidates as biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Gabriela Fletes-Vargas
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán Yahualica de González Gallo, Tepatitlan de Morelos 47620, Jalisco, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
| | - José Manuel Cervantes-Uc
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C (CICY A.C), Calle 43 No. 130 X 32 y 34, Chuburná de Hidalgo, Mérida 97205, Yucatan, Mexico;
| | - Isaías Limón-Rocha
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán Yahualica de González Gallo, Tepatitlan de Morelos 47620, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Departamento de Polímeros y Biopolímeros, CINVESTAV Unidad Querétaro, Mexico City 76230, Queretaro, Mexico;
| | - Milton Vázquez-Lepe
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Norma Morales-Hernández
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
| | - Jorge Armando Jiménez-Ávalos
- Departamento de Oncología Celular y Molecular, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico; (J.A.J.-Á.); (D.G.M.-T.)
| | - Dante Guillermo Mejía-Torres
- Departamento de Oncología Celular y Molecular, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico; (J.A.J.-Á.); (D.G.M.-T.)
| | - Paris Ramos-Martínez
- Departamento de Histopatología, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico
| | - Rogelio Rodríguez-Rodríguez
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
34
|
Popescu I, Constantin M, Bercea M, Coșman BP, Suflet DM, Fundueanu G. Poloxamer/Carboxymethyl Pullulan Aqueous Systems-Miscibility and Thermogelation Studies Using Viscometry, Rheology and Dynamic Light Scattering. Polymers (Basel) 2023; 15:polym15081909. [PMID: 37112056 PMCID: PMC10143542 DOI: 10.3390/polym15081909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol-gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Bogdan-Paul Coșman
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gheorghe Fundueanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
35
|
Gradinaru LM, Bercea M, Lupu A, Gradinaru VR. Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers (Basel) 2023; 15:polym15071697. [PMID: 37050311 PMCID: PMC10096672 DOI: 10.3390/polym15071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In situ-forming gels with self-assembling and self-healing properties are materials of high interest for various biomedical applications, especially for drug delivery systems and tissue regeneration. The main goal of this research was the development of an innovative gel carrier based on dynamic inter- and intramolecular interactions between amphiphilic polyurethane and peptide structures. The polyurethane architecture was adapted to achieve the desired amphiphilicity for self-assembly into an aqueous solution and to facilitate an array of connections with peptides through physical interactions, such as hydrophobic interactions, dipole-dipole, electrostatic, π–π stacking, or hydrogen bonds. The mechanism of the gelation process and the macromolecular conformation in water were evaluated with DLS, ATR-FTIR, and rheological measurements at room and body temperatures. The DLS measurements revealed a bimodal distribution of small (~30–40 nm) and large (~300–400 nm) hydrodynamic diameters of micelles/aggregates at 25 °C for all samples. The increase in the peptide content led to a monomodal distribution of the peaks at 37 °C (~25 nm for the sample with the highest content of peptide). The sol–gel transition occurs very quickly for all samples (within 20–30 s), but the equilibrium state of the gel structure is reached after 1 h in absence of peptide and required more time as the content of peptide increases. Moreover, this system presented self-healing properties, as was revealed by rheological measurements. In the presence of peptide, the structure recovery after each cycle of deformation is a time-dependent process, the recovery is complete after about 300 s. Thus, the addition of the peptide enhanced the polymer chain entanglement through intermolecular interactions, leading to the preparation of a well-defined gel carrier. Undoubtedly, this type of polyurethane/peptide-based carrier, displaying a sol–gel transition at a biologically relevant temperature and enhanced viscoelastic properties, is of great interest in the development of medical devices for minimally invasive procedures or precision medicine.
Collapse
|
36
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
37
|
Self-Healing, Flexible and Smart 3D Hydrogel Electrolytes Based on Alginate/PEDOT:PSS for Supercapacitor Applications. Polymers (Basel) 2023; 15:polym15030571. [PMID: 36771872 PMCID: PMC9918896 DOI: 10.3390/polym15030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Hydrogel electrolytes for energy storage devices have made great progress, yet they present a major challenge in the assembly of flexible supercapacitors with high ionic conductivity and self-healing properties. Herein, a smart self-healing hydrogel electrolyte based on alginate/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (alginate/PEDOT:PSS)(A/P:P) was prepared, wherein H2SO4 was employed as a polymeric initiator, as well as a source of ions. PEDOT:PSS is a semi-interpenetrating network (IPN) that has been used in recent studies to exhibit quick self-healing properties with the H₂SO₃ additive, which further improves its mechanical strength and self-healing performance. A moderate amount of PEDOT:PSS in the hydrogel (5 mL) was found to significantly improve the ionic conductivity compared to the pure hydrogel of alginate. Interestingly, the alginate/PEDOT:PSS composite hydrogel exhibited an excellent ability to self-heal and repair its original composition within 10 min of cutting. Furthermore, the graphite conductive substrate-based supercapacitor with the alginate/PEDOT:PSS hydrogel electrolyte provided a high specific capacitance of 356 F g-1 at 100 mV/s g-1. The results demonstrate that the A/P:P ratio with 5 mL PEDOT:PSS had a base sheet resistance of 0.9 Ω/square. This work provides a new strategy for designing flexible self-healing hydrogels for application in smart wearable electronics.
Collapse
|