1
|
Yilmaz EG, Küçük BN, Aslan Y, Erdem Ö, Saylan Y, Inci F, Denizli A. Theranostic advances and the role of molecular imprinting in disease management. iScience 2025; 28:112186. [PMID: 40224001 PMCID: PMC11986986 DOI: 10.1016/j.isci.2025.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Molecular imprinting has become an effective technology in the realm of diagnosing diseases, providing unparalleled specificity and sensitivity. This method is a promising trend in current medical research. This review examines the utilization of molecularly imprinted polymers (MIPs) in theranostic that integrates diagnostic functionalities for personalized medicine. The present work briefly discusses the fundamental concepts of molecular imprinting and how it has evolved into a versatile platform. Subsequently, the utilization of MIPs in the advancement of biosensors is focused, specifically emphasizing their contribution to the detection and diagnosis of diseases. The therapeutic potential of MIPs, focusing on targeted drug delivery and controlled release systems and the integration of MIPs into theranostic platforms is explored through case studies, showcasing the technology's ability to simultaneously diagnose and treat diseases. Finally, we address the current challenges facing MIPs and discuss future perspectives, emphasizing the potential of this technology to revolutionize the next generation.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Beyza Nur Küçük
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Ivaskiene T, Kaspute G, Ramanavicius A, Prentice U. Molecularly Imprinted Polymer Advanced Hydrogels as Tools for Gastrointestinal Diagnostics. Gels 2025; 11:269. [PMID: 40277704 PMCID: PMC12026608 DOI: 10.3390/gels11040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Gastroenterology faces significant challenges due to the global burden of gastrointestinal (GI) diseases, driven by socio-economic disparities and their wide-ranging impact on health and healthcare systems. Advances in molecularly imprinted polymers (MIPs) offer promising opportunities for developing non-invasive, cost-effective diagnostic tools that enhance the accuracy and accessibility of GI disease detection. This research explores the potential of MIP-based sensors in revolutionizing gastrointestinal diagnostics and improving early detection and disease management. Biomarkers are vital in diagnosing, monitoring, and personalizing disease treatment, particularly in gastroenterology, where advancements like MIPs offer highly selective and non-invasive diagnostic solutions. MIPs mimic natural recognition mechanisms, providing stability and sensitivity even in complex biological environments, making them ideal for early disease detection and real-time monitoring. Their integration with advanced technologies, including conducting polymers, enhances their functionality, enabling rapid, point-of-care diagnostics for gastrointestinal disorders. Despite regulatory approval and scalability challenges, ongoing innovations promise to revolutionize diagnostics and improve patient outcomes through precise approaches.
Collapse
Affiliation(s)
- Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
| | - Greta Kaspute
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Urte Prentice
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
3
|
Madadelahi M, Romero-Soto FO, Kumar R, Tlaxcala UB, Madou MJ. Electrochemical sensors: Types, applications, and the novel impacts of vibration and fluid flow for microfluidic integration. Biosens Bioelectron 2025; 272:117099. [PMID: 39764983 DOI: 10.1016/j.bios.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Electrochemical sensors are part of a diverse and evolving world of chemical sensors that are impacted by high demand and ongoing technological advancements. Electrochemical sensors offer benefits like cost-efficiency, short response time, ease of use, good limit of detection (LOD) and sensitivity, and ease of miniaturization while providing consistent analytical results. These sensors are employed in various fields-such as healthcare and diagnostics, environmental monitoring, and the food industry-to detect bacteria, viruses, heavy metals, pesticides, and more. In this review, we provide a comprehensive overview of electrochemical sensing techniques, with a focus on enhancing sensor performance through the integration of vibration and hydrodynamic flow in microfluidic systems. We present a structured comparison of these methods, utilizing tables to highlight the approaches most effective for performance enhancement. Additionally, we classify various electrochemical sensing applications, offering insights into the practical utilization of these two techniques for lowering the LOD. Finally, we present a comparative analysis of relevant studies, highlighting how hydrodynamic flow and vibration impact the sensing mechanism. We also explore the potential of these techniques to facilitate the development of automated, high-throughput microfluidic platforms, thereby optimizing their functionality and efficiency.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico.
| | - Fabian O Romero-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Rudra Kumar
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Uriel Bonilla Tlaxcala
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico; Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 PMCID: PMC11891642 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| |
Collapse
|
5
|
Brazys E, Ratautaite V, Mohsenzadeh E, Boguzaite R, Ramanaviciute A, Ramanavicius A. Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review). Adv Colloid Interface Sci 2025; 337:103386. [PMID: 39754907 DOI: 10.1016/j.cis.2024.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template. However, template removal is the most important among all the preparation steps because the final structure, which can be accepted and recognised as the MIP, is obtained only after the template removal. A thorough analysis of the studies dedicated to MIP applications demonstrates that this MIP preparation step, namely the template removal, is relatively understudied. MIP template removal is especially challenging in the synthesis, where the molecular template is a macromolecule such as a protein. This review aims to provide a deliberate, systematic, and consistent overview of protein removal as the MIP template molecules. The most prevalent template removal methods are outlined for removing protein templates from electrochemically synthesised MIPs, particularly thin layers on electrodes used in electrochemical sensors. Five protein template removal approaches involving chemical treatment are highlighted, which include the utilisation of (i) chaotropic agents, (ii) salt, (iii) acidic cleavage, (iv) alkaline, and finally, (v) proteolytic treatment focusing on studies conducted over the past decade. In addition, we discuss the interactions driving the removal of protein templates in each approach and associated challenges. This review provides insights into MIPs protein template removal strategies while highlighting the prevalent issue of this understudied step of template removal.
Collapse
Affiliation(s)
- Ernestas Brazys
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Enayat Mohsenzadeh
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
7
|
Liustrovaite V, Ratautaite V, Ramanaviciene A, Plikusiene I, Malinovskis U, Erts D, Sarvutiene J, Ramanavicius A. Electrochemical sensor for vascular endothelial growth factor based on self-assembling DNA aptamer structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177151. [PMID: 39461532 DOI: 10.1016/j.scitotenv.2024.177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Developing vascular endothelial growth factor (VEGF) protein is essential for early cancer diagnosis and cancer treatment monitoring. This study presents the design and characterisation of an electrochemical sensor utilising a self-assembling DNA aptamer structure for the sensitive and selective detection of VEGF. The aptamer structure comprises three different parts of single-stranded DNA that are assembled prior to integration into the sensor. Polypyrrole (Ppy)-based layers were deposited onto screen-printed carbon electrodes (SPCEs) using an electrochemical deposition technique, followed by the entrapment of a self-assembled DNA aptamer structure within electrochemically formed Ppy matrix ((DNA aptamer)/Ppy). The response to the sensor toward VEGF was measured by the pulsed amperometric detection (PAD), highlighting the enhanced performance of DNA aptamer/Ppy configuration compared to bare Ppy. The sensor exhibited high sensitivity, achieving a limit of detection (LOD) of 0.21 nM for VEGF. The interaction behaviour between VEGF in the solution and the immobilise DNA aptamer/Ppy-based structure was analysed using Langmuir isotherm model. The developed electrochemical biosensor is promising for in vitro applications in early cancer diagnostics and treatment monitoring, enabling rapid screening of patient samples.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; NanoTechnas, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
| | - Ieva Plikusiene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Uldis Malinovskis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Raina Blvd. 19, Riga LV-1586, Latvia
| | - Donats Erts
- Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Raina Blvd. 19, Riga LV-1586, Latvia; Department of Chemistry, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia
| | - Julija Sarvutiene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania.
| |
Collapse
|
8
|
Kaspute G, Ramanavicius A, Prentice U. Molecular Imprinting Technology for Advanced Delivery of Essential Oils. Polymers (Basel) 2024; 16:2441. [PMID: 39274074 PMCID: PMC11397921 DOI: 10.3390/polym16172441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Essential oils (EOs) hold therapeutic potential, but their conventional delivery systems have some limitations. This review focuses on the critical review and discussion of research related to EO delivery systems. The review also explores how molecular imprinting technologies (MIT) can advance EO delivery. MIT offer several techniques, namely covalent, non-covalent, and semi-covalent imprinting, creating targeted cavities that selectively bind and release EOs. These approaches promise significant advantages including increased selectivity, controlled release, and protection from environmental degradation. However, some challenges related to the stability and biocompatibility of MIPs remain unsolved. Integrating nanotechnology through methods like nanoparticle imprinting and some lithographic techniques seems promising to overcome these limitations. Some recently established models and systems used for EO-related research are paving the way for a more efficient and targeted EO delivery approach to harnessing the therapeutic power of EOs. Therefore, some recent and future research seems promising, and eventually it will increase the effectiveness of MIP-based EO delivery systems.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, Santariskes St. 5, LT-08410 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, Santariskes St. 5, LT-08410 Vilnius, Lithuania
| |
Collapse
|
9
|
Zhang H, Luo B, Liu K, Wang C, Hou P, Zhao C, Li A. Development of surface molecular-imprinted electrochemical sensor for palmitic acid with machine learning assistance. Talanta 2024; 275:126124. [PMID: 38663067 DOI: 10.1016/j.talanta.2024.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Palmitic acid (PA) is a kind of saturated high fatty acid, which is involved in physiological safety and food quality. A surface molecularly imprinted polymer (MIP) electrochemical sensor was prepared on MXene surface using dopamine (DA) as functional monomer. The electrode was modified with gold nanoparticles (AuNPs), ferrocene-graphene oxide-multiwalled carbon nanotubes (Fc-GO-MWCNT) composite to enhance the electroactive area and conductivity. The sensor was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and Differential pulse voltammetry (DPV), respectively. The parameters concerning this assay and various regeneration conditions have been carefully studied. The sensor can detect PA in the range of 1 nM-1 mM (R2 = 0.995), the limit of detection (LOD) is 0.48 nM (S/N = 3), and the limit of quantification (LOQ) is 1.61 nM. The artificial neural network (ANN) model in machine learning is further used to analyze the data collected by the sensor. The results show that the back propagation (BP) neural network in ANN is more suitable for the intelligent analysis of PA. The practicality of the sensor was confirmed by detecting PA in pork samples. This is the first MIP-based electrochemical sensor for PA, and it has great potential in practical applications.
Collapse
Affiliation(s)
- Heng Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Bin Luo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ke Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Peichen Hou
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunjiang Zhao
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aixue Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Frigoli M, Lowdon JW, Caldara M, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Emerging Biomimetic Sensor Technologies for the Detection of Pathogenic Bacteria: A Commercial Viability Study. ACS OMEGA 2024; 9:23155-23171. [PMID: 38854523 PMCID: PMC11154936 DOI: 10.1021/acsomega.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Ensuring a rapid and accurate identification of harmful bacteria is crucial in various fields including environmental monitoring, food safety, and clinical diagnostics. Conventional detection methods often suffer from limitations such as long analysis time, complexity, and the need for qualified personnel. Therefore, a lot of research effort is devoted to developing technologies with the potential to revolutionize the detection of pathogenic bacteria by offering rapid, sensitive, and user-friendly platforms for point-of-care analysis. In this light, biosensors have gained significant commercial attention in recent years due to their simplicity, portability, and rapid analysis capabilities. The purpose of this review is to identify a trend by analyzing which biosensor technologies have become commercially successful in the field of bacteria detection. Moreover, we highlight the characteristics that a biosensor must possess to finally arrive in the market and therefore in the hands of the end-user, and we present critical examples of the market applications of various technologies. The aim is to investigate the reason why certain technologies have achieved commercial success and extrapolate these trends to the future economic viability of a new subfield in the world of biosensing: the development of biomimetic sensor platforms. Therefore, an overview of recent advances in the field of biomimetic bacteria detection will be presented, after which the challenges that need to be addressed in the coming years to improve market penetration will be critically evaluated. We will zoom into the current shortcomings of biomimetic sensors based on imprinting technology and aptamers and try to come up with a recommendation for further development based on the trends observed from previous commercial success stories in biosensing.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W. Lowdon
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Manlio Caldara
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Drobysh M, Liustrovaite V, Kanetski Y, Brasiunas B, Zvirbliene A, Rimkute A, Gudas D, Kucinskaite-Kodze I, Simanavicius M, Ramanavicius S, Slibinskas R, Ciplys E, Plikusiene I, Ramanavicius A. Electrochemical biosensing based comparative study of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168154. [PMID: 37923263 DOI: 10.1016/j.scitotenv.2023.168154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
In this study, we are reporting an electrochemical biosensor for the determination of three different clones of monoclonal antibodies (mAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant nucleocapsid protein (rN). The nucleocapsid protein was chosen as a system component identifying and discriminating antibodies that occur after virus infection instead of S protein used in serological tests to measure antibodies raised after vaccination and infection. The sensing platform was based on a screen-printed carbon electrode (SPCE) covered with gold nanoparticles (AuNP) and subsequently modified with a self-assembled monolayer (SAM) to ensure the covalent immobilization of the rN. The interaction between the protein and three clones of mAbs against SARS-CoV-2 rN with clone numbers 4G6, 7F10, and 1A6, were electrochemically registered in the range of concentrations. Three techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and pulse amperometric detection (PAD) were used for the detection. A gradual change in the responses with an increase in mAbs concentration for all techniques was observed. To assess the performance of the developed electrochemical biosensor, 'complexation constant' (KC), limit of detection (LOD), and limit of quantification (LOQ) were calculated for all assessed clones of mAbs and all used techniques. Our results indicated that DPV possessing higher fitting accuracy illustrated more significant differences in KC constants and LOD/LOQ values. According to the DPV results, 7F10 clone was characterized with the highest KC value of 1.47 ± 0.07 μg/mL while the lowest LOD and LOQ values belonged to the 4G6 clone and equaled 0.08 ± 0.01 and 0.25 ± 0.01 μg/mL, respectively. Overall, these results demonstrate the potential of electrochemical techniques for the detection and distinguishing of different clones of mAbs against SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Yahor Kanetski
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Benediktas Brasiunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Agne Rimkute
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Dainius Gudas
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | | | | | - Simonas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Evaldas Ciplys
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Ieva Plikusiene
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania.
| |
Collapse
|
13
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
14
|
Resina L, Alemán C, Ferreira FC, Esteves T. Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnol Adv 2023; 68:108220. [PMID: 37482116 DOI: 10.1016/j.biotechadv.2023.108220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.
Collapse
Affiliation(s)
- Leonor Resina
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
15
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|