1
|
Chauhan A, Rajendra Kanchan D, Banerjee A, Srivastava R. Oxidative Cleavage of α-O-4, β-O-4, and 4-O-5 Linkages in Lignin Model Compounds Over P, N Co-Doped Carbon Catalyst: A Metal-Free Approach. CHEMSUSCHEM 2024; 17:e202401049. [PMID: 38963775 DOI: 10.1002/cssc.202401049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Developing efficient metal-free catalysts for lignin valorization is essential but challenging. In this study, a cost-effective strategy is employed to synthesize a P, N co-doped carbon catalyst through hydrothermal and carbonization processes. This catalyst effectively cleaved α-O-4, β-O-4, and 4-O-5 lignin linkages, as demonstrated with model compounds. Various catalysts were prepared at different carbonization temperatures and thoroughly characterized using techniques such as XRD, RAMAN, FTIR, XPS, NH3-TPD, and HRTEM. Attributed to higher acidity, the P5NC-500 catalyst exhibited the best catalytic activity, employing H2O2 as the oxidant in water. Additionally, this metal-free technique efficiently converted simulated lignin bio-oil, containing all three linkages, into valuable monomers. Density Functional Theory calculations provided insight into the reaction mechanism, suggesting substrate and oxidant activation by P-O-H sites in the P5NC-500, and by N-C-O-H in the CN catalyst. Moreover, the catalyst's recyclability and water utilization enhance its environmental compatibility, offering a highly sustainable approach to lignin valorization with potential applications in various industries.
Collapse
Affiliation(s)
- Arzoo Chauhan
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Dipika Rajendra Kanchan
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Arghya Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| |
Collapse
|
2
|
Phillips EV, Tricker AW, Stavitski E, Hatzell M, Sievers C. Mechanocatalytic Hydrogenolysis of the Lignin Model Dimer Benzyl Phenyl Ether over Supported Palladium Catalysts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12306-12312. [PMID: 39175605 PMCID: PMC11337168 DOI: 10.1021/acssuschemeng.4c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
This work demonstrates the mechanocatalytic hydrogenolysis of the ether bond in the lignin model compound benzyl phenyl ether (BPE) and hardwood lignin isolated by hydrolysis with supercritical water. Pd catalysts with 4 wt % loading on Al2O3 and SiO2 supports achieve 100% conversion of BPE with a toluene production rate of (2.6-2.9) × 10-5 mol·min-1. The formation of palladium hydrides under H2 gas flow contributes to an increase in the turnover frequency by a factor of up to 300 compared to Ni on silica-alumina. While a near-quantitative toluene yield is obtained, some of the phenolic products remain adsorbed on the catalyst.
Collapse
Affiliation(s)
- Erin V. Phillips
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | | | - Eli Stavitski
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marta Hatzell
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Atlanta, Georgia 30318, United States
| | - Carsten Sievers
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Zhang Y, Jia S, Wang X, Deng H, Xu W, Shi J. Bimetallic polyoxometalates catalysts for efficient lignin depolymerization: Unlocking valuable aromatic compounds from renewable feedstock. Int J Biol Macromol 2023; 253:127363. [PMID: 37827421 DOI: 10.1016/j.ijbiomac.2023.127363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Lignin, a complex and abundant polymer present in lignocellulosic biomass, holds immense potential as a renewable source for the production of valuable aromatic compounds. However, the efficient depolymerization of lignin into these compounds remains a formidable challenge. Here, we present a promising solution by harnessing polyoxometalates (POMs) catalysts, which exhibit improved catalytic performance and selectivity. We synthesized a series of NixCoy@POMs catalysts (POMs: CsPW or CsPMo) and explored their application in the depolymerization of pine lignin, aiming to investigate the influence of different metal species and doping ratios of POMs on catalytic performance. Through meticulous optimization of reaction conditions, we achieved significant yields of valuable aromatic compounds, including methyl vanillate, vanillin, and 4-hydroxy-3-methoxyacetophenone. Furthermore, the Ni0.75Co0.75@CsPMo catalyst demonstrated exceptional efficacy in catalyzing the cracking process of C-C and/or C-O bonds in a β-O-4 dimer model compound. Notably, our catalyst exhibited outstanding stability over five cycles, underscoring its suitability as an effective heterogeneous catalyst for cyclic lignin depolymerization. This study sheds light on the potential of POMs-based catalysts for advancing lignin valorization and offers new avenues for sustainable biomass conversion into valuable chemicals.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Suyuan Jia
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Haoyu Deng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| |
Collapse
|
4
|
Mota IF, Antunes F, Fangueiro JF, Costa CAE, Rodrigues AE, Pintado ME, Costa PS. Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty. Int J Mol Sci 2023; 24:15941. [PMID: 37958924 PMCID: PMC10648998 DOI: 10.3390/ijms242115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Lignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid. The physico-chemical characterization, antioxidant and emulsifying potential of LCLig, and determination of its safety and stability in an oil-in-water emulsion were performed. A high-purity lignin (81.6%) with improved water solubility was obtained, as a result of the balance between the total aromatic phenolic units and the carboxylic acids. In addition, the antioxidant and emulsifying capacities of the obtained LCLig were demonstrated. The color reduction treatment did not compromise the safety of lignin for topical cosmetic applications. The emulsion was stable in terms of organoleptic properties (color, pH, and viscosity) and antioxidant activity over 3 months at 4, 25, and 40 °C.
Collapse
Affiliation(s)
- Inês F. Mota
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (I.F.M.); (F.A.); (J.F.F.); (M.E.P.)
| | - Filipa Antunes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (I.F.M.); (F.A.); (J.F.F.); (M.E.P.)
- Amyris Bio Products Portugal Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana F. Fangueiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (I.F.M.); (F.A.); (J.F.F.); (M.E.P.)
| | - Carina A. E. Costa
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Alírio E. Rodrigues
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (I.F.M.); (F.A.); (J.F.F.); (M.E.P.)
| | - Patrícia S. Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (I.F.M.); (F.A.); (J.F.F.); (M.E.P.)
| |
Collapse
|
5
|
Olivito F, Algieri V, Jiritano A, Tallarida MA, Costanzo P, Maiuolo L, De Nino A. Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow. Polymers (Basel) 2023; 15:polym15071785. [PMID: 37050399 PMCID: PMC10098679 DOI: 10.3390/polym15071785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
In this paper, we evaluated the potential of two synthesized bio-based polyurethane foams, PU1 and PU2, for the removal of diesel and gasoline from water mixtures. We started the investigation with the experiment in batch. The total sorption capacity S (g/g) for the diesel/water system was slightly higher with respect to gasoline/water, with a value of 62 g/g for PU1 and 65 g/g for PU2. We found that the sorption follows a pseudo second-order kinetic model for both the materials. The experimental data showed that the best isotherm models were obtained with Langmuir and Redlich–Peterson models. In addition, to provide an idea of the process scalability for future industrial applications, we tested the sorption capacity of the foams using a continuous-flow of the same oil/water mixtures and we obtained performances even better with respect to the batch test. The regeneration can be performed up to 50 times by centrifuge, without losing efficacy.
Collapse
Affiliation(s)
- Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Matteo Antonio Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| |
Collapse
|
6
|
Employing Cu(II) complexes of N,O-donor ligand for catalysis in visible light driven cleavage of lignin C-C bonds. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
8
|
Scimmi C, Sancineto L, Drabowicz J, Santi C. New Insights into Green Protocols for Oxidative Depolymerization of Lignin and Lignin Model Compounds. Int J Mol Sci 2022; 23:ijms23084378. [PMID: 35457195 PMCID: PMC9026536 DOI: 10.3390/ijms23084378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Oxidative depolymerization of lignin is a hot topic in the field of biomass valorization. The most recent and green procedures have been herein detailed. Photochemical and electrochemical approaches are reviewed highlighting the pros and cons of each method. Mechanochemistry activated strategies are able to combine oxidation and depolymerization in the deconstruction of lignin. Homogenous and heterogeneous catalytic systems are exemplified stressing the green aspects associated with both the procedures. Solvent-free approaches as well as those carried out in alternative media are listed. Finally, the few examples of selenium catalyzed lignin valorization reported so far are cited.
Collapse
Affiliation(s)
- Cecilia Scimmi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
| | - Jozef Drabowicz
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
- Correspondence:
| |
Collapse
|
9
|
Biswas B, Kumar A, Kaur R, Krishna BB, Bhaskar T. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. BIORESOURCE TECHNOLOGY 2021; 337:125439. [PMID: 34320735 DOI: 10.1016/j.biortech.2021.125439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based support catalysts are beneficial on account of low material cost, prominent surface area, and stability at high temperature. In this study, biochar derived activated carbon (AC) supported metal catalysts were tested for hydrothermal liquefaction (HTL) of alkali lignin. Catalytic HTL of alkali lignin was carried out at various temperatures (260 to 300 °C) with varying catalysts quantity (5 to 20 wt%), and solvents (water, ethanol, methanol) for 15 min reaction time. As the reaction temperature increased from 260 to 300 °C, conversion increased from 76.2 to 85.5 wt%. Bimetallic catalyst Ni-Co/AC with ethanol solvent system at 280 °C gave highest bio-oil yield (72.0 wt%). Lignin catalytic depolymerization produces monomer phenolic compounds due to efficient breaking of the lignin macromolecule. Thus, the presence of catalyst and solvent increased the cleavage of β-O-4 bonds resulting in increased selectivity towards vanillin (32.3-36.2%).
Collapse
Affiliation(s)
- Bijoy Biswas
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avnish Kumar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramandeep Kaur
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya B Krishna
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thallada Bhaskar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
De Saegher T, Lauwaert J, Vercammen J, Van Geem KM, De Clercq J, Verberckmoes A. Fast screening of Depolymerized Lignin Samples Through 2D-Liquid Chromatography Mapping. ChemistryOpen 2021; 10:740-747. [PMID: 34351071 PMCID: PMC8340071 DOI: 10.1002/open.202100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Indexed: 12/05/2022] Open
Abstract
Lignin valorization and particularly its depolymerization into bio-aromatics, has emerged as an important research topic within green chemistry. However, screening of catalysts and reaction conditions within this field is strongly constrained by the lack of analytical techniques that allow for fast and detailed mapping of the product pools. This analytical gap results from the inherent product pool complexity and the focus of the state-of-the-art on monomers and dimers, overlooking the larger oligomers. In this work, this gap is bridged through the development of a quasi-orthogonal GPC-HPLC-UV/VIS method that is able to separate the bio-aromatics according to molecular weight (hydrodynamic volume) and polarity. The method is evaluated using model compounds and real lignin depolymerization samples. The resulting color plots provide a powerful graphical tool to rapidly assess differences in reaction selectivity towards monomers and dimers as well as to identify differences in the oligomers.
Collapse
Affiliation(s)
- Tibo De Saegher
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityValentin Vaerwyckweg 19000GhentBelgium
| | - Jeroen Lauwaert
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityValentin Vaerwyckweg 19000GhentBelgium
| | - Joeri Vercammen
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityValentin Vaerwyckweg 19000GhentBelgium
- Interscience Expert Center (IS-X)Avenue J.E. Lenoir 21384Louvain-la-NeuveBelgium
| | - Kevin M. Van Geem
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityTechnologiepark 1259052GhentBelgium
| | - Jeriffa De Clercq
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityValentin Vaerwyckweg 19000GhentBelgium
| | - An Verberckmoes
- Department of Materials Textiles and Chemical Engineering (MaTCh)Ghent UniversityValentin Vaerwyckweg 19000GhentBelgium
| |
Collapse
|
11
|
Bourbiaux D, Pu J, Rataboul F, Djakovitch L, Geantet C, Laurenti D. Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Costa CAE, Vega-Aguilar CA, Rodrigues AE. Added-Value Chemicals from Lignin Oxidation. Molecules 2021; 26:4602. [PMID: 34361756 PMCID: PMC8346967 DOI: 10.3390/molecules26154602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process-most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin's aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.
Collapse
Affiliation(s)
- Carina A. Esteves Costa
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| | - Carlos A. Vega-Aguilar
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| |
Collapse
|
13
|
Bogolitsyn KG, Gusakova MA, Krasikova AA. Molecular self-organization of wood lignin-carbohydrate matrix. PLANTA 2021; 254:30. [PMID: 34272608 DOI: 10.1007/s00425-021-03675-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The analysis of the state of research on the chemical composition, functional nature and structure of the main components of the lignin-carbohydrate matrix allows considering the wood substance as a thermodynamically self-organizing nanobiocomposite system. Features of biosynthesis of the wood matrix main biopolymers, the formation of their functional nature and structure determine the complex hierarchical organization of cell walls. The supramolecular level of biosynthesis considers the interaction of cell wall components. On the one hand, these are questions of dynamics of cell walls synthesis and processes of self-organization that control the formation of chaotic objects of biological origin; on the other hand, it is the question of thermodynamic compatibility of plant tissue components. Various models of structural organization are currently being considered, focusing on various features (biological, chemical, structural) of wood substance. At the same time, the lignin-carbohydrate matrix is a three-component system of natural polymers: lignin-hemicelluloses-cellulose, the state of which is described by specific values of thermodynamic parameters that characterize the degree of its stability. The new approach proposed in this paper allows considering the plant lignin-carbohydrate matrix from the standpoint of physical chemistry of polymer as quasi-equilibrium, thermodynamically limited ordered system of biopolymers. Thus, the biochemical processes of synthesis and self-organization lead to the formation of a complex multicomponent system of wood substance, considered as a nanobiocomposite. This determines the need to study the applicability of the fundamental cycle "structure-functional nature-properties" from the standpoint of physical chemistry of biopolymers both for the investigation of plant objects and for the development of modern technologies for complex processing based on the principles of "green chemistry".
Collapse
Affiliation(s)
- Konstantin G Bogolitsyn
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Embankment, 23, Arkhangelsk, 163000, Russia
- Northern (Arctic) Federal University, Northern Dvina Embankment, 17, Arkhangelsk, 163000, Russia
| | - Mariya A Gusakova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Embankment, 23, Arkhangelsk, 163000, Russia
| | - Anna A Krasikova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Embankment, 23, Arkhangelsk, 163000, Russia.
| |
Collapse
|
14
|
Depolymerization and Hydrogenation of Organosolv Eucalyptus Lignin by Using Nickel Raney Catalyst. Processes (Basel) 2021. [DOI: 10.3390/pr9071093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The use of lignocellulosic biomass to obtain biofuels and chemicals produces a large amount of lignin as a byproduct. Lignin valorization into chemicals needs efficient conversion processes to be developed. In this work, hydrocracking of organosolv lignin was performed by using nickel Raney catalyst. Organosolv lignin was obtained from the pretreatment of eucalyptus wood at 170 °C for 1 h by using 1/100/100 (w/v/v) ratio of biomass/oxalic acid solution (0.4% w/w)/1-butanol. The resulting organic phase of lignin in 1-butanol was used in hydrogenation tests. The conversion of lignin was carried out with a batch reactor equipped with a 0.3 L vessel with adjustable internal stirrer and heat control. The reactor was pressurized at 5 bar with hydrogen at room temperature, and then the temperature was raised to 250 °C and kept for 30 min. Operative conditions were optimized to achieve high conversion in monomers and to minimize the loss of solvent. At the best performance conditions, about 10 wt % of the lignin was solubilized into monomeric phenols. The need to find a trade-off between lignin conversion and solvent side reaction was highlighted.
Collapse
|
15
|
Li W, Wang Y, Li D, Jiang J, Li K, Zhang K, An Q, Zhai S, Wei L. 1-Ethyl-3-methylimidazolium acetate ionic liquid as simple and efficient catalytic system for the oxidative depolymerization of alkali lignin. Int J Biol Macromol 2021; 183:285-294. [PMID: 33894259 DOI: 10.1016/j.ijbiomac.2021.04.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
The oxidative depolymerization of alkali lignin (AL) in 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) system without additional catalyst was investigated under mild conditions (initial O2 pressure of 1.5 MPa, 80 °C-100 °C). Compared with other ionic liquids (ILs), the cooperation of imidazolium cation and acetate anion successfully enhanced AL conversion. Among the investigated imidazolium acetate ILs with ethyl- to octyl-side chains, [C2C1im]OAc presented the best catalytic capacity for AL oxidative depolymerization. Adding an appropriate amount of water to [C2C1im]OAc can further improve the reaction efficiency. In the [C2C1im]OAc system with the addition of 0.10-0.25 mL of water, approximately 77 wt% AL was depolymerized into small molecule soluble products at 100 °C for 2 h. The extracted oil was composed mainly of phenolic derived compounds. With the use of the [C2C1im]OAc-based system, the specific inter-unit linkages of lignin were broken down, and residual lignin with low molecular weight and narrow polydispersity index (1.88-1.96) was obtained. Compared with that in AL conversion with fresh [C2C1im]OAc, only a minimal decrease (~3.2%) was observed with the recovered IL until the fifth cycle. These findings revealed that [C2C1im]OAc-based system is a simple and efficient catalytic system for lignin oxidative depolymerization.
Collapse
Affiliation(s)
- Wenbo Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yilin Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongchen Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachi Jiang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kunlan Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaili Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Feng L, Li X, Wang Z, Liu B. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. BIORESOURCE TECHNOLOGY 2021; 323:124569. [PMID: 33360949 DOI: 10.1016/j.biortech.2020.124569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Catalytic hydrothermal liquefaction (HTL) of lignin was examined at various temperature (250-310 °C) and reaction time in the presence of different solvents (water, methanol and ethanol) with different metal supported on MCM-41 mesoporous catalyst. In case of ethanol solvent, the maximum bio-oil yield of 56.2 wt% was obtained with Ni-Al/MCM-41. However in case of water, bio-oil yield was (44.3 wt%); while significantly improves bio-oil yield for methanol solvent (48.1 wt%). It is indicated that alcoholic solvents promoted the lignin decomposition, while in the presence of catalyst; water solvent significantly improves lignin degradation. Loading of Ni and Al on MCM-41, the acid strength of the catalyst increased, which enhanced lignin degradation. From the GC-MS analysis, the main G-type (ca.54%) phenolic compounds were produced with higher percentage of aromatic hydrocarbon compounds. CHNS and GPC analysis showed that catalytic liquefaction encouraged hydrodeoxygenation, which produced lower oxygen content bio-oil with lower molecular weight.
Collapse
Affiliation(s)
- Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Zizeng Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
17
|
Lee N, Kim YT, Lee J. Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers (Basel) 2021; 13:364. [PMID: 33498847 PMCID: PMC7865860 DOI: 10.3390/polym13030364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Lignin directly derived from lignocellulosic biomass has been named a promising source of platform chemicals for the production of bio-based polymers. This review discusses potentially relevant routes to produce renewable aromatic aldehydes (e.g., syringaldehyde and vanillin) from lignin feedstocks (pre-isolated lignin or lignocellulose) that are used to synthesize a range of bio-based polymers. To do this, the processes to make aromatic aldehydes from lignin with their highest available yields are first presented. After that, the routes from such aldehydes to different polymers are explored. Challenges and perspectives of the production the lignin-derived renewable chemicals and polymers are also highlighted.
Collapse
Affiliation(s)
- Nahyeon Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
| | - Yong Tae Kim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea;
| | - Jechan Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea
| |
Collapse
|
18
|
Cheng C, Li P, Yu W, Shen D, Gu S. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. BIORESOURCE TECHNOLOGY 2021; 319:124238. [PMID: 33254461 DOI: 10.1016/j.biortech.2020.124238] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the renewable and abundant source of aromatics on earth, and the depolymerization of lignin provides significant potential for producing valuable monophenols. In this work, catalytic hydrogenolysis of organosolv poplar lignin (OPL) in ethanol/isopropanol solvent over monometallic and bimetallic nonprecious catalysts was investigated. Ni/C and a series of NiCu/C catalyst with different Cu loadings were prepared and applied for depolymerization of OPL. The highest yield of phenolic monomers was 63.4 wt% achieved over the Ni10Cu5/C catalyst at 270 °C without external H2. The introduction of Cu in catalysts further promoted the hydrogen donor process of ethanol/isopropanol solvent and facilitated the cleavage of lignin linkages, resulting in the decreased molecular weight of bio-oil. The possible lignin dimer type structures, such as diphenylethane (β-1) type, phenylcoumaran (β-5) type, and pinoresinol (β-β) type structures, were proposed and identified by MALDI-TOF MS, giving a better understanding of the NiCu/C catalyzed lignin depolymerization.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Pengfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Wenbing Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Sai Gu
- The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Gharehkhani S, Gao W, Fatehi P. In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers (Basel) 2020; 12:E2982. [PMID: 33327509 PMCID: PMC7764959 DOI: 10.3390/polym12122982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023] Open
Abstract
The chemistry of lignin polymerization was studied in the past. Insights into the rheological behavior of the lignin polymerization system would provide crucial information required for tailoring lignin polymers with desired properties. The in-situ rheological attributes of lignin polymerization with a cationic monomer, [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC), were studied in detail in this work. The influences of process conditions, e.g., temperature, component concentrations, and shear rates, on the viscosity variations of the reaction systems during the polymerization were studied in detail. Temperature, METAC/lignin molar ratio, and shear rate increases led to the enhanced viscosity of the reaction medium and lignin polymer with a higher degree of polymerization. The extended reaction time enhanced the viscosity attributing to the larger molecular weight of the lignin polymer. Additionally, the size of particles in the reaction system dropped as reaction time was extended. The lignin polymer with a larger molecular weight and Rg behaved mainly as a viscose (tan δ > 1 or G″ > G') material, while the lignin polymer generated with smaller molecular weight and shorter Rg demonstrated strong elastic characteristics with a tan (δ) lower than unity over the frequency range of 0.1-10 rad/s.
Collapse
Affiliation(s)
| | | | - Pedram Fatehi
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B5E1, Canada; (S.G.); (W.G.)
| |
Collapse
|
20
|
Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer. Int J Biol Macromol 2020; 163:1810-1820. [DOI: 10.1016/j.ijbiomac.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
|
21
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
22
|
Poly( l-Lactic Acid)/Pine Wood Bio-Based Composites. MATERIALS 2020; 13:ma13173776. [PMID: 32859082 PMCID: PMC7503300 DOI: 10.3390/ma13173776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer for PLLA/wood composites. Pine wood particles dispersed within PLLA act as nucleating agents able to start the growth of PLLA crystals, resulting in a faster crystallization rate and increased crystal fraction. Moreover, the composites have a slightly lower thermal stability compared to PLLA, proportional to filler content, due to the lower thermal stability of wood. Molecular dynamics was investigated using the solid-state 1H NMR technique, which revealed restrictions in the mobility of polymer chains upon the addition of wood, as well as enhanced interfacial adhesion between the filler and matrix in the composites compatibilized with APE. The enhanced interfacial adhesion in silane-treated composites was also proved by scanning electron microscopy and resulted in slightly improved deformability and impact resistance of the composites.
Collapse
|
23
|
Jardim JM, Hart PW, Lucia L, Jameel H. Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers (Basel) 2020; 12:polym12081795. [PMID: 32796539 PMCID: PMC7464338 DOI: 10.3390/polym12081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Lignin is an abundant, renewable, and relatively cheap biobased feedstock that has potential in energy, chemicals, and materials. Kraft lignin, more specifically, has been used for more than 100 years as a self-sustaining energy feedstock for industry after which it has finally reached more widespread commercial appeal. Unfortunately, hardwood kraft lignin (HWKL) has been neglected over these years when compared to softwood kraft lignin (SWKL). Therefore, the present work summarizes and critically reviews the research and development (R&D) dealing specifically with HWKL. It will also cover methods for HWKL extraction from black liquor, as well as its structure, properties, fractionation, and modification. Finally, it will reveal several interesting opportunities for HWKL that include dispersants, adsorbents, antioxidants, aromatic compounds (chemicals), and additives in briquettes, pellets, hydrogels, carbon fibers and polymer blends and composites. HWKL shows great potential for all these applications, however more R&D is needed to make its utilization economically feasible and reach the levels in the commercial lignin market commensurate with SWKL. The motivation for this critical review is to galvanize further studies, especially increased understandings in the field of HWKL, and hence amplify much greater utilization.
Collapse
Affiliation(s)
- Juliana M. Jardim
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
| | - Peter W. Hart
- WestRock, 501 South 5th Street, Richmond, VA 23219, USA
- Correspondence:
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. Campus Box 8204, Raleigh, NC 27695, USA
- State Key Laboratory of Biobased Materials & Green Papermaking, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, China
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
| |
Collapse
|
24
|
Vega-Aguilar CA, Barreiro MF, Rodrigues AE. Catalytic wet peroxide oxidation of vanillic acid as a lignin model compound towards the renewable production of dicarboxylic acids. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Li X, Zhang Y. Metal Catalyst-Free Oxidative C-C Bond Cleavage of a Lignin Model Compound by H 2 O 2 in Formic acid. CHEMSUSCHEM 2020; 13:1740-1745. [PMID: 32048446 DOI: 10.1002/cssc.201903180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Selective cleavage of the β-O-4 ether bond of lignin to produce aromatics is one of the most important topics for the sustainable production of chemicals from biomass. A simple system has been developed for Cα -Cβ bond cleavage of a β-O-4 ketone-structured lignin model compound (LMC) by H2 O2 in formic acid under metal catalyst-free conditions. By using this simple system, with H2 O2 , formic acid, and mineral acid catalyst, over 90 % product yield is achieved in 6 h at room temperature. The reaction proceeds through the classic Baeyer-Villiger oxidation and in situ-generated performic acid serves as the key oxidant. The cleavage of alcoholic LMCs by using the presented method in a two-step process is also demonstrated.
Collapse
Affiliation(s)
- Xiukai Li
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
| |
Collapse
|
26
|
Ivakhnov AD, Shavrina IS, Kosyakov DS, Pikovskoi II, Dumanskii IO. Depolymerization of Alkaline Lignin in the Medium of Supercritical 2-Propanol. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Kumar A, Biswas B, Bhaskar T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. BIORESOURCE TECHNOLOGY 2020; 299:122589. [PMID: 31865149 DOI: 10.1016/j.biortech.2019.122589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
The production of phenolics by oxidative depolymerization of prot lignin and alkali lignin were studied in the presence of cobalt impregnated TiO2, CeO2 and ZrO2 catalysts at 140 °C for 1 h. Maximum bio-oil yield of 78.0 and 60.2 wt% were observed with Co/CeO2 catalyst for prot lignin and alkali lignin, respectively. The characterizations of the bio-oils were carried out using GC-MS, FTIR, and 1H NMR. The GC-MS compounds have been classified into four categories (G, H, S-type and others). The depolymerization of prot lignin showed a mixture of G, H and S type phenolic monomers. Interestingly, higher selectivity of acetosyringone (47.1%) was obtained in the presence of Co/TiO2 catalyst with prot lignin. The depolymerization of alkali lignin exhibited only G-type phenolic monomers production, and was effectively produced 67.4% (G-type monomer) in the presence of Co/ZrO2 catalyst.
Collapse
Affiliation(s)
- Avnish Kumar
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bijoy Biswas
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Thallada Bhaskar
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
28
|
Liu H, Li H, Luo N, Wang F. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03768] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
29
|
Ru-Catalyzed Oxidative Cleavage of Guaiacyl Glycerol--Guaiacyl Ether-a Representative -O-4 Lignin Model Compound. Catalysts 2019. [DOI: 10.3390/catal9100832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The introduction of efficient and selective catalytic methods for aerobic oxidation of lignin and lignin model compounds to aromatics can extend the role of lignin applications in biorefineries. The current study focussed on the catalytic oxidative transformation of guaiacyl glycerol--guaiacyl ether (GGGE)–a -O-4 lignin model compound to produce basic aromatic compounds (guaiacol, vanillin and vanillic acid) using metal-supported catalysts. Ru/Al2O3, prepared with ruthenium(IV) oxide hydrate, showed the highest yields of the desired products (60%) in acetonitrile in a batch reactor at 160 C and 5-bar of 20% oxygen in argon. Alternative catalysts containing other transition metals (Ag, Fe, Mn, Co and Cu) supported on alumina, and ruthenium catalysts based on alternative supports (silica, spinel, HY zeolite and zirconia) gave significantly lower activities compared to Ru/Al2O3 at identical reaction conditions. Moreover, the Ru/Al2O3 catalyst was successfully reused in five consecutive reaction runs with only a minor decrease in catalytic performance.
Collapse
|
30
|
Jain V, Wilson WN, Rai N. Solvation effect on binding modes of model lignin dimer compounds on MWW 2D-zeolite. J Chem Phys 2019; 151:114708. [DOI: 10.1063/1.5112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Varsha Jain
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Woodrow N. Wilson
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
31
|
Lin YY, Lu SY. Selective and efficient cleavage of lignin model compound into value-added aromatic chemicals with CuFe2O4 nanoparticles decorated on partially reduced graphene oxides via sunlight-assisted heterogeneous Fenton processes. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Lindsay AC, Kudo S, Sperry J. Cleavage of lignin model compounds and ligninox using aqueous oxalic acid. Org Biomol Chem 2019; 17:7408-7415. [DOI: 10.1039/c9ob01452g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aqueous oxalic acid cleaves oxidised β-O-4 lignin model compounds by two distinct mechanisms that are dependent on the presence of the hydroxymethyl substituent.
Collapse
Affiliation(s)
- Ashley C. Lindsay
- Centre for Green Chemical Science
- University of Auckland
- Auckland
- New Zealand
| | - Shinji Kudo
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Kasuga 816-8580
- Japan
| | - Jonathan Sperry
- Centre for Green Chemical Science
- University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
33
|
Awan IZ, Tanchoux N, Quignard F, Albonetti S, Cavani F, Di Renzo F. Heterogeneous Catalysis as a Tool for Production of Aromatic Compounds From Lignin. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2019. [DOI: 10.1016/b978-0-444-64127-4.00013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
A Review of Microwave Assisted Liquefaction of Ligninin Hydrogen Donor Solvents: Effect of Solvents and Catalysts. ENERGIES 2018. [DOI: 10.3390/en11112877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin, a renewable source of aromatic chemicals in nature, has attracted increasing attention due to its structure and application prospect. Catalytic solvolysis has developed as a promising method for the production of value-added products from lignin. The liquefaction process is closely associated with heating methods, catalysts and solvents. Microwave assisted lignin liquefaction in hydrogen donor solvent with the presence of catalysts has been confirmed to be effective to promote the production of liquid fuels or fine chemicals. A great number of researchers should be greatly appreciated on account of their contributions on the progress of microwave technology in lignin liquefaction. In this study, microwave assisted liquefaction of lignin in a hydrogen donor solvent is extensively overviewed, concerning the effect of different solvents and catalysts. This review concludes that microwave assisted liquefaction is a promising technology for the valorization of lignin, which could reduce the reaction time, decrease the reaction temperature, and finally fulfill the utilization of lignin in a relatively mild condition. In the future, heterogeneous catalysts with high catalytic activity and stability need to be prepared to achieve the need for large-scale production of high-quality fuels and value-added chemicals from lignin.
Collapse
|
35
|
Tarasov D, Leitch M, Fatehi P. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:269. [PMID: 30288174 PMCID: PMC6162904 DOI: 10.1186/s13068-018-1262-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/19/2018] [Indexed: 05/06/2023]
Abstract
The complexity of lignin and hemicellulose segmentation has been known since the middle of the ninetieth century. Studies confirmed that all lignin units in coniferous species and 47-66% of lignin moieties in deciduous species are bound to hemicelluloses or cellulose molecules in lignin-carbohydrate complexes (LCC). Different types and proportions of lignin and polysaccharides present in biomass lead to the formation of LCC with a great variety of compositions and structures. The nature and amount of LCC linkages and lignin substructures affect the efficiency of pulping, hydrolysis, and digestibility of biomass. This review paper discusses the structures, compositions, and properties of LCC present in biomass and in the products obtained via pretreating biomass. Methods for extracting, fractionating, and analyzing LCC of biomass, pulp, and spent pulping liquors are critically reviewed. The main perspectives and challenges associated with these technologies are extensively discussed. LCC could be extracted from biomass following varied methods, among which dimethyl sulfoxide or dioxane (Björkman's) and acetic acid (LCC-AcOH) processes are the most widely applied. The oxidation and methylation treatments of LCC materials elucidate the locations and frequency of binding sites of hemicelluloses to lignin. The two-dimensional nuclear magnetic resonance analysis allows the identification of the structure and the quantity of lignin-carbohydrate bonds involved in LCC. LCC application seems promising in medicine due to its high anti-HIV, anti-herpes, and anti-microbial activity. In addition, LCC was successfully employed as a precursor for the preparation of spherical biocarriers.
Collapse
Affiliation(s)
- Dmitry Tarasov
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
- Natural Resource Management Faculty, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| | - Mathew Leitch
- Natural Resource Management Faculty, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
36
|
Zhao X, Zhang Y, Yang M, Huang Z, Hu H, Huang A, Feng Z. Acylation of Lignin with Different Acylating Agents by Mechanical Activation-Assisted Solid Phase Synthesis: Preparation and Properties. Polymers (Basel) 2018; 10:E907. [PMID: 30960832 PMCID: PMC6403724 DOI: 10.3390/polym10080907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022] Open
Abstract
Acylated lignins with substituents consisting of different lengths of carbon chains were prepared by a mechanical activation-assisted solid phase synthesis (MASPS) technology with a customized stirring ball mill as a reactor. The structures and properties were analyzed by UV/Vis, FTIR, NMR, SEM, DSC, and TG. The results showed that the acylated lignins were successfully prepared with either non-cyclic or cyclic anhydrides as the acylating agents. Both aliphatic hydroxyl and phenolic hydroxyl groups of lignin reacted with non-cyclic anhydrides, and different reactivity of acylating agents resulted in different relative contents of phenolic and aliphatic substituents in the products. The reactivity of the cyclic anhydrides was weaker than that of the non-cyclic anhydrides, and the reactivity of the acylating agents decreased with increasing carbon chain length and unsaturated bonds of acyl groups. All of the acylated lignins except maleylated lignin had a lower glass transition temperature (Tg) than the original lignin. The acylated lignins prepared with non-cyclic anhydrides had better thermal stability than original lignin, and the thermal stability increased, but Tg decreased with an increasing chain length of the acyl groups. The acylated lignins prepared with cyclic anhydrides had higher a Tg than those with non-cyclic anhydrides with the same carbon number, and the thermal stability was not obviously improved.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China.
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
37
|
Lyu G, Li T, Ji X, Yang G, Liu Y, Lucia LA, Chen J. Characterization of Lignin Extracted from Willow by Deep Eutectic Solvent Treatments. Polymers (Basel) 2018; 10:E869. [PMID: 30960794 PMCID: PMC6403995 DOI: 10.3390/polym10080869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/04/2022] Open
Abstract
Purity, morphology, and structural characterization of synthesized deep eutectic solvent (DES)-lignins (D6h, D9h, D12h, D18h, D24h) extracted from willow (Salix matsudana cv. Zhuliu) after treatment with a 1:10 molar ratio of choline chloride and lactic acid at 120 °C for 6, 9, 12, 18, and 24 h were carried out. The purity of DES-lignin was ~95.4%. The proportion of hydrogen (H) in DES-lignin samples increased from 4.22% to 6.90% with lignin extraction time. The DES-lignin samples had low number/weight average molecular weights (1348.1/1806.7 to 920.2/1042.5 g/mol, from D6h to D24h) and low particle sizes (702⁻400 nm). Atomic force microscopy (AFM) analysis demonstrated that DES-lignin nanoparticles had smooth surfaces and diameters of 200⁻420 nm. Syringyl (S) units were dominant, and total phenolic hydroxyl content and total hydroxyl content reached their highest values of 2.05 and 3.42 mmol·g-1 in D12h and D6h, respectively. β-Aryl ether (β-O-4) linkages were eliminated during DES treatment.
Collapse
Affiliation(s)
- Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| | - Tengfei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| | - Lucian A Lucia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA.
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong 250353, China.
| |
Collapse
|
38
|
Wang S, Yu Y, Di M. Green Modification of Corn Stalk Lignin and Preparation of Environmentally Friendly Lignin-Based Wood Adhesive. Polymers (Basel) 2018; 10:E631. [PMID: 30966665 PMCID: PMC6404240 DOI: 10.3390/polym10060631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/03/2023] Open
Abstract
In this study, corn stalk lignin was used to react with non-volatile and non-toxic glyoxal under the catalysis of a sodium hydroxide solution, and a wood adhesive based on glyoxalated corn stalk lignin was prepared. The effect of the hydroxylation reaction on the structure and properties of lignin were studied using Fourier transform infrared spectroscopy (FTIR), ultraviolet spectrophotometry (UV), thermogravimetric analysis (TGA), titration tests, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Compared with unmodified lignin, the glyoxalated corn stalk lignin had a significant improvement in hydroxyl content, activation, and thermal stability. At the same time, results from the GPC showed that the molecular weight increased compared with original corn stalk, possibly due to the secondary polycondensation reaction between lignin and glyoxal. Lignin-based environmental wood adhesives were prepared by mixing modified lignin and epichlorohydrin (ECH), and the dry strength of plywood reached 1.58 MPa. The mechanical strength and water resistance of plywood was improved significantly by mixing some aqueous emulsion into lignin-based adhesives, e.g., polyacrylic ester (AE) emulsion and aqueous polyurethane (PU) emulsion.
Collapse
Affiliation(s)
- Sen Wang
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yalan Yu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Mingwei Di
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
39
|
Cheng C, Shen D, Gu S, Luo KH. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00845k] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalytic hydrogenolysis of lignin is overviewed, concerning the cleavage of typical inter-unit linkages and the production of aromatic chemicals.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Dekui Shen
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Sai Gu
- Department of Chemical and Process Engineering
- Faculty of Engineering and Physical Sciences
- University of Surrey
- UK
| | - Kai Hong Luo
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
40
|
|