1
|
Yang F, Wang X, Jiang H, Yao Q, Liang S, Chen W, Shi G, Tian B, Hegazy A, Ding S. Mechanism of a novel Bacillus subtilis JNF2 in suppressing Fusarium oxysporum f. sp. cucumerium and enhancing cucumber growth. Front Microbiol 2024; 15:1459906. [PMID: 39606119 PMCID: PMC11599245 DOI: 10.3389/fmicb.2024.1459906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerium (FOC), is a prevalent soil-borne disease. In this study, Bacillus subtilis JNF2, isolated from the high incidence area of cucumber Fusarium wilt in Luoyang, demonstrated significant inhibitory effects on FOC and promoted cucumber seedling growth. The biocontrol mechanism of strain JNF2 were elucidated through morphological observation, physiological and biochemical experiments, and whole genome sequence analysis. Pot experiments revealed an 81.33 ± 0.21% control efficacy against Fusarium wilt, surpassing the 64.10 ± 0.06% efficacy of hymexazol. Seedlings inoculated with JNF2 exhibited enhanced stem thickness and leaf area compared to control and hymexazol-treated plants. Physiological tests confirmed JNF2's production of indole-3-acetic acid (IAA), siderophores, and hydrolytic enzymes, such as β-1,3-glucanase, amylase, and protease, which inhibited FOC growth and promoted plant development. Genome analysis identified genes encoding antimicrobial peptides and hydrolases, as well as a novel glycocin synthetic gene cluster. These findings underscore B. subtilis JNF2's potential as a biocontrol agent for sustainable cucumber cultivation.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuju Yao
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Weiwei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gongyao Shi
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Abeer Hegazy
- National Water Research Center, Shubra El Kheima, Egypt
| | - Shengli Ding
- Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Saha KK, Mandal S, Barman A, Mondal S, Chatterjee S, Mandal NC. Genomic insight of phosphate solubilization and plant growth promotion of two taxonomically distinct winter crops by Enterobacter sp. DRP3. J Appl Microbiol 2024; 135:lxae146. [PMID: 38877666 DOI: 10.1093/jambio/lxae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
AIMS Study of rhizospheric microbiome-mediated plant growth promotional attributes currently highlighted as a key tool for the development of suitable bio-inoculants for sustainable agriculture purposes. In this context, we have conducted a detailed study regarding the characterization of phosphate solubilizing potential by plant growth-promoting bacteria that have been isolated from the rhizosphere of a pteridophyte Dicranopteris sp., growing on the lateritic belt of West Bengal. METHODS AND RESULTS We have isolated three potent bacterial strains, namely DRP1, DRP2, and DRP3 from the rhizoids-region of Dicranopteris sp. Among the isolated strains, DRP3 is found to have the highest phosphate solubilizing potentiality and is able to produce 655.89 and 627.58 µg ml-1 soluble phosphate by solubilizing tricalcium phosphate (TCP) and Jordan rock phosphate, respectively. This strain is also able to solubilize Purulia rock phosphate moderately (133.51 µg ml-1). Whole-genome sequencing and further analysis of the studied strain revealed the presence of pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase gdh gene along with several others that were well known for their role in phosphate solubilization. Further downstream, quantitative reverse transcriptase PCR-based expression study revealed 1.59-fold upregulation of PQQ-dependent gdh gene during the solubilization of TCP. Root colonization potential of the studied strain on two taxonomically distinct winter crops viz. Cicer arietinum and Triticum aestivum has been checked by using scanning electron microscopy. Other biochemical analyses for plant growth promotion traits including indole acetic acid production (132.02 µg ml-1), potassium solubilization (3 mg l-1), biofilm formation, and exopolymeric substances productions (1.88-2.03 µg ml-1) also has been performed. CONCLUSION This study highlighted the active involvement of PQQ-dependent gdh gene during phosphate solubilization from any Enterobacter group. Moreover, our study explored different roadmaps for sustainable farming methods and the preservation of food security without endangering soil health in the future.
Collapse
Affiliation(s)
- Kunal Kumar Saha
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva Bharati, Santiniketan 731235, India
| | - Subhrangshu Mandal
- Stress Physiology and Environmental Microbiology Laboratory, Department of Botany, Visva Bharati, Santiniketan 731235, India
| | - Anik Barman
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Sangita Mondal
- Department of Biological Sciences, Bose Institute, Kolkata 700091, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, Kolkata 700091, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva Bharati, Santiniketan 731235, India
| |
Collapse
|
3
|
Křížkovská B, Hoang L, Brdová D, Klementová K, Szemerédi N, Loučková A, Kronusová O, Spengler G, Kaštánek P, Hajšlová J, Viktorová J, Lipov J. Modulation of the bacterial virulence and resistance by well-known European medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116484. [PMID: 37044231 DOI: 10.1016/j.jep.2023.116484] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Lan Hoang
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Daniela Brdová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Kristýna Klementová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Loučková
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | | | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Jana Hajšlová
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic.
| |
Collapse
|
4
|
Petrova O, Parfirova O, Gogoleva N, Vorob'ev V, Gogolev Y, Gorshkov V. The Role of Intercellular Signaling in the Regulation of Bacterial Adaptive Proliferation. Int J Mol Sci 2023; 24:ijms24087266. [PMID: 37108429 PMCID: PMC10138535 DOI: 10.3390/ijms24087266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial adaptation is regulated at the population level with the involvement of intercellular communication (quorum sensing). When the population density is insufficient for adaptation under starvation, bacteria can adjust it to a quorum level through cell divisions at the expense of endogenous resources. This phenomenon has been described for the phytopathogenic bacterium Pectobacterium atrosepticum (Pba), and it is called, in our study, adaptive proliferation. An important attribute of adaptive proliferation is its timely termination, which is necessary to prevent the waste of endogenous resources when the required level of population density is achieved. However, metabolites that provide the termination of adaptive proliferation remained unidentified. We tested the hypothesis of whether quorum sensing-related autoinducers prime the termination of adaptive proliferation and assessed whether adaptive proliferation is a common phenomenon in the bacterial world. We showed that both known Pba quorum sensing-related autoinducers act synergistically and mutually compensatory to provide the timely termination of adaptive proliferation and formation of cross-protection. We also demonstrated that adaptive proliferation is implemented by bacteria of many genera and that bacteria with similar quorum sensing-related autoinducers have similar signaling backgrounds that prime the termination of adaptive proliferation, enabling the collaborative regulation of this adaptive program in multispecies communities.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Vladimir Vorob'ev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| |
Collapse
|
5
|
Genetic Determinants of Antagonistic Interactions and the Response of New Endophytic Strain Serratia quinivorans KP32 to Fungal Phytopathogens. Int J Mol Sci 2022; 23:ijms232415561. [PMID: 36555201 PMCID: PMC9779691 DOI: 10.3390/ijms232415561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal phytopathogens are challenging to control due to their penetration into plant tissues. Therefore, plant-colonizing bacteria could serve as an excellent weapon in fighting fungal infections. In this study, we aim to determine the biocontrol potential of the new endophytic strain Serratia quinivorans KP32, isolated from the roots of Petroselinum crispum L.; identify the related mechanisms; and understand the basis of its antagonistic interaction with taxonomically diverse fungi at the molecular level. The KP32 strain presented biological activity against Rhizoctonia solani, Colletotrichum dematium, Fusarium avenaceum, and Sclerotinia sclerotiorum, and its ability to inhibit the growth of the phytopathogens was found to be mediated by a broad spectrum of biocontrol features, such as the production of a number of lytic enzymes (amylases, chitinases, and proteases), siderophores, volatile organic and inorganic compounds, salicylic acid, and N-acyl-homoserine lactones. The higher expression of chitinase (chiA) and genes involved in the biosynthesis of hydrogen cyanide (hcnC), enterobactin (entB), and acetoin (budA) in bacteria exposed to fungal filtrates confirmed that these factors could act in combination, leading to a synergistic inhibitory effect of the strain against phytopathogens. We also confirm the active movement, self-aggregation, exopolysaccharide production, and biofilm formation abilities of the KP32 strain, which are essential for effective plant colonization. Its biological activity and colonization potential indicate that KP32 holds tremendous potential for use as an active biopesticide and plant growth promoter.
Collapse
|
6
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
7
|
Santajit S, Sookrung N, Indrawattana N. Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence. BIOLOGY 2022; 11:biology11101466. [PMID: 36290370 PMCID: PMC9598666 DOI: 10.3390/biology11101466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
A clique of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) bugs is the utmost causative agent responsible for multidrug resistance in hospital settings. These microorganisms employ a type of cell-cell communication termed 'quorum sensing (QS) system' to mediate population density and synchronously control the genes that modulate drug resistance and pathogenic behaviors. In this article, we focused on the present understanding of the prevailing QS system in ESKAPE pathogens. Basically, the QS component consisted of an autoinducer synthase, a ligand (e.g., acyl homoserine lactones/peptide hormones), and a transcriptional regulator. QS mediated expression of the bacterial capsule, iron acquisition, adherence factors, synthesis of lipopolysaccharide, poly-N-acetylglucosamine (PNAG) biosynthesis, motility, as well as biofilm development allow bacteria to promote an antimicrobial-resistant population that can escape the action of traditional drugs and endorse a divergent virulence production. The increasing prevalence of these harmful threats to infection control, as well as the urgent need for effective antimicrobial strategies to combat them, serve to highlight the important anti-QS strategies developed to address the difficulty of treating microorganisms.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-354-9100 (ext. 1598)
| |
Collapse
|
8
|
Zarrella TM, Khare A. Systematic identification of molecular mediators of interspecies sensing in a community of two frequently coinfecting bacterial pathogens. PLoS Biol 2022; 20:e3001679. [PMID: 35727825 PMCID: PMC9249247 DOI: 10.1371/journal.pbio.3001679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/01/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteria typically exist in dynamic, multispecies communities where polymicrobial interactions influence fitness. Elucidating the molecular mechanisms underlying these interactions is critical for understanding and modulating bacterial behavior in natural environments. While bacterial responses to foreign species are frequently characterized at the molecular and phenotypic level, the exogenous molecules that elicit these responses are understudied. Here, we outline a systematic strategy based on transcriptomics combined with genetic and biochemical screens of promoter-reporters to identify the molecules from one species that are sensed by another. We utilized this method to study interactions between the pathogens Pseudomonas aeruginosa and Staphylococcus aureus that are frequently found in coinfections. We discovered that P. aeruginosa senses diverse staphylococcal exoproducts including the metallophore staphylopine (StP), intermediate metabolites citrate and acetoin, and multiple molecules that modulate its iron starvation response. We observed that StP inhibits biofilm formation and that P. aeruginosa can utilize citrate and acetoin for growth, revealing that these interactions have both antagonistic and beneficial effects. Due to the unbiased nature of our approach, we also identified on a genome scale the genes in S. aureus that affect production of each sensed exoproduct, providing possible targets to modify multispecies community dynamics. Further, a combination of these identified S. aureus products recapitulated a majority of the transcriptional response of P. aeruginosa to S. aureus supernatant, validating our screening strategy. Cystic fibrosis (CF) clinical isolates of both S. aureus and P. aeruginosa also showed varying degrees of induction or responses, respectively, which suggests that these interactions are widespread among pathogenic strains. Our screening approach thus identified multiple S. aureus secreted molecules that are sensed by P. aeruginosa and affect its physiology, demonstrating the efficacy of this approach, and yielding new insight into the molecular basis of interactions between these two species.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Meng F, Zhang F, Chen Q, Yang M, Yang Y, Li X, Gu W, Yu J. Virtual screening and in vitro experimental verification of LuxS inhibitors from natural products for Lactobacillus reuteri. Biomed Pharmacother 2022; 147:112521. [PMID: 35149360 DOI: 10.1016/j.biopha.2021.112521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022] Open
Abstract
The rapid proliferation and colonization of probiotics in the intestines are essential for human health. Quorum sensing (QS) is a communication mechanism among bacteria, which can regulate various bacterial crowd behavior. This study aimed to enhance the viability of Lactobacillus reuteri 1-12 by regulating QS. Herein, we built a database containing 72 natural products (previously reported) that can improve intestinal flora. Virtual screening (VS) was subsequently conducted to screen four potential active compounds. After that, molecular docking was conducted to analyze the binding mode of the four natural products to S-Ribosylhomocysteinase (LuxS). The results showed that norathyriol, mangiferin, baicalein, and kaempferol had good binding ability to LuxS. The validation experiment showed that norathyriol, mangiferin, baicalein, and kaempferol could inhibit the production of autoinducer-2 (AI-2). Moreover, mangiferin significantly increased L. reuteri 1-12 biomass and promoted L. reuteri 1-12 biofilm formation and structure. Besides, only mangiferin inhibited luxS expression, thus increasing L. reuteri 1-12 biomass. This research indicated that mangiferin may be a potential inhibitor of LuxS, promoting the probiotic properties of L. reuteri and human health.
Collapse
Affiliation(s)
- Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China
| | - Qiuding Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China
| | - Min Yang
- Kunming Third People's Hospital, 319 Wujing Road, Guandu District, Kunming, Yunnan, China
| | - Yaqin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China
| | - Xue Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China.
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Lazar V, Holban AM, Curutiu C, Chifiriuc MC. Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Front Microbiol 2021; 12:676510. [PMID: 34394026 PMCID: PMC8359898 DOI: 10.3389/fmicb.2021.676510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Pathogenic bacteria have the ability to sense their versatile environment and adapt by behavioral changes both to the external reservoirs and the infected host, which, in response to microbial colonization, mobilizes equally sophisticated anti-infectious strategies. One of the most important adaptive processes is the ability of pathogenic bacteria to turn from the free, floating, or planktonic state to the adherent one and to develop biofilms on alive and inert substrata; this social lifestyle, based on very complex communication networks, namely, the quorum sensing (QS) and response system, confers them an increased phenotypic or behavioral resistance to different stress factors, including host defense mechanisms and antibiotics. As a consequence, biofilm infections can be difficult to diagnose and treat, requiring complex multidrug therapeutic regimens, which often fail to resolve the infection. One of the most promising avenues for discovering novel and efficient antibiofilm strategies is targeting individual cells and their QS mechanisms. A huge amount of data related to the inhibition of QS and biofilm formation in pathogenic bacteria have been obtained using the well-established gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa models. The purpose of this paper was to revise the progress on the development of antibiofilm and anti-QS strategies in the less investigated gram-negative ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter sp. and identify promising leads for the therapeutic management of these clinically significant and highly resistant opportunistic pathogens.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance. Antibiotics (Basel) 2020; 9:antibiotics9120896. [PMID: 33322639 PMCID: PMC7763688 DOI: 10.3390/antibiotics9120896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.
Collapse
|
12
|
Liu Q, Wang J, He R, Hu H, Wu B, Ren H. Bacterial assembly during the initial adhesion phase in wastewater treatment biofilms. WATER RESEARCH 2020; 184:116147. [PMID: 32763514 DOI: 10.1016/j.watres.2020.116147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 05/06/2023]
Abstract
Biofilm start-up is a critical and time-consuming process in moving bed biofilm reactors (MBBRs), with the procedure beginning with bacteria being statically bound on surfaces. Studies addressing this critical process have mainly focused on constructing models based on single strains, although consideration of the unstable adhesion process of structured bacterial communities remains underexplored. In this study, impedance based real-time cell analysis (RTCA) was employed to quantitatively characterize the unstable adhesion process of structured bacterial communities collected from the aerobic tanks of eight full-scale wastewater treatment plants (WWTPs). The unstable adhesion time ranged from 8.85 ± 1.53 h to 17.06 ± 0.64 h, indicating significant differences in bacterial colonization properties. Using principal components analysis (PCA), Na+, K+ and proteins were found to significantly influence the biofilm unstable adhesion process. Furthermore, the differences in unstable adhesion times were closely related to the abundance of the most abundant operational taxonomic units (OTUs). The dominant OTUs mainly belonged to Aeromonadaceae and Enterobacteriaceae, with 73% found to be negatively corelated with unstable adhesion time. Furthermore, bacterial assembly during the initial adhesion phase was driven by bacterial interactions and key OTUs (exhibiting maximum connectivity in phylogenetic molecular ecological networks (pMENs)). Analysis of pMENs indicated that bacterial cooperation was a dominant factor in the initial adhesion, which may involve bacterial co-colonization, co-aggregation and communication. Considering keystone taxa were not identified, OTUs with max connectivity in pMENs were considered as key species. Although these key species play important roles in the connection of networks, their relative abundances were low and no significant relationships were observed with the unstable adhesion time. Overall, unstable adhesion in MBBRs is regulated by the dominant bacterial species and the alleviation of environmental variables by repulsive forces, providing potential strategies of dosing quorum sensing signals and key cations at the initial adhesion phase in reactors, to facilitate initial biofilm formation.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
13
|
Khan F, Javaid A, Kim YM. Functional Diversity of Quorum Sensing Receptors in Pathogenic Bacteria: Interspecies, Intraspecies and Interkingdom Level. Curr Drug Targets 2020; 20:655-667. [PMID: 30468123 DOI: 10.2174/1389450120666181123123333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
The formation of biofilm by pathogenic bacteria is considered as one of the most powerful mechanisms/modes of resistance against the action of several antibiotics. Biofilm is formed as a structural adherent over the surfaces of host, food and equipments etc. and is further functionally coordinated by certain chemicals produced itself. These chemicals are known as quorum sensing (QS) signaling molecules and are involved in the cross talk at interspecies, intraspecies and interkingdom levels thus resulting in the production of virulence factors leading to pathogenesis. Bacteria possess receptors to sense these chemicals, which interact with the incoming QS molecules. It is followed by the secretion of virulence molecules, regulation of bioluminescence, biofilm formation, antibiotic resistance development and motility behavioral responses. In the natural environment, different bacterial species (Gram-positive and Gram-negative) produce QS signaling molecules that are structurally and functionally different. Recent and past research shows that various antagonistic molecules (naturally and chemically synthesized) are characterized to inhibit the formation of biofilm and attenuation of bacterial virulence by blocking the QS receptors. This review article describes about the diverse QS receptors at their structural, functional and production levels. Thus, by blocking these receptors with inhibitory molecules can be a potential therapeutic approach to control pathogenesis. Furthermore, these receptors can also be used as a structural platform to screen the most potent inhibitors with the help of bioinformatics approaches.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Aqib Javaid
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
14
|
Wang S, Payne GF, Bentley WE. Quorum Sensing Communication: Molecularly Connecting Cells, Their Neighbors, and Even Devices. Annu Rev Chem Biomol Eng 2020; 11:447-468. [DOI: 10.1146/annurev-chembioeng-101519-124728] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
15
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Yi J, Zhang D, Cheng Y, Tan J, Luo Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl Microbiol Biotechnol 2019; 103:9643-9657. [PMID: 31686149 PMCID: PMC6867978 DOI: 10.1007/s00253-019-10162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/27/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
The focus of this study was to investigate the effects of luxS, a key regulatory gene of the autoinducer-2 (AI-2) quorum sensing (QS) system, on the biofilm formation and biocontrol efficacy against Ralstonia solanacearum by Paenibacillus polymyxa HY96-2. luxS mutants were constructed and assayed for biofilm formation of the wild-type (WT) strain and luxS mutants of P. polymyxa HY96-2 in vitro and in vivo. The results showed that luxS positively regulated the biofilm formation of HY96-2. Greenhouse experiments of tomato bacterial wilt found that from the early stage to late stage postinoculation, the biocontrol efficacy of the luxS deletion strain was the lowest with 50.70 ± 1.39% in the late stage. However, the luxS overexpression strain had the highest biocontrol efficacy with 75.66 ± 1.94% in the late stage. The complementation of luxS could restore the biocontrol efficacy of the luxS deletion strain with 69.84 ± 1.09% in the late stage, which was higher than that of the WT strain with 65.94 ± 2.73%. Therefore, we deduced that luxS could promote the biofilm formation of P. polymyxa HY96-2 and further promoted its biocontrol efficacy against R. solanacearum.
Collapse
Affiliation(s)
- Jincui Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Daojing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuejuan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingjing Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
17
|
Yeruva T, Lee CH. Regulation of Vaginal Microbiome by Nitric Oxide. Curr Pharm Biotechnol 2019; 20:17-31. [PMID: 30727888 DOI: 10.2174/1389201020666190207092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
In this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| |
Collapse
|
18
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
19
|
Effect of inactivation of luxS gene on the properties of Serratia proteamaculans 94 strain. Folia Microbiol (Praha) 2018; 64:265-272. [PMID: 30361877 DOI: 10.1007/s12223-018-0657-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 01/03/2023]
Abstract
The luxS gene is responsible for the synthesis of AI-2 (autoinducer-2), a signaling molecule that participates in quorum sensing regulation in a large number of bacteria. In this work, we investigated which phenotypes are regulated by luxS gene in Serratia proteamaculans 94, psychrotrophic strain isolated from spoiled refrigerated meat. AI-2 was identified in S. proteamaculans 94, and the luxS gene involved in its synthesis was cloned and sequenced. A mutant with the inactivated luxS gene was constructed. Inactivation of the luxS gene was shown to lead to the absence of AI-2 synthesis, chitinolytic activity, swimming motility, suppression of the growth of fungal plant pathogens Rhizoctonia solani and Helminthosporium sativum by volatile compounds emitted by S. proteamaculans 94 strain, and to a decrease of extracellular proteolytic activity. The knockout of the luxS gene did not affect synthesis of N-acyl-homoserine lactones, lipolytic, and hemolytic activities of S. proteamaculans 94.
Collapse
|
20
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
21
|
Andrés-Barrao C, Lafi FF, Alam I, de Zélicourt A, Eida AA, Bokhari A, Alzubaidy H, Bajic VB, Hirt H, Saad MM. Complete Genome Sequence Analysis of Enterobacter sp. SA187, a Plant Multi-Stress Tolerance Promoting Endophytic Bacterium. Front Microbiol 2017; 8:2023. [PMID: 29163376 PMCID: PMC5664417 DOI: 10.3389/fmicb.2017.02023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Enterobacter sp. SA187 is an endophytic bacterium that has been isolated from root nodules of the indigenous desert plant Indigofera argentea. SA187 could survive in the rhizosphere as well as in association with different plant species, and was able to provide abiotic stress tolerance to Arabidopsis thaliana. The genome sequence of SA187 was obtained by using Pacific BioScience (PacBio) single-molecule sequencing technology, with average coverage of 275X. The genome of SA187 consists of one single 4,429,597 bp chromosome, with an average 56% GC content and 4,347 predicted protein coding DNA sequences (CDS), 153 ncRNA, 7 rRNA, and 84 tRNA. Functional analysis of the SA187 genome revealed a large number of genes involved in uptake and exchange of nutrients, chemotaxis, mobilization and plant colonization. A high number of genes were also found to be involved in survival, defense against oxidative stress and production of antimicrobial compounds and toxins. Moreover, different metabolic pathways were identified that potentially contribute to plant growth promotion. The information encoded in the genome of SA187 reveals the characteristics of a dualistic lifestyle of a bacterium that can adapt to different environments and promote the growth of plants. This information provides a better understanding of the mechanisms involved in plant-microbe interaction and could be further exploited to develop SA187 as a biological agent to improve agricultural practices in marginal and arid lands.
Collapse
Affiliation(s)
- Cristina Andrés-Barrao
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Feras F Lafi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Axel de Zélicourt
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul A Eida
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ameerah Bokhari
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hanin Alzubaidy
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M Saad
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
22
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
23
|
Strategies for Biofilm Inhibition and Virulence Attenuation of Foodborne Pathogen-Escherichia coli O157:H7. Curr Microbiol 2017; 74:1477-1489. [DOI: 10.1007/s00284-017-1314-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
24
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Heinrich AK, Hirschmann M, Neubacher N, Bode HB. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in Photorhabdus and Xenorhabdus. PeerJ 2017; 5:e3471. [PMID: 28663937 PMCID: PMC5488855 DOI: 10.7717/peerj.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-negative bacteria Photorhabdus and Xenorhabdus are known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production of Photorhabdus and Xenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production in Photorhabdus. In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deleted luxS in three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNA micA, which is encoded directly upstream of luxS, did not influence NP levels. Phenotypic differences between the P. luminescens luxS deletion mutant and an earlier described luxS deficient strain of P. luminescens suggested that two phenotypically different strains have evolved in different laboratories.
Collapse
Affiliation(s)
- Antje K. Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7:106. [PMID: 28421166 PMCID: PMC5376567 DOI: 10.3389/fcimb.2017.00106] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
The significance of polymicrobial infections is increasingly being recognized especially in a biofilm context wherein multiple bacterial species—including both potential pathogens and members of the commensal flora—communicate, cooperate, and compete with each other. Two important bacterial pathogens that have developed a complex network of evasion, counter-inhibition, and subjugation in their battle for space and nutrients are Pseudomonas aeruginosa and Staphylococcus aureus. Their strain- and environment-specific interactions, for instance in the cystic fibrosis lung or in wound infections, show severe competition that is generally linked to worse patient outcomes. For instance, the extracellular factors secreted by P. aeruginosa have been shown to subjugate S. aureus to persist as small colony variants (SCVs). On the other hand, data also exist where S. aureus inhibits biofilm formation by P. aeruginosa but also protects the pathogen by inhibiting its phagocytosis. Interestingly, such interspecies interactions differ between the planktonic and biofilm phenotype, with the extracellular matrix components of the latter likely being a key, and largely underexplored, influence. This review attempts to understand the complex relationship between P. aeruginosa and Staphylococcus spp., focusing on S. aureus, that not only is interesting from the bacterial evolution point of view, but also has important consequences for our understanding of the disease pathogenesis for better patient management.
Collapse
Affiliation(s)
- An Hotterbeekx
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium.,Molecular Pathology Group, Cell Biology and Histology, University of AntwerpWilrijk, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| |
Collapse
|
27
|
Fastenberg JH, Hsueh WD, Mustafa A, Akbar NA, Abuzeid WM. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J Otorhinolaryngol Head Neck Surg 2016; 2:219-229. [PMID: 29204570 PMCID: PMC5698538 DOI: 10.1016/j.wjorl.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is increasing evidence that biofilms are critical to the pathophysiology of chronic infections including chronic rhinosinusitis (CRS). Until relatively recently, our understanding of biofilms was limited. Recent advances in methods for biofilm identification and molecular biology have offered new insights into the role of biofilms in CRS. With these insights, investigators have begun to investigate novel therapeutic strategies that may disrupt or eradicate biofilms in CRS. OBJECTIVE This review seeks to explore the evidence implicating biofilms in CRS, discuss potential anti-biofilm therapeutic strategies, and suggest future directions for research. RESULTS The existing evidence strongly supports the role of biofilms in the pathogenesis of CRS. Several anti-biofilm therapies have been investigated for use in CRS and these are at variable stages of development. Generally, these strategies: 1) neutralize biofilm microbes; 2) disperse existing biofilms; or 3) disrupt quorum sensing. Several of the most promising anti-biofilm therapeutic strategies are reviewed. CONCLUSIONS A better understanding of biofilm function and their contribution to the CRS disease process will be pivotal to the development of novel treatments that may augment and, potentially, redefine the CRS treatment paradigm. There is tremendous potential for future research.
Collapse
Affiliation(s)
- Judd H. Fastenberg
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| | | | | | | | - Waleed M. Abuzeid
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| |
Collapse
|
28
|
Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JCM, Ferreira ICFR, Vahabi K. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 2016; 37:525-540. [PMID: 27684212 DOI: 10.1080/07388551.2016.1199010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.
Collapse
Affiliation(s)
- Brahma N Singh
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Prateeksha
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Dalip K Upreti
- b Lichenology laboratory , Plant Biodiversity and Conservation Biology Division, CSIR-National Botanical Research Institute , Lucknow , Uttar Pradesh , India
| | - Braj Raj Singh
- c TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon , Haryana , India.,d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India
| | - Tom Defoirdt
- d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India.,e Laboratory of Aquaculture & Artemia Reference Center , Ghent University , Gent , Belgium
| | - Vijai K Gupta
- f Molecular Glyco-biotechnology Group, Discipline of Biochemistry , School of Natural Sciences, National University of Ireland Galway , Galway , Ireland
| | | | - Harikesh Bahadur Singh
- h Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University , Varanasi , Uttar Pardesh , India
| | - João C M Barreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Isabel C F R Ferreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Khabat Vahabi
- j Biologisch-Pharmazeutische Fakultät , Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller Universität Jena , Jena , Germany
| |
Collapse
|
29
|
Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:1-15. [PMID: 26819549 PMCID: PMC4718088 DOI: 10.4137/pmc.s13209] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Collapse
Affiliation(s)
- Kerstin Reuter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.; Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Department of Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
30
|
Sangwan N, Lambert C, Sharma A, Gupta V, Khurana P, Khurana JP, Sockett RE, Gilbert JA, Lal R. Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:812-23. [PMID: 25953741 DOI: 10.1111/1758-2229.12297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 04/13/2015] [Indexed: 05/07/2023]
Abstract
Bdellovibrio bacteriovorus are small Deltaproteobacteria that invade, kill and assimilate their prey. Metagenomic assembly analysis of the microbial mats of an arsenic rich, hot spring was performed to describe the genotypes of the predator Bdellovibrio and the ecogenetically adapted taxa Enterobacter. The microbial mats were enriched with Bdellovibrio (1.3%) and several Gram-negative bacteria including Bordetella (16%), Enterobacter (6.8%), Burkholderia (4.8%), Acinetobacter (2.3%) and Yersinia (1%). A high-quality (47 contigs, 25X coverage; 3.5 Mbp) draft genome of Bdellovibrio (strain ArHS; Arsenic Hot Spring) was reassembled, which lacked the marker gene Bd0108 associated with the usual method of prey interaction and invasion for this genus, while maintaining genes coding for the hydrolytic enzymes necessary for prey assimilation. By filtering microbial mat samples (< 0.45 μm) to enrich for small predatory cell sizes, we observed Bdellovibrio-like cells attached side-on to E. coli through electron microscopy. Furthermore, a draft pan-genome of the dominant potential host taxon, Enterobacter cloacae ArHS (4.8 Mb), along with three of its viral genotypes (n = 3; 42 kb, 49 kb and 50 kb), was assembled. These data were further used to analyse the population level evolutionary dynamics (taxonomical and functional) of reconstructed genotypes.
Collapse
Affiliation(s)
- Naseer Sangwan
- Department of Zoology, University of Delhi, Delhi, 110007, India
- Biosciences Division (BIO), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Carey Lambert
- Institute of Genetics, School of Life Sciences, Nottingham University, Queen's Medical Centre, Nottingham, UK
| | - Anukriti Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - R Elizabeth Sockett
- Institute of Genetics, School of Life Sciences, Nottingham University, Queen's Medical Centre, Nottingham, UK
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
- Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
31
|
Abstract
Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies.
Collapse
Affiliation(s)
- Joke Donné
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
32
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
33
|
Lau YY, Yin WF, Chan KG. Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium. SENSORS 2014; 14:13913-24. [PMID: 25196111 PMCID: PMC4178997 DOI: 10.3390/s140813913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
34
|
Lowery CA, Matamouros S, Niessen S, Zhu J, Scolnick J, Lively JM, Cravatt BF, Miller SI, Kaufmann GF, Janda KD. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level. ACTA ACUST UNITED AC 2014; 20:903-11. [PMID: 23890008 DOI: 10.1016/j.chembiol.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/08/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation.
Collapse
Affiliation(s)
- Colin A Lowery
- The Skaggs Institute for Chemical Biology, Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lau YY, Sulaiman J, Chen JW, Yin WF, Chan KG. Quorum sensing activity of Enterobacter asburiae isolated from lettuce leaves. SENSORS (BASEL, SWITZERLAND) 2013; 13:14189-99. [PMID: 24152877 PMCID: PMC3859116 DOI: 10.3390/s131014189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Joanita Sulaiman
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Jian Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| |
Collapse
|
36
|
Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 2013; 14:16570-99. [PMID: 23939429 PMCID: PMC3759926 DOI: 10.3390/ijms140816570] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.
Collapse
Affiliation(s)
- Song Buck Tay
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | | |
Collapse
|
37
|
Kozyrovska NO. Crosstalk between endophytes and a plant host within information-processing networks. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.00081d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. O. Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
38
|
Haigh R, Kumar B, Sandrini S, Freestone P. Mutation design and strain background influence the phenotype ofEscherichia coli luxSmutants. Mol Microbiol 2013; 88:951-69. [DOI: 10.1111/mmi.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Richard Haigh
- Department of Genetics; University of Leicester; Leicester UK
| | - Brijesh Kumar
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Sara Sandrini
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Primrose Freestone
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|
39
|
Cox CE, McClelland M, Teplitski M. Consequences of disrupting Salmonella AI-2 signaling on interactions within soft rots. PHYTOPATHOLOGY 2013; 103:352-361. [PMID: 23324045 DOI: 10.1094/phyto-09-12-0237-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Within soft rots, Salmonella spp. reach population densities 10- to 100-fold higher than within intact plants. The hypothesis that Salmonella spp. exchange AI-2 signals with Pectobacterium carotovorum to increase its competitive fitness was tested using mutants involved in AI-2 production (luxS) or perception (lsrACDBF or lsrG). Co-infections of a wild-type Salmonella sp. and its AI-2 mutants (at ≈3 to 10(4)) were established in green or red tomato ('FL 47' or 'Campari' for 3 or 5 days) as well as tomato co-infected with Pectobacterium (at 10(9)) or its luxS mutant. There were no significant differences in the competitive fitness of Salmonella, indicating that AI-2 signaling is not a major input in the interactions between these organisms under the tested conditions. A Salmonella lsrG::tnpR-lacZ resolvase in vivo expression technology (RIVET) reporter, constructed to monitor AI-2-related gene expression, responded strongly to the luxS deletion but only weakly to external sources of AI-2. Growth in soft rots generally decreased RIVET resolution; however, the effect was not correlated to the luxS genotype of the Pectobacterium sp. The results of this study show that AI-2 signaling offers no significant benefit to Salmonella spp. in this model of colonization of tomato or soft rots.
Collapse
Affiliation(s)
- Clayton E Cox
- Department of Soil and Water Science, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
40
|
Freestone P. Communication between Bacteria and Their Hosts. SCIENTIFICA 2013; 2013:361073. [PMID: 24381789 PMCID: PMC3871906 DOI: 10.1155/2013/361073] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 05/17/2023]
Abstract
It is clear that a dialogue is occurring between microbes and their hosts and that chemical signals are the language of this interkingdom communication. Microbial endocrinology shows that, through their long coexistence with animals and plants, microorganisms have evolved sensors for detecting eukaryotic hormones, which the microbe uses to determine that they are within proximity of a suitable host and to optimally time the expression of genes needed for host colonisation. It has also been shown that some prokaryotic chemical communication signals are recognized by eukaryotes. Deciphering what is being said during the cross-talk between microbe and host is therefore important, as it could lead to new strategies for preventing or treating bacterial infections.
Collapse
Affiliation(s)
- Primrose Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
- *Primrose Freestone:
| |
Collapse
|
41
|
Niu C, Robbins CM, Pittman KJ, Osborn JL, Stubblefield BA, Simmons RB, Gilbert ES. LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities. FEMS Microbiol Ecol 2012; 83:778-91. [PMID: 23078586 DOI: 10.1111/1574-6941.12034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coli W3110 and an inducible plasmid-luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a 'spreading' phenotype, whereas the complement had a 'climbing' phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.
Collapse
Affiliation(s)
- Chen Niu
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|