1
|
Pedro ZSB, Almeida JMS, Brett CMA. A new ternary deep eutectic solvent for electropolymerization of thionine on glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid. Talanta 2025; 287:127653. [PMID: 39892120 DOI: 10.1016/j.talanta.2025.127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The phenazine redox dye, thionine (Th), was used to prepare poly(thionine) (PTh) polymer film modified electrodes. PTh was electrodeposited on glassy carbon electrodes (GCE) and on GCE modified with multiwalled carbon nanotubes (MWCNT) by potential cycling electropolymerization in the ternary deep eutectic solvent composed of choline chloride (ChCl), thymol (Thy), ethylene glycol (EG), ChCl-Thy-EG (1:1:4) with the addition of different doping acids. The MWCNT promote greater polymer growth, conductivity and increased stability of the polymer films. The modified electrodes, PTh/MWCNT/GCE, were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and the morphology of its surface by scanning electron microscopy. PTh/MWCNT/GCE was used in the determination of ascorbic acid (AA) using fixed potential amperometry with a linear range of 2.5 μM-100 μM and a detection limit of 0.68 μM. The proposed sensor was tested on commercial pharmaceutical samples successfully with good sensitivity, repeatability and reproducibility.
Collapse
Affiliation(s)
- Zeferino S B Pedro
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Joseany M S Almeida
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Christopher M A Brett
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Oliveira IGS, Gallina FC, Affonso MR, Souto RS, Lanza MRV, Martelli SM, Barros WRP. Electrochemical determination of folic acid in triple-matrix biofluids: a PAni-DES and Au/Printex L6@Chitosan enhanced lab-made screen-printed sensor. Mikrochim Acta 2025; 192:325. [PMID: 40295396 DOI: 10.1007/s00604-025-07177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
The development and application of a highly sensitive electrochemical screen-printed electrode (SPE) for the determination of folic acid (FA) is presented. The SPE was fabricated on a polyethylene substrate using customized graphite ink and modified with Printex L6 carbon (PL6C) dispersed in chitosan (Chi). Gold (Au) nanoparticles were electrodeposited onto the SPE surface, followed by electropolymerization of polyaniline (PAni) in a deep eutectic solvent (DES), enhancing the electrochemical performance. The modified PAni-DES/Au/PL6C@Chi/SPE was characterized using cyclic voltammetry and differential pulse voltammetry in 0.1 mol L⁻1 Britton-Robinson buffer solution at pH 7.0. Compared to the bare SPE, the modified sensor showed a significantly enhanced current response for FA detection, with a linear dynamic range of 1.15 to 40.00 μmol L⁻1 (R2 = 0.998) and a limit of detection (LOD) of 0.018 μmol L⁻1. The sensor was successfully applied to real samples such as saliva, blood serum, and urine, exhibiting high sensitivity with recovery between 95.25% and 103.80%. It also demonstrated excellent selectivity against common interferents, and the fully lab-made platform offers competitive performance compared to conventional systems, highlighting its innovative design and potential for customization. The absence of a significant memory effect and minimal matrix interference further underscore the sensor's reliability for clinical diagnoses and quality control analyses. Additionally, the sensor is cost-effective and requires low reagent and sample consumption, making it a promising alternative for practical applications.
Collapse
Affiliation(s)
- Igor G S Oliveira
- Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, Dourados, MS, 79804-970, Brazil
| | - Fernando C Gallina
- Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, Dourados, MS, 79804-970, Brazil
| | - Muriel R Affonso
- Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, Dourados, MS, 79804-970, Brazil
| | - Robson S Souto
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Silvia M Martelli
- Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, Dourados, MS, 79804-970, Brazil
| | - Willyam R P Barros
- Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, Dourados, MS, 79804-970, Brazil.
| |
Collapse
|
3
|
Koyakkat M, Shirota H. Intermolecular Vibrational and Orientational Dynamics of Deep Eutectic Solvents Composed of Lithium Bis(trifluoromethylsulfonyl)amide and Organic Amides Revealed by Dynamic Kerr Effect Spectroscopy. J Phys Chem B 2025; 129:4023-4036. [PMID: 40203207 DOI: 10.1021/acs.jpcb.4c08623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
In this study, we investigated the intermolecular dynamics, including intermolecular vibration and orientational dynamics, of five deep eutectic solvents (DESs) consisting of lithium bis(trifluoromethylsulfonyl)amide and organic amides, such as acetamide, propanamide, N-methylacetamide, butyramide, and urea, at a mole ratio of 1:3 using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and subpicosecond optical Kerr effect spectroscopy (ps-OKES). The fs-RIKES results showed that the line shape of the low-frequency band of the N-methylacetamide was trapezoidal, while that of the other organic amide-based DESs was bimodal. The peak and first moment of the intermolecular vibrational band appearing in the frequency range less than 250 cm-1 for the acetamide- and urea-based DESs were in a higher-frequency region compared to the other three DESs, indicating stronger intermolecular interactions. Furthermore, analysis of the intramolecular vibrational bands of the bis(trifluoromethylsulfonyl)amide anion showed that the population of the transoid conformer of the anion was slightly higher in the urea-based DES than in the other organic amide-based DESs, suggesting that urea solvate lithium cations more than the other organic amides. The slow relaxation dynamics of all five DESs were captured for up to 1 ns using ps-OKES. The slow relaxation dynamics also depended on the organic amide species. However, the slow relaxation time constant did not show a clear correlation with the viscosity; therefore, the relaxation dynamics of the DESs did not follow the Stokes-Einstein-Debye hydrodynamic model. The densities, viscosities, surface tensions, and electrical conductivities of the DESs were also measured for comparison with spectroscopic results.
Collapse
Affiliation(s)
- Maharoof Koyakkat
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
4
|
Basar A, Prieto C, Cabedo L, Lagaron JM. Enhancing the Mechanical Properties of Electrospun Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Fiber Mats Using Deep Eutectic Solvents. ACS OMEGA 2025; 10:12936-12952. [PMID: 40224420 PMCID: PMC11983192 DOI: 10.1021/acsomega.4c08969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025]
Abstract
In this study, the use of deep eutectic solvents (DESs) was considered for the first time to improve the mechanical properties of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fiber mats. For this, different DES formulations, namely, Choline Chloride (ChCl):Urea:Water, ChCl:Glycerol (Gly), and Gly:Sodium Citrate (NaCitrate), were selected and evaluated at a concentration of 10 wt %, and their efficacy enhancing mechanical properties was compared against traditional plasticizing additives glycerol and acetyl tributyl citrate (ATBC). The impact of these formulations on PHBV fiber mats was evaluated in terms of thermal, crystallinity, and mechanical properties, both as obtained and after aging. All samples produced macroscopically consistent, self-supporting, and handleable nonwoven material sheets. The DES-containing PHBV showed a thinner, bead-free surface morphology but a rugose surface morphology. DSC results indicated that glycerol, ATBC, and Gly:NaCitrate (DES) exhibited the highest reduction in melting temperatures, with a notable 5.6 °C decrease for the mat containing Gly:NaCitrate. Interestingly, electrospun PHBV fibers containing DES revealed a larger quantity of β-form planar zigzag chain conformations, so-called β-form crystals. Tensile test results revealed that depending on the additive formulation, the mechanical performance of the samples was fundamentally different from each other. Among DESs, PHBV fiber mats with ChCl-based DES were excessively brittle. Surprisingly and interestingly, PHBV fiber mats containing Gly:NaCitrate exhibited an unreported significant increase in all mechanical properties, including modulus, elongation at break, and toughness. Overall, this study highlights the potential of DESs as unique additives to tailor the mechanical properties of electrospun PHBV materials.
Collapse
Affiliation(s)
- Ahmet
O. Basar
- Novel Materials
and Nanotechnology group, Institute of Agrochemistry and Food Technology
(IATA), Spanish Council for Scientific Research
(CSIC), Calle Catedrático
Agustín Escardino Benlloch 7, Paterna 46980, Spain
| | - Cristina Prieto
- Novel Materials
and Nanotechnology group, Institute of Agrochemistry and Food Technology
(IATA), Spanish Council for Scientific Research
(CSIC), Calle Catedrático
Agustín Escardino Benlloch 7, Paterna 46980, Spain
| | - Luis Cabedo
- Polymers
and Advanced Materials Group (PIMA), Universitat
Jaume I (UJI), Avda. Vicent Sos Baynat S/N, Castelló
de la Plana 12071, Spain
| | - Jose M. Lagaron
- Novel Materials
and Nanotechnology group, Institute of Agrochemistry and Food Technology
(IATA), Spanish Council for Scientific Research
(CSIC), Calle Catedrático
Agustín Escardino Benlloch 7, Paterna 46980, Spain
| |
Collapse
|
5
|
Alvandi H, Rezayan AH, Hajghassem H, Rahimi F. Rapid and sensitive whole cell E. coli detection using deep eutectic solvents/graphene oxide/gold nanoparticles field-effect transistor. Talanta 2025; 283:127184. [PMID: 39520924 DOI: 10.1016/j.talanta.2024.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Every year, millions of people suffer from gastrointestinal inflammation caused by E. coli. The increase of antibiotic-resistant strains and similar inflammatory and infectious syndromes symptoms have made rapid and sensitive diagnosis of this pathogen challenging. This study developed a Field-Effect Transistor based on deep eutectic solvents, graphene oxide, and gold nanoparticles (DES/GO/AuNPs-FET) to detect E. coli. Comparing the output current showed DES, which was a mixture of ethylene glycol and choline chloride, with ionic behavior, in addition to improving the electrical properties of GO, also led to the formation of AuNPs by self-assembly, which significantly increased the sensor's sensing performance. E. coli lipopolysaccharide aptamer immobilized on DES/GO/AuNPs-FET; capturing E. coli and changing the conformation caused changes in the charge carrier flow in the FET. This nanobiosensor detected E. coli in a completely selective manner in complex matrices like human blood serum. The excellent sensing performance of this nanobiosensor compared to other biosensors with a low detection limit (LOD = 3 CFU/ml), label-free, fast, and real-time detection showed that DES/GO/AuNPs-FET could be a reliable alternative to existing detection methods.
Collapse
Affiliation(s)
- Hale Alvandi
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Hassan Hajghassem
- MEMS & NEMS Laboratory, Department of Intelligent System, College of Interdisciplinary Science and Technologies, University of Tehran, Tehran, Iran.
| | - Fereshteh Rahimi
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Szydłowska-Czerniak A, Kowaluk A, Strzelec M, Sawicki T, Tańska M. Evaluation of Bioactive Compounds and Chemical Elements in Herbs: Effectiveness of Choline Chloride-Based Deep Eutectic Solvents in Ultrasound-Assisted Extraction. Molecules 2025; 30:368. [PMID: 39860236 PMCID: PMC11767781 DOI: 10.3390/molecules30020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC). Among the prepared DESs, the highest antioxidant potential and total contents of phenolic acids, flavonoid aglycones, and flavonoid glycosides in herb extracts were achieved using ChCl:MalA (1:1). Unexpectedly, the selected green solvents extracted significantly lower amounts of total antioxidants from the investigated herbs than 50% alcohols. Additionally, macroelements (K, Na, Ca, Mg), micronutrients (Mn, Zn, Fe, Cu), and a toxic element (Cd) in four herbs were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). Determining the compositions of antioxidants and elements in herbs is essential for understanding their nutritive importance when applied in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Agnieszka Kowaluk
- Central Office of Measures, Laboratory of Electrochemical and Inorganic Analyzes, Department of Physical and Environmental Chemistry, 00-139 Warszawa, Poland; (A.K.); (M.S.)
| | - Michał Strzelec
- Central Office of Measures, Laboratory of Electrochemical and Inorganic Analyzes, Department of Physical and Environmental Chemistry, 00-139 Warszawa, Poland; (A.K.); (M.S.)
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland;
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
7
|
Kocot AM, Swebocki T, Ciemińska K, Łupkowska A, Kapusta M, Grimon D, Laskowska E, Kaczorowska AK, Kaczorowski T, Boukherroub R, Briers Y, Plotka M. Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii. Sci Rep 2025; 15:2047. [PMID: 39814769 PMCID: PMC11735859 DOI: 10.1038/s41598-024-80440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.97 ± 0.38 °C, significantly higher than their natural counterparts derived from mesophilic sources. The minimum inhibitory concentration (MIC) of MLE-15 was 100 µg/mL for a panel of Gram-positive and Gram-negative bacteria, while the MIC of reline ranged from 6.25 to 25% v/v for the same strains. The addition of reline effectively reduced the MIC of MLE-15 from 100 µg/mL to 3.15-50 µg/mL. This combination displayed additive effects for most strains and synergism for extensively antibiotic-resistant Acinetobacter baumannii and Bacillus subtilis. The subsequent evaluation revealed that MLE-15 eliminated planktonic cells of A. baumannii RUH134, but was ineffective against matured biofilms. However, combined with reline, MLE-15 reduced the bacterial load in the matured biofilm by 1.39 log units. Confocal fluorescence microscopy indicated that reline damaged the structure of the biofilm, allowing MLE-15 to penetrate it. Additionally, MLE-15 and its combination with reline eradicated meropenem-persistent cells of A. baumannii RUH134. Effectiveness in lowering the MIC value of MLE-15 as well as protection against antibiotic-tolerant persister cells, indicate that MLE-15 and reline combination is a promising candidate for effective therapies in bacterial infections, which is especially important in the light of the global crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland
| | - Karolina Ciemińska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Dennis Grimon
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Yves Briers
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
8
|
Nicolau A, Mutch AL, Thickett SC. Applications of Functional Polymeric Eutectogels. Macromol Rapid Commun 2024; 45:e2400405. [PMID: 39007171 DOI: 10.1002/marc.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, deep eutectic solvents (DESs) have captured significant attention as an emergent class of solvents that have unique properties and applications in differing fields of chemistry. One area where DES systems find utility is the design of polymeric gels, often referred to as "eutectogels," which can be prepared either using a DES to replace a traditional solvent, or where monomers form part of the DES themselves. Due to the extensive network of intramolecular interactions (e.g., hydrogen bonding) and ionic species that exist in DES systems, polymeric eutectogels often possess appealing material properties-high adhesive strength, tuneable viscosity, rapid polymerization kinetics, good conductivity, as well as high strength and flexibility. In addition, non-covalent crosslinking approaches are possible due to the inherent interactions that exist in these materials. This review considers several key applications of polymeric eutectogels, including organic electronics, wearable sensor technologies, 3D printing resins, adhesives, and a range of various biomedical applications. The design, synthesis, and properties of these eutectogels are discussed, in addition to the advantages of this synthetic approach in comparison to traditional gel design. Perspectives on the future directions of this field are also highlighted.
Collapse
Affiliation(s)
- Alma Nicolau
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Alexandra L Mutch
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
9
|
Hong Y, Shi Y, Fan Y, Pan H, Yao X, Xie Y, Wang X. Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents. Bioprocess Biosyst Eng 2024; 47:1647-1657. [PMID: 38935112 DOI: 10.1007/s00449-024-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a "green" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.
Collapse
Affiliation(s)
- Yinan Hong
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yue Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yurou Fan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Hong Pan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Xiangyu Yao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yu Xie
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Xiaojun Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China.
| |
Collapse
|
10
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
11
|
Li Y, Sun M, Cao Y, Yu K, Fan Z, Cao Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. CHEMSUSCHEM 2024; 17:e202301953. [PMID: 38409620 DOI: 10.1002/cssc.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The Lithium-ion battery (LIB) is one of the main energy storage equipment. Its cathode material contains Li, Co, and other valuable metals. Therefore, recycling spent LIBs can reduce environmental pollution and resource waste, which is significant for sustainable development. However, traditional metallurgical methods are not environmentally friendly, with high cost and environmental toxicity. Recently, the concept of green chemistry gives rise to environmental and efficient recycling technology, which promotes the transition of recycling solvents from organic solvents to green solvents represented by deep eutectic solvents (DESs). DESs are considered as ideal alternative solvents in extraction processes, attracting great attention due to their low cost, low toxicity, good biodegradability, and high extraction capacity. It is very important to develop the DESs system for LIBs recycling for sustainable development of energy and green economic development of recycling technology. In this work, the applications and research progress of DESs in LIBs recovery are reviewed, and the physicochemical properties such as viscosity, toxicity and regulatory properties are summarized and discussed. In particular, the toxicity data of DESs are collected and analyzed. Finally, the guidance and prospects for future research are put forward, aiming to explore more suitable DESs for recycling valuable metals in batteries.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yanbo Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Zixuan Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
12
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
13
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
14
|
Zeng X, Li J, Xu L, Deng A, Li J. Development of a flow injection chemiluminescence immunoassay based on DES-mediated CuCo 2O 4 nanoenzyme for ultrasensitive detection of zearalenone in foods. Mikrochim Acta 2024; 191:175. [PMID: 38436786 DOI: 10.1007/s00604-024-06242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for 15 repetitive injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
15
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
16
|
Sheikh A, Khan AY, Ahmed S. Physicochemical Properties of Choline Chloride/Acetic Acid as a Deep Eutectic Solvent and Its Binary Solutions with DMSO at 298.15 to 353.15 K. ACS OMEGA 2024; 9:3730-3745. [PMID: 38284059 PMCID: PMC10809710 DOI: 10.1021/acsomega.3c07739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Deep eutectic solvents (DESs) are considered to play an important role in green chemistry and other technological fields as an alternative to organic solvents. The present study reports measurements of density (ρ), speed of sound (u), dynamic viscosity (η), and electrical conductivity (κ) and investigates physicochemical properties of choline chloride/acetic acid (ChCl/AcA DES) and its binary mixtures with dimethyl sulfoxide (DMSO) over the entire composition and temperature (298.15-353.15 K) range. The density data are well fitted by a second-degree polynomial equation in T. DES/DMSO mixtures exhibit negative excess molar volume and isentropic compressibility deviation with a minimum in respective curves at x1 ≈ 0.15 (x1 is the mole fraction of DES in the mixture), which became deeper with increasing temperature. The ChCl/AcA DES and DMSO curves for excess partial molar volume cross each other at x1 ≈ 0.15, showing that the packing effect is dominant over specific interactions. A similar behavior is observed for excess molar viscosity, showing the minima at x1 ≈ 0.62, and substantiates volumetric results. The temperature dependence of viscosity and conductivity is well described by the Vogel-Fulcher-Tammann (VFT) equation.
Collapse
Affiliation(s)
- Aafia Sheikh
- Department of Chemistry, Government College Women University, Sialkot 51310, Pakistan
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Athar Yaseen Khan
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Safeer Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
17
|
Fadaei F, Tortora M, Gessini A, Masciovecchio C, Vigna J, Mancini I, Mele A, Vacek J, Minofar B, Rossi B. Local and cooperative structural transitions of double-stranded DNA in choline-based deep eutectic solvents. Int J Biol Macromol 2024; 256:128443. [PMID: 38035952 DOI: 10.1016/j.ijbiomac.2023.128443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The possibility of using deep eutectic solvents (DESs) as co-solvents for stabilizing and preserving the native structure of DNA provides an attractive opportunity in the field of DNA biotechnology. The rationale of this work is a systematic investigation of the effect of hydrated choline-based DES on the structural stability of a 30-base-pair double-stranded DNA model via a combination of spectroscopic experiments and MD simulations. UV absorption and CD experiments provide evidence of a significant contribution of DESs to the stabilization of the double-stranded canonical (B-form) DNA structure. Multi-wavelength synchrotron UV Resonance Raman (UVRR) measurements indicate that the hydration shell of adenine-thymine pairs is strongly perturbed in the presence of DESs and that the preferential interaction between H-bond sites of guanine residues and DESs is significantly involved in the stabilization of the dsDNA. Finally, MD calculations show that the minor groove of DNA is significantly selective for the choline part of the investigated DESs compared to the major groove. This finding is likely to have a significant impact not only in terms of thermal stability but also in the modulation of ligand-DNA interactions.
Collapse
Affiliation(s)
- Fatemeh Fadaei
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic
| | - Mariagrazia Tortora
- Area Science Park, Padriciano, 99, 34149 Trieste, Italy; Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | | | - Jacopo Vigna
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Babak Minofar
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy.
| |
Collapse
|
18
|
Piao H, Xie W, Li S, Wang J, Liu C, Quan P, Fang L. Ternary Deep Eutectic Solvents System of Colchicine, 4-Hydroxyacetophenone, and Protocatechuic Acid and Characterization of Transdermal Enhancement Mechanism. AAPS PharmSciTech 2023; 24:229. [PMID: 37964102 DOI: 10.1208/s12249-023-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.
Collapse
Affiliation(s)
- Huiqing Piao
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Wanchen Xie
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Shiqi Li
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
19
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Hashemian H, Ghaedi M, Dashtian K, Mosleh S, Hajati S, Razmjoue D, Khan S. Cellulose acetate/MOF film-based colorimetric ammonia sensor for non-destructive remote monitoring of meat product spoilage. Int J Biol Macromol 2023; 249:126065. [PMID: 37524273 DOI: 10.1016/j.ijbiomac.2023.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Soleiman Mosleh
- Polymer Engineering Department, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Lomba L, Werner Á, Giner B, Lafuente C. Deep Eutectic Solvents Formed by Glycerol and Xylitol, Fructose and Sorbitol: Effect of the Different Sugars in Their Physicochemical Properties. Molecules 2023; 28:6023. [PMID: 37630275 PMCID: PMC10458529 DOI: 10.3390/molecules28166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The search for new eutectic solvents for different applications (extraction, drug formulation, chemical reactions, etc.) is booming thanks to their high solubility capacity and low toxicity. However, it is necessary to carry out a comprehensive physicochemical characterization of these mixtures to understand the molecular behavior at different experimental conditions. In this study, three deep eutectic solvents (DESs) formed by glycerol and xylitol, fructose and sorbitol and water in the molar ratio 1:2:3 were prepared and several physicochemical properties (refractive index, density, surface tension, viscosity, speed of sound, isobaric heat capacity and isentropic compressibility) were measured and analyzed in the 278.15-338.15 K temperature range. The results indicate a linear dependence with temperature for the following properties: surface tension, refractive index, density and isobaric molar heat capacity while viscosity values have been fitted to the Vogel-Fulcher-Tammann equation.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Álvaro Werner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Carlos Lafuente
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
22
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
23
|
Zarei N, Zolfigol MA, Torabi M, Yarie M. Synthesis of new hybrid pyridines catalyzed by Fe 3O 4@SiO 2@urea-riched ligand/Ch-Cl. Sci Rep 2023; 13:9486. [PMID: 37301889 DOI: 10.1038/s41598-023-35849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Herein, a new heterogeneous catalytic system through modification of urea functionalized magnetic nanoparticles with choline chloride [Fe3O4@SiO2@urea-riched ligand/Ch-Cl] was designed and synthesized. Then, the synthesized Fe3O4@SiO2@urea-riched ligand/Ch-Cl was characterized by using FT-IR spectroscopy, FESEM, TEM, EDS-Mapping, TGA/DTG and VSM techniques. After that, the catalytic usage of Fe3O4@SiO2@urea-riched ligand/Ch-Cl was investigated for the synthesis of hybrid pyridines with sulfonate and/or indole moieties. Delightfully, the outcome was satisfactory and the applied strategy represents several advantages such as short reaction times, convenience of operation and relatively good yields of obtained products. Moreover, the catalytic behavior of several formal homogeneous DESs was investigated for the synthesis of target product. In addition, a cooperative vinylogous anomeric-based oxidation pathway was suggested as rational mechanism for the synthesis of new hybrid pyridines.
Collapse
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
24
|
Maji D, Biswas R. Dielectric relaxation and dielectric decrement in ionic acetamide deep eutectic solvents: Spectral decomposition and comparison with experiments. J Chem Phys 2023; 158:2888209. [PMID: 37139998 DOI: 10.1063/5.0147378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.
Collapse
Affiliation(s)
- Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
25
|
Guo Y, Zheng X, Wang X, Zhang Z, Qin S, Wang X, Jing X. Deep eutectic solvent-based adhesive tape extraction combined with enzyme inhibition assay for the determination and distinction of dithiocarbamate pesticides in food samples. Talanta 2023; 260:124601. [PMID: 37149938 DOI: 10.1016/j.talanta.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
A simple, green extraction method of dithiocarbamate (DTC) pesticides in food samples was developed using adhesive tapes and a green deep eutectic solvent (DES). A rapid and convenient determination and distinction method of DTC pesticides was established using tyrosinase inhibition assay. First, DTC pesticides were extracted by pasting and peeling off the adhesive tape, then eluted by the DES synthesized from xylitol and ethylene glycol. Second, determination of DTC pesticides was conducted by inhibiting the activity of tyrosinase which can catalyze the oxidation of catechol. Less colored products were generated in the reaction system (tyrosinase, catechol, and 4-aminoantipyrine), leading to weak absorbance. In addition, different DTC pesticides (ziram, propineb, zineb, mancozeb, thiram, metiram, and ferbam) were successfully distinguished by sensor arrays (tyrosinase, phenolic compounds, and 4-aminoantipyrine) through principal component analysis. The limit of detection was found to be 0.2 μg kg-1, and the limit of quantification was 0.6 μg kg-1. The recoveries ranging from 89.4% to 103.8% were obtained in vegetable, fruit, and cereal, with a relative standard deviation of less than 4.2%. The method is simple, rapid, and convenient and shows good application prospects in the determination of pesticides in a variety of food samples.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Xiaojiao Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, Shanxi,, 030031, China.
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
26
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
27
|
Svigelj R, Zanette F, Toniolo R. Electrochemical Evaluation of Tyrosinase Enzymatic Activity in Deep Eutectic Solvent and Aqueous Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:3915. [PMID: 37112256 PMCID: PMC10143261 DOI: 10.3390/s23083915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The use of green, inexpensive, and biodegradable deep eutectic solvents as nonaqueous solvents and electrolytes could be a useful way to potentially improve the enzyme biosensor performance as well as a profitable strategy to extend their use in the gas phase. However, enzyme activity in these media, although fundamental for their implementation in electrochemical analysis, is still almost unexplored. In this study, an electrochemical approach was employed to monitor tyrosinase enzyme activity in a deep eutectic solvent. This study was performed in a DES consisting of choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and glycerol as a hydrogen bond donor (HBD), while phenol was chosen as the prototype analyte. The tyrosinase enzyme was immobilized on a gold-nanoparticle-modified screen-printed carbon electrode, and its activity was monitored following the reduction current of orthoquinone produced by the tyrosinase biocatalysis of phenol. This work represents a first step toward the realization of green electrochemical biosensors capable of operating in both nonaqueous and gaseous media for the chemical analysis of phenols.
Collapse
|
28
|
Wei D, Guo Y, Feng Y, Lu W, Zhang J, Lin M, Lan X, Liao Y, Lan P, Lan L. Synthesis, characterization, DFT studies, and adsorption properties of sulfonated starch synthesized in deep eutectic solvent. Int J Biol Macromol 2023; 238:124083. [PMID: 36934821 DOI: 10.1016/j.ijbiomac.2023.124083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
In this study, sulfonated starch (SS) was successfully synthesized using sulfamic acid as a sulfonating agent in a deep eutectic solvent (DES). Four-factor and three-level orthogonal experiments were conducted to determine the optimal preparation conditions, which were found to be a molar ratio of starch to urea of 1:20, a reaction temperature of 90 °C, a reaction time of 5 h, and a stirring speed of 200 rpm. The sulfonation reaction mechanism was extensively studied using various techniques, including Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, molecular weight, particle distribution, X-ray photoelectron spectroscopy, scanning electron microscopy, and DFT calculations. The results showed that the sulfonation reaction slightly damaged starch granules, occurred on the surface of starch granules, and on the O6 atoms of the glucose unit. SS exhibited a wide pH range of application (5-10), a fast adsorption rate (400 s to reach adsorption equilibrium), and a high adsorption capacity (118.3 mg/g) under optimal conditions. The adsorption process of SS for methylene blue followed the pseudo-first-order kinetic model and was consistent with the Langmuir model, which was endothermic and spontaneous. The adsorption process was attributed to hydrogen bonding and electrostatic interactions.
Collapse
Affiliation(s)
- Donglai Wei
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China
| | - Yingtao Guo
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China
| | - Yuxian Feng
- Department of Guangxi Industrial Research Institute of New Functional Materials Co., Ltd., Nanning 530022, PR China
| | - Wenqing Lu
- Department of Guangxi Gaoyuan Starch Co., Ltd, Nanning 530108, PR China
| | - Jintao Zhang
- Department of Guangxi Gaoyuan Starch Co., Ltd, Nanning 530108, PR China
| | - Minghao Lin
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China
| | - Xiongdiao Lan
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China
| | - Yexin Liao
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China
| | - Ping Lan
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China.
| | - Lihong Lan
- Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Nanning 530006, PR China.
| |
Collapse
|
29
|
Comparison of Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents for CO2 capture: Progress and Outlook. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
30
|
Ahmer MF, Ullah Q. Development and applications of deep eutectic solvents in different chromatographic techniques. JPC-J PLANAR CHROMAT 2023. [DOI: 10.1007/s00764-022-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
GO/ionic surfactant inspired photophysical modulation of rhodamine B in Reline with or without additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Aguilar N, Barros R, Antonio Tamayo-Ramos J, Martel S, Bol A, Atilhan M, Aparicio S. Carbon nanomaterials with Thymol + Menthol Type V natural deep eutectic solvent: From surface properties to nano-Venturi effect through nanopores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
A stability analysis of choline chloride: urea deep eutectic solvent using density functional theory. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Arab M, Beyzaei H, Aryan R. One‐Pot Synthesis of 3‐Amino‐1,2,4‐triazoles Using Choline Chloride‐Urea and Their Antibacterial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202203291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mostafa Arab
- Department of Chemistry University of Zabol Zabol 3rd km of Bonjar Road
| | - Hamid Beyzaei
- Department of Chemistry University of Zabol Zabol 3rd km of Bonjar Road
| | - Reza Aryan
- Department of Chemistry University of Zabol Zabol 3rd km of Bonjar Road
| |
Collapse
|
35
|
Ding M, Hou T, Niu H, Zhang N, Guan P, Hu X. Electrocatalytic oxidation of NADH at graphene-modified electrodes based on electropolymerized poly(thionine-methylene blue) films from nature deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Osman EO, Mahmoud AM, El-Mosallamy SS, El-Nassan HB. Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Liang X, Zhou Y, Brett CM. Electropolymerisation of brilliant cresyl blue and neutral red on carbon-nanotube modified electrodes in binary and ternary deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Zuliani I, Fattori A, Svigelj R, Dossi N, Grazioli C, Bontempelli G, Toniolo R. AMPEROMETRIC DETECTION OF ETHANOL VAPORS BY SCREEN PRINTED ELECTRODES MODIFIED BY PAPER CROWNS SOAKED WITH ROOM TEMPERATURE IONIC LIQUIDS. ELECTROANAL 2022. [DOI: 10.1002/elan.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Andruch V, Varfalvyová A, Halko R, Jatkowska N, Płotka-Wasylka J. Application of deep eutectic solvents in bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Synthesis of Green Deep Eutectic Solvents for Pretreatment Wheat Straw: Enhance the Solubility of Typical Lignocellulose. SUSTAINABILITY 2022. [DOI: 10.3390/su14020657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deep eutectic solvents (DESs), a novel and environmentally-friendly solvent, have high potential for biomass pretreatment due to its advantages of low cost, low toxicity, strong solubility, excellent selectivity and biocompatibility. Two types of DES (binary and ternary) were synthesized and characterized, and optimized ternary DES was selected to pretreat wheat straw for enhancement of the solubility of lignocellulose. Moreover, enzymatic hydrolysis was tested to verify the performance of pretreatment. In addition, the changes in surface morphology, structure and crystallinity of wheat straw pretreated by DES were analyzed to reveal the pretreatment mechanism. Experimental results indicated that viscosity exhibited little difference in different types of DESs, and a declining trend as the temperature increases in same DES. The ternary DES pretreatment efficiently enhanced the solubility of typical lignocellulose, with the optimal removal rate of lignin at approximately 69.46%. Furthermore, the total sugar concentration of the residue was about 5.1 times more than that of untreated wheat straw after the pretreated samples were hydrolyzed by the cellulase for 24 h, indicating that DES has the unique ability to selectively extract lignin and hemicellulose from wheat straw while retaining cellulose, and thus enhanced the solubility of lignocellulose. The scanning electron microscope (SEM) observation and X-ray diffraction (XRD) determination showed that the surface of wheat straw suffered from serious erosion and the crystallinity index of wheat straw increased after DES5 pretreatment. Therefore, DES cleaves the covalent bond between lignin and cellulose and hemicellulose, and reduces the intractability of lignin resulting in the lignin dissolution. It suggests that DES can be used as a promising and biocompatible pretreatment way for the cost-effective conversion of lignocellulose biomass into biofuels.
Collapse
|
41
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
42
|
Zhou Z, Li R, Li K, Zong K, Deng D. Efficient and reversible absorption of low pressure NH 3 by functional type V deep eutectic solvents based on phenol and hydroxypyridine. NEW J CHEM 2022. [DOI: 10.1039/d2nj04409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly efficient and reversible absorption of low pressure ammonia by phenol-hydroxypyridine deep eutectic solvents.
Collapse
Affiliation(s)
- Ziyue Zhou
- Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Renjiang Li
- Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ke Li
- Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kai Zong
- Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongshun Deng
- Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
43
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Anal Bioanal Chem 2021; 414:3341-3348. [PMID: 34617152 PMCID: PMC8494473 DOI: 10.1007/s00216-021-03653-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Paper has been widely employed as cheap material for the development of a great number of sensors such as pregnancy tests, strips to measure blood sugar, and COVID-19 rapid tests. The need for new low-cost analytical devices is growing, and consequently the use of these platforms will be extended to different assays, both for the final consumer and within laboratories. This work describes a paper-based electrochemical sensing platform that uses a paper disc conveniently modified with recognition molecules and a screen-printed carbon electrode (SPCE) to achieve the detection of gluten in a deep eutectic solvent (DES). This is the first method coupling a paper biosensor based on aptamers and antibodies with the DES ethaline. Ethaline proved to be an excellent extraction medium allowing the determination of very low gluten concentrations. The biosensor is appropriate for the determination of gluten with a limit of detection (LOD) of 0.2 mg L−1 of sample; it can detect gluten extracted in DES with a dynamic range between 0.2 and 20 mg L−1 and an intra-assay coefficient of 10.69%. This approach can be of great interest for highly gluten-sensitive people, who suffer from ingestion of gluten quantities well below the legal limit, which is 20 parts per million in foods labeled gluten-free and for which highly sensitive devices are essential.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| |
Collapse
|