1
|
Manousi N, Anthemidis A, Rosenberg E. Practicality evaluation of novel microextraction techniques for the determination of PFAS in food and water samples using the Blue Applicability Grade Index. Anal Chim Acta 2025; 1352:343864. [PMID: 40210266 DOI: 10.1016/j.aca.2025.343864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Due to their high stability, persistence, and non-degradability, per- and polyfluoroalkyl substances (PFAS) are considered to be "forever chemicals" that can be present in a wide range of samples. Towards the development of novel analytical strategies for the reduction of the environmental impact of the analytical scheme, a plethora of novel solid-phase microextraction and miniaturized extraction techniques have been proposed for the determination of PFAS. However, the evaluation of the applicability of these protocols in terms of their practicality is still scarce. RESULTS In this article, the Blue Analytical Grade Index (BAGI) was used to evaluate the practicality of the sorbent-based microextraction techniques that were developed during the last decade for PFAS. In total thirty-four protocols were evaluated, resulting in a minimum score of 50.0 and a maximum score of 77.5. SIGNIFICANCE These findings clearly indicate that there is significant room for improvement and there is still a need for the development of microextraction approaches with higher practicality. Moreover, with regards to the best-performing protocols, their greenness was also assessed using the AGREEprep metric to enable a more comprehensive comparison.
Collapse
Affiliation(s)
- Natalia Manousi
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria; Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
2
|
Pereira JRP, Rocha DC, Neng NR, Maurício P, Torres ME, Ahmad SM, Quintas A. Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices. Molecules 2024; 30:68. [PMID: 39795124 PMCID: PMC11722190 DOI: 10.3390/molecules30010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The present work reports the development, optimization, and validation, of a methodology to determine lidocaine, procaine, tetracaine, and benzocaine in urine matrices. Two extractive preconcentration techniques, solid-phase microextraction (SPME) LC Tips and bar adsorptive microextraction (BAμE), were studied and applied to the four target anesthetics, followed by gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that could affect microextraction and back-extraction were optimized using two different designs of experiments (Box-Behnken and full-factorial) to maximize extraction efficiency from aqueous media. Under optimized experimental conditions, the BAμE technique showed better performance than SPME LC Tips and was chosen for validation assays and urine sample analysis. In blank urine, the BAµE/GC-MS methodology revealed suitable sensitivity (LOD between 2 and 18 ng/mL), good linearity (r2 ≥ 0.9945) between 0.5 and 30.0 µg/mL and recovery yields of 30.3-97.9%. Good precision (%RSD ≤ 8.8%) and accuracy (bias % between -15.9 and 15.0%) values were achieved. The developed methodology was successfully applied to the target anesthetics analysis of volunteers' urine matrices and proved to be an environmentally friendly alternative to monitor trace levels of local anesthetics in complex matrices compared to other extraction techniques.
Collapse
Affiliation(s)
- Joana R. P. Pereira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniela C. Rocha
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| | - Nuno R. Neng
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo Maurício
- Oral Rehabilitation Department, CiiEM, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - M. Edite Torres
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| | - Samir M. Ahmad
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| |
Collapse
|
3
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Manousi N, Kabir Α, Furton KG, Zacharis CK. Ionic-liquid/Carbowax 20 M functionalized capsule phase microextraction platform for the extraction of phosphodiesterase-5 inhibitors from human serum and urine prior to their determination by LC-MS. J Chromatogr A 2024; 1730:465157. [PMID: 39025028 DOI: 10.1016/j.chroma.2024.465157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Capsule phase microextraction (CPME) is an efficient bioanalytical technique that streamlines the sample preparation by integrating the filtration and stirring mechanism directly into the device. A novel composite sorbent designed to be selective towards the target analytes consisting of mixed-mode sorbent chemistry synthesized by sol-gel technology is found promising and superior to the conventional C18 sorbents. Herein we describe the encapsulation of an ionic liquid (IL)/Carbowax 20M-functionalized sol-gel sorbent (sol-gel IL/Carbowax 20 M) in the lumen of porous polypropylene tubes for the capsule phase microextraction of three phosphodiesterase-5 inhibitors namely avanafil, sildenafil, and tadalafil in human serum and urine samples. The CPME device was characterized by Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FT-IR). The experimental parameters of CPME procedure (e.g. sample pH and ionic strength, extraction time, stirring rate, elution solvent and volume) were carefully optimized to achieve the highest possible extraction efficiency for the analytes. Method validation was conducted in terms of precision, linearity, accuracy, matrix effect, lower limits of quantification, and limits of detection (LOD). The method linearity was investigated in the range of 50-1000 ng mL-1 for all analytes while the precision was less than 11.8 % in all cases. For all analytes, the LOD values were 17 ng mL-1. The IL/CW 20M-functionalized microextraction capsules could be reused at least 25 times both for urine and serum samples. The green character and the applicability of the proposed method were evaluated using the ComplexGAPI and BAGI indexes. The optimized CPME protocol exhibited reduced consumption of organic solvent and generation of waste, cost-effectiveness, and simplicity. Finally, the proposed method was successfully applied to the analysis of sildenafil in human urine after administration of drug-containing formulation.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Αbuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Durgun E, Ulusoy Hİ, Narin İ. Sensitive, reliable and simultaneous determination of Fingolimod and Citalopram drug molecules used in multiple sclerosis treatment based on magnetic solid phase extraction and HPLC-PDA. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124071. [PMID: 38484675 DOI: 10.1016/j.jchromb.2024.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
An analytical methodology has been developed for trace amounts of Fingolimod (FIN) and Citalopram (CIT) drug molecules based on magnetic solid phase extraction (MSPE) and high performance liquid chromatographic determination with photodiode array detector (HPLC-DAD). Fingolimod is used in treatment of Multiple sclerosis (MS) disease and sometimes antidepressant drugs such as citalopram accompany to treatment. Both simultaneous analysis of these molecules and application of MSPE with a new adsorbent has been performed for first times. Fe3O4@L-Tyrosine magnetic particles has been synthetized and characterized as a new magnetic adsorbent. Experimental variables of MPSE were examined and optimized step by step such as pH, adsorption and desorption conditions, time effect, etc. Analytical parameters of the proposed method were studied and determined under optimized conditions according to international guidelines. HPLC analysis of FIN and CIT molecules was performed by isocratic elution of a mixture of 50 % Acetonitrile, 40 % pH:3 phosphate buffer and 10 % methanol with flow rate 1.0 mL min-1. The chosen wavelengths in PDA was determined as 238 nm for FIN and 213 nm for CIT. The limits of detection (LOD) for proposed method were 6.32 ng mL-1 for FIN and 6.85 ng mL-1 for CIT molecules. RSD % values were lower than 5.5 % in analysis of model solutions including 250 and 500 ng mL-1 of target molecules. Recovery values by means of synthetic urine and saliva samples were in the range of 95.7-105.4 % for both molecules.
Collapse
Affiliation(s)
- Esra Durgun
- Department of Analytical Chemistry, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - İbrahim Narin
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Ulusoy S, Ulusoy Hİ, Locatelli M, Kabir A. Titania-based fabric phase sorptive extraction approach for the determination of antiepileptic drugs, levetiracetam and lamotrigine in urine samples using high-performance liquid chromatography-photo diode array detection. J Chromatogr A 2024; 1719:464737. [PMID: 38387152 DOI: 10.1016/j.chroma.2024.464737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
A new fabric phase sorptive extraction (FPSE) based separation and enrichment method was developed for sensitive determination of two antiepileptic drug molecules, Levetiracetam (LEV) and Lamotrigine (LTG). The analysis of these drug molecules was performed with high-performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) after FPSE. HPLC analysis was carried out by using phenyl hexyl column, under isocratic conditions with the mobile phase composed of pH 3.0 buffer-acetonitrile (77:23 v: v). All parameters affecting the separation and enrichment process were studied and optimized step by step. The linear working range of the developed method was calculated in the range of 10.0-1000.0 ng mL-1 for both the drug molecules (LEV and LTG). The limits of detection of the method (LODs) were calculated as 2.72 and 3.64 ng mL-1, respectively. The relative standard deviation (%RSD) values of the developed method as an indicator of precision were varied between 4.0 and 7.3. The accuracy of the optimized FPSE method was determined by the recovery tests utilizing spiked samples and results were assessed in the range from 94.6 to 106.3%. This is the first application of sol-gel Titania polycaprolactone-polydimethylsiloxane-polycaprolactone (Ti-PCAP-PDMS-PCAP) based FPSE membrane in the determination of antiepileptic drug molecules.
Collapse
Affiliation(s)
- Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, Sivas 58140, Turkiye.
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| |
Collapse
|
7
|
Sánchez R, Sanahuja AB, Lauría LPM, Todolí JL, Jordá JMM. Evaluation of highly adsorptive Guefoams (multifunctional guest-containing foams) as a potential sorbent for determination of volatile organic compounds (VOCs) by means of thermal desorption. Mikrochim Acta 2024; 191:169. [PMID: 38421458 PMCID: PMC10904424 DOI: 10.1007/s00604-024-06249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The present work delves into the feasibility of employing a novel structured sorbent referred to as GFAD (Guefoam Adsorption Device) for the determination of volatile organic compounds (VOCs) in liquid samples. The chosen method has been static headspace sorptive extraction-thermal desorption gas chromatography mass spectrometry (HSSE-TD-GC-MS). The GFAD comprises an aluminum cellular material with a distinct replication structure and a solid guest phase consisting of activated carbon particles dispersed within the cavities of the cellular aluminum. The extensive specific surface area, robustness, and exceptional thermal conductivity of this pioneering material offer distinct advantages over commercially available polydimethylsiloxane-based Twister® devices. Therefore, the trapping efficiency for volatile organic compounds is enhanced, and it is possible to perform the analysis of concentrated samples. According to computational simulations, it has been demonstrated that GFAD has a high heat conductivity. As a result, the desorption efficiency is improved, and minimal temperature gradients are generated throughout the GFAD during the heating process. Besides, the energy consumption is significantly lowered, thus aligning with environmentally conscientious and sustainable analytical practices.The experimental results give a proof of the suitability of the GFAD for determining gaseous compounds in liquid samples through HSSE-TD-GC-MS. For volatile species, the new material provides higher peak areas and lower limits of detection than a commercially available Twister® device. Furthermore, the GFAD is reusable, its adsorbing properties remaining unchanged during, at least, 100 consecutive analyses. In addition, unlike to the Twister®, no intense siloxane peaks are observed in the chromatograms obtained with the GFAD. The feasibility of qualitative and semi-quantitative analysis with the new accessory has been demonstrated with both standards and a cereal bioethanol real sample.
Collapse
Affiliation(s)
- Raquel Sánchez
- Analytical Chemistry, Nutrition and Food Sciences Department, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Ana Beltrán Sanahuja
- Analytical Chemistry, Nutrition and Food Sciences Department, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | | | - José Luis Todolí
- Analytical Chemistry, Nutrition and Food Sciences Department, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
| | | |
Collapse
|
8
|
Trif C, Harpaz D, Eltzov E, Parcharoen Y, Pechyen C, Marks RS. Detection of Cannabinoids in Oral Fluid Specimens as the Preferred Biological Matrix for a Point-of-Care Biosensor Diagnostic Device. BIOSENSORS 2024; 14:126. [PMID: 38534233 DOI: 10.3390/bios14030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
An increasing number of countries have started to decriminalize or legalize the consumption of cannabis for recreational and medical purposes. The active ingredients in cannabis, termed cannabinoids, affect multiple functions in the human body, including coordination, motor skills, memory, response time to external stimuli, and even judgment. Cannabinoids are a unique class of terpeno-phenolic compounds, with 120 molecules discovered so far. There are certain situations when people under the influence of cannabis may be a risk to themselves or the public safety. Over the past two decades, there has been a growing research interest in detecting cannabinoids from various biological matrices. There is a need to develop a rapid, accurate, and reliable method of detecting cannabinoids in oral fluid as it can reveal the recent intake in comparison with urine specimens, which only show a history of consumption. Significant improvements are continuously made in the analytical formats of various technologies, mainly concerning improving their sensitivity, miniaturization, and making them more user-friendly. Additionally, sample collection and pretreatment have been extensively studied, and specific devices for collecting oral fluid specimens have been perfected to allow rapid and effective sample collection. This review presents the recent findings regarding the use of oral fluid specimens as the preferred biological matrix for cannabinoid detection in a point-of-care biosensor diagnostic device. A critical review is presented, discussing the findings from a collection of review and research articles, as well as publicly available data from companies that manufacture oral fluid screening devices. Firstly, the various conventional methods used to detect cannabinoids in biological matrices are presented. Secondly, the detection of cannabinoids using point-of-care biosensors is discussed, emphasizing oral fluid specimens. This review presents the current pressing technological challenges and highlights the gaps where new technological solutions can be implemented.
Collapse
Affiliation(s)
- Călin Trif
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dorin Harpaz
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Department of Postharvest Science of Fresh Fruit, Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science of Fresh Fruit, Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Yardnapar Parcharoen
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang 12120, Pathum Thani, Thailand
| | - Chiravoot Pechyen
- Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Klong Luang 12120, Pathum Thani, Thailand
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang 12120, Pathum Thani, Thailand
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Mansour FR, Abdallah IA, Bedair A, Hamed M. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem 2023; 55:187-212. [PMID: 37898879 DOI: 10.1080/10408347.2023.2269421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Flavonoids are plant-derived compounds that have several health benefits, including antioxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. Quercetin is a flavonoid that is widely present in various fruits, vegetables, and drinks. Accurate determination of quercetin in different samples is of great importance for its potential health benefits. This review, is an overview of sample preparation and determination methods for quercetin in diverse matrices. Previous research on sample preparation and determination methods for quercetin are summarized, highlighting the advantages and disadvantages of each method and providing insights into recent developments in quercetin sample treatment. Various analytical techniques are discussed including spectroscopic, chromatographic, electrophoretic, and electrochemical methods for the determination of quercetin and its derivatives in different samples. UV-Vis (Ultraviolet-visible) spectrophotometry is simple and inexpensive but lacks selectivity. Chromatographic techniques (HPLC, GC) offer selectivity and sensitivity, while electrophoretic and electrochemical methods provide high resolution and low detection limits, respectively. The aim of this review is to comprehensively explore the determination methods for quercetin and quercetin glycosides in diverse matrices, with emphasis on pharmaceutical and biological samples. The review also provides a theoretical basis for method development and application for the analysis of quercetin and quercetin glycosides in real samples.
Collapse
Affiliation(s)
- Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Mahmoud Hamed
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| |
Collapse
|
10
|
Abdelhameed RM, Hammad SF, Abdallah IA, Bedair A, Locatelli M, Mansour FR. A hybrid microcrystalline cellulose/metal-organic framework for dispersive solid phase microextraction of selected pharmaceuticals: A proof-of-concept. J Pharm Biomed Anal 2023; 235:115609. [PMID: 37557067 DOI: 10.1016/j.jpba.2023.115609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Solid phase microextraction (SPME) is considered simple, ecofriendly, sustainable, cost-effective and timesaving sample preparation mode in comparison with other sample preparation procedures. The researchers always try to develop new sorbents with higher surface area in comparison with other conventional sorbents aiming to enhance the extraction efficiency. In this work for the first time, a comparative study was performed between Ca-BTC MOF (1,3,5-benzenetricarboxylic acid, BTC; metal-organic framework, MOF) and a hybrid Ca-BTC-MCC MOF (microcrystalline cellulose, MCC) by using as model compounds seven drugs with different physicochemical properties. The evaluation of the extraction efficiency of both sorbents were obtained by means of an HPLC/DAD instrument configuration in reversed phase mode under isocratic elution mode. The results indicate that Ca-BTC MOF showed superior extraction efficiency than Ca-BTC-MCC MOF in the case of all analytes except nirmatrelvir and ritonavir. The results highlight that not only the surface area of adsorbents controlled the adsorption capacity, but also other factors have a role in extraction efficiency including morphology of adsorbent and physico-chemical properties of the analytes. It is worth mentioning that this is the first time that a comparative study was performed between Ca-BTC MOF and Ca-BTC-MCC MOF hybrid material.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza 12622, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| |
Collapse
|
11
|
Kechagia A, Manousi N, Kabir A, Furton KG, Zacharis CK. Fabricating a designer capsule phase microextraction platform based on sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent for the extraction of lipid-lowering drugs from human urine samples. Mikrochim Acta 2023; 190:428. [PMID: 37796344 PMCID: PMC10556171 DOI: 10.1007/s00604-023-05998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
A sol-gel Carbowax 20 M/3-[(3-Cholamidopropyl) dimethyl ammonio]-1-propanesulfonate composite sorbent-based capsule phase microextraction device has been fabricated and characterized for the determination of four statins (pravastatin, rosuvastatin, pitavastatin, and atorvastatin) in human urine. The presence of ionizable carboxyl functional groups in statins requires pH adjustment of the sample matrix to ensure that the target molecules are in their protonated form (pH should be 2 units below their pKa values) which not only is cumbersome but also risks unintended contamination of the sample. This challenge was addressed by introducing zwitterionic ionic liquid in addition to neutral, polar Carbowax 20 M polymer in the sol-gel-derived composite sorbent. As such, the composite zwitterionic multi-modal sorbent can simultaneously extract neutral, cationic, and anionic species. This particular attribute of the composite sorbent eliminates the necessity of the matrix pH adjustment and consequently simplifies the overall sample preparation workflow. Various experimental parameters such as the sample amount, extraction time, salt addition, stirring rate, and elution solvent type that may affect the extraction performance of the statins were investigated using a central composite design and the one-parameter-at-a-time approach. The analytes and the internal standard were separated on a C18 column with gradient elution using phosphate buffer (20 mM, pH 3) and acetonitrile as mobile phase. The analytes were detected at 237 nm. The method was validated, and linearity was observed in the range 0.10-2.0 μg mL-1 for all compounds. The method precision was better 9.9% and 10.4% for intra-day and inter-day, respectively, while the relative recoveries were acceptable, ranging between 83.4 and 116% in all cases. Method greenness was assessed using the ComplexGAPI index. Finally, the method's applicability was demonstrated in the determination of the statins in authentic human urine after oral administration of pitavastatin and rosuvastatin-containing tablets.
Collapse
Affiliation(s)
- Argyroula Kechagia
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA.
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
12
|
Géhin C, O'Neill N, Moore A, Harrison M, Holman SW, Blom G. Dispersant-First Dispersive Liquid-Liquid Microextraction (DF-DLLME), a Novel Sample Preparation Procedure for NDMA Determination in Metformin Products. J Pharm Sci 2023; 112:2453-2462. [PMID: 37031864 DOI: 10.1016/j.xphs.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Since December 2019, global batch recalls of metformin pharmaceutical products have highlighted an urgent need to control N-nitrosodimethylamine (NDMA) contamination to demonstrate patient safety and maintain supply of this essential medicine. Due to their formulation, the metformin extended-release products present difficult analytical challenges for conventional sample preparation procedures, such as artefactual (in-situ) NDMA formation, gelling, and precipitation. To overcome these challenges, a new version of dispersive liquid-liquid microextraction (DLLME) termed dispersant-first DLLME (DF-DLLME) was developed and optimized for the analysis of NDMA in metformin extended-release products using a detailed Design of Experiments (DoE) to optimize sample preparation. Gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) combined with automated DF-DLLME were successfully applied to monitor the NDMA levels of two different metformin extended-release AstraZeneca products to ultra-trace levels (parts per billion). The additional benefits associated with DF-DLLME, which include automation, time/costs saving, and greener sample preparation, make this novel technique easier to transfer from a development to Quality Control (QC) environment. In addition, this also offers an attractive candidate for the wider platform analysis of N-nitrosamines in pharmaceutical drug products.
Collapse
Affiliation(s)
- Caroline Géhin
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Nicholas O'Neill
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Amy Moore
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Mark Harrison
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Stephen W Holman
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Giorgio Blom
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom.
| |
Collapse
|
13
|
Ulusoy HI, Polat U, Ulusoy S. Use of newly synthetized magnetic Fe 3O 4 nanoparticles modified with hexadecyl trimethyl ammonium bromide for the sensitive analysis of antidepressant drugs, duloxetine and vilazodone in wastewater and urine samples. RSC Adv 2023; 13:20125-20134. [PMID: 37416904 PMCID: PMC10321226 DOI: 10.1039/d3ra02442c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023] Open
Abstract
A new enrichment and determination method involving HPLC-DAD analysis following magnetic solid-phase extraction (MSPE) was developed to detect trace amounts of two antidepressant drugs, namely, duloxetine (DUL) and vilazodone (VIL). In this study, a solid-phase sorbent was newly synthesized for use in the MSPE and its characterization was carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. In this proposed method, DUL and VIL molecules were enriched using newly synthesized magnetic-based nanoparticles in the presence of pH 10.0 buffer and desorbed with acetonitrile to a smaller volume prior to chromatographic determinations. After experimental variables were optimized, the VIL and DUL molecules were analyzed at wavelengths of 228 nm for DUL and 238 nm for VIL with isocratic elution of methanol, trifluoroacetic acid (TFA) (0.1%), and acetonitrile (10 : 60 : 30). The detection limits obtained under optimized conditions were 1.48 ng mL-1 and 1.43 ng mL-1, respectively. The %RSD values were found to be lower than 3.50% with model solutions containing 100 ng mL-1 (N:5). Finally, the developed method was successfully applied to wastewater samples and simulated urine samples, and quantitative results were obtained in the recovery experiments.
Collapse
Affiliation(s)
- Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University Sivas 58140 Türkiye +90 346 219 16 34 +90 346 487 3905
| | - Ummugulsum Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University Sivas 58140 Türkiye +90 346 219 16 34 +90 346 487 3905
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Cumhuriyet University Sivas 58140 Türkiye
| |
Collapse
|
14
|
Zhou J, Lin X, Zhao L, Huang K, Yang Q, Yu H, Xiong X. Headspace single drop microextraction based visual colorimetry for highly sensitive, selective and matrix interference-resistant determination of sulfur dioxide in food samples. Food Chem 2023; 426:136659. [PMID: 37356248 DOI: 10.1016/j.foodchem.2023.136659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Excessive intake of SO2, a widely-used food additive, is able to cause respiratory, cardiovascular and neurological disease. For effectively monitoring SO2 level, we have developed a headspace single drop microextraction based visual colorimetry for highly sensitive and selective sensing of SO2 with TMB (3,3',5,5'-tetramethylbenzidine) as a classic chromogenic reagent. A combination of single drop and headspace microextraction integrated merits of high extraction efficiency, low consumption of reagents and excellent matrix interference-resistant ability. The colorimetric principle was based on oxidation of TMB, and SO2 could compete with TMB to preferentially react with ·OH, resulting in the fading of color blue that could be easily read out by naked eye. LOD was calculated to be 0.53 μM and 5 μM by UV-vis and naked eye, respectively. The method was successfully utilized to analysis of food samples, and the experimental device was miniaturized and easy to construct, thus showing a promising potential in field analysis.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiaojie Lin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Li Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Qing Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Huimin Yu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
15
|
Lab-in-syringe automated protein precipitation and salting-out homogenous liquid-liquid extraction coupled online to UHPLC-MS/MS for the determination of beta-blockers in serum. Anal Chim Acta 2023; 1251:340966. [PMID: 36925276 DOI: 10.1016/j.aca.2023.340966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
A sample preparation method involving tandem implementation of protein precipitation and salting-out homogenous liquid-liquid extraction was developed for the determination of beta-blockers in serum. The entire procedure was automated using a computer-controlled syringe pump following the Lab-In-Syringe approach. It is based on the denaturation of serum proteins with acetonitrile followed by salt-induced phase separation upon which the proteins accumulate as a compact layer at the interphase of the solutions. The extract is then separated and diluted in-syringe before being submitted to online coupled UHPLC-MS/MS. A 1 mL glass syringe containing a small stir bar for solution mixing at up to 3000 rpm, was used to deal with sample volumes as small as 100 μL. A sample throughput of 7 h-1 was achieved by performing the chromatographic run and sample preparation procedure in parallel. Linear working ranges were obtained for all analytes between 5 and 100 ng mL-1, with LOD values ranging from 0.4 to 1.5 ng mL-1. Accuracy values in the range of 88.2-106% and high precision of <11% RSD suggest applicability for routine analysis that can be further improved using deuterated standards.
Collapse
|
16
|
C.O.L. Martins F, Melchert WR. Environmentally friendly and novel solid-liquid phase microextraction of maneb fungicide in fruits and vegetables. Food Res Int 2023; 169:112800. [DOI: 10.1016/j.foodres.2023.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
|
17
|
Samanidou V, Kabir A. Novel Sorptive Sample Preparation Techniques for Separation Science. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.zq5279u1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The primary analytical challenge is to selectively extract the target analytes using a suitable sample preparation technique and introduce them into the downstream analytical instrument. The critical step in the chemical analysis is sample preparation. Sorptive sample preparation techniques are among the new generation of microextraction approaches, and are compliant with green analytical chemistry principles. A recent intercontinental collaboration between two academic research laboratories—the Aristotle University of Thessaloniki, Greece, and the Florida International University, USA—has yielded a significant number of analytical/bioanalytical methods using fabric phase sorptive extraction (FPSE), magnet integrated fabric phase sorptive extraction (MI-FPSE), and capsule phase microextraction (CPME) for the isolation of various analytes from different complex sample matrices. A brief description of these techniques with regards to principle, synthesis, applications, and advantages and disadvantages along with paradigms is presented.
Collapse
|
18
|
Akyol E, Ulusoy Hİ, Yilmaz E, Polat Ü, Soylak M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol Rep 2023; 75:456-464. [PMID: 36840823 DOI: 10.1007/s43440-023-00465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The analysis of drug active molecules and residues in the treatment of cancer is important for the sustainability of human life and therapeutic effects. For this purpose, a new magnetic sorbent was developed to use in solid phase extraction prior to conventional high-performance liquid chromatography (HPLC) analysis of Paclitaxel (PAC) and Gemcitabine (GEM) molecules. METHODS In this study, a separation and pre-concentration approach based on magnetic solid phase extraction (MSPE) was proposed for PAC and GEM by means of using a newly synthesized magnetic sorbent. After the MSPE procedure, an HPLC system with a diode array detector (DAD) was used to analyze trace amounts of PAC and GEM anticarcinogenic drugs in urine samples. Surface modification of magnetic Fe3O4 nanoparticles was carried out by diaminobenzidinetetrachloro hydrate (DABTC) for the first time and a useful sorbent was obtained for MSPE experiments. RESULTS In the proposed method, PAC and GEM molecules were retained on the c in the presence of a pH 5.0 medium and desorbed to 300 μL of acetonitrile: methyl alcohol (1:1) eluent phase before HPLC-DAD analysis. Under the optimized conditions, the limit of detection (LOD) values for PAC and GEM were 1.38 and 1.44 ng mL-1 while the enhancement factor for PAC and GEM were 139.5 and 145.3, respectively. The relative standard deviations (RSD %) for PAC and GEM were below 3.50% in inter-day repeated experiments by means of model solutions containing 100 ng mL-1 drug active ingredients. CONCLUSIONS Synthesis and characterization of DABTC-Fe3O4 nanoparticles were performed using suitable methodologies. Optimization of MSPE was done step by step. And finally, the developed method was successfully applied to urine samples with quantitative recoveries in the range of 99.0% and 105.0%.
Collapse
Affiliation(s)
- Emin Akyol
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Application and Research Center, Ernam Erciyes University, Kayseri, Turkey
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Ghani M, Jafari Z, Maleki B, Chamani M. Magnetic solid-phase extraction of warfarin and gemfibrozil in biological samples using polydopamine-coated magnetic nanoparticles via core-shell nanostructure. J Sep Sci 2023; 46:e2200745. [PMID: 36333922 DOI: 10.1002/jssc.202200745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Herein, polydopamine-coated Fe3 O4 spheres were synthesized using a very simple, easy, cost-effective, efficient, and fast method. First, magnetic nanoparticles (Fe3 O4 ) were synthesized and were followed by accommodating polydopamine on the surface of the prepared Fe3 O4 . The prepared polydopamine-coated Fe3 O4 spheres were utilized as a sorbent in magnetic solid phase extraction of gemfibrozil and warfarin (as the model analytes). The extracted model analytes were desorbed by a suitable organic solvent and were analyzed by high-performance liquid chromatography. Under optimized condition, the linearity of the method was in the range of 0.1-200.0 μg/L for the selected analytes in water. The limits of detection were calculated to be in the range of 0.026-0.055 μg/L for warfarin and gemfibrozil, respectively. The limits of quantification were calculated to be in the range of 0.089-0.185 μg/L. The inter-day and intra-day relative standard deviations were determined to be in the range of 1.4%-3.3% in three concentrations in order to calculate the method precision. Furthermore, the enrichment factors were found to be 78 and 81 for warfarin and gemfibrozil, respectively. Moreover, the calculated absolute recoveries were between 78% and 81%. The obtained recoveries indicated that the method was useful and applicable in complicated real samples.
Collapse
Affiliation(s)
- Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Maryam Chamani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
20
|
Magnet Integrated Fabric Phase Sorptive Extraction (MI-FPSE): A Powerful Green(er) Alternative for Sample Preparation. ANALYTICA 2022. [DOI: 10.3390/analytica3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Green(er) sample preparation technologies still dominate as the anticipated improvement in all analytical protocols. Separation scientists all over the world continuously strive to comply with the Green Analytical Chemistry (GAC) demands. To follow this trend, microextraction techniques are constantly evolving to bridge the gap between Green Analytical Chemistry and sample pretreatment. A research group from Florida International University, Miami, Florida has introduced fabric phase sorptive extraction (FPSE) in 2014 that was considered as a new milestone in microextraction technologies at that time. Two years later, the same research group introduced an advantageous innovative configuration that combines the stirring and extraction mechanism into a single sample preparation device, keeping all the benefits originally offered by classical FPSE. Magnet integrated fabric phase sorptive extraction (MI-FPSE) was eventually introduced as a new, advantageous implementation of FPSE. This device exhibits the advantageous role of the increase in extraction kinetics through sample diffusion, resulting in improved extraction efficiency of the microextraction device and supports the need for combining processes for better promotion and implementation of the principles of Green Analytical Chemistry. The applications of MI-FPSE are presented herein, showing the essential role that this technique can play in analytical and bioanalytical sample preparation.
Collapse
|
21
|
Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. ANALYTICA 2022. [DOI: 10.3390/analytica3030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, the challenges that analytical chemistry has to face are ever greater and more complex both from the point of view of the selectivity of analytical methods and their sensitivity. This is especially true in quantitative analysis, where various methods must include the development and validation of new materials, strategies, and procedures to meet the growing need for rapid, sensitive, selective, and green methods. In this context, given the International Guidelines, which over time, are updated and which set up increasingly stringent “limits”, constant innovation is required both in the pre-treatment procedures and in the instrumental configurations to obtain reliable, accurate, and reproducible information. In addition, the environmental field certainly represents the greatest challenge, as analytes are often present at trace and ultra-trace levels. These samples containing analytes at ultra-low concentration levels, therefore, require very labor-intensive sample preparation procedures and involve the high consumption of organic solvents that may not be considered “green”. In the literature, in recent years, there has been a strong development of increasingly high-performing sample preparation techniques, often “solvent-free”, as well as the development of hyphenated instrumental configurations that allow for reaching previously unimaginable levels of sensitivity. This review aims to provide an update of the most recent developments currently in use in sample pre-treatment and instrument configurations in the environmental field, also evaluating the role and future developments of analytical chemistry in light of upcoming challenges and new goals yet to be achieved.
Collapse
|
22
|
Al-Ali A, Waheed W, Abu-Nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. J Chromatogr A 2022; 1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
|
23
|
Jalili V, Ghanbari Kakavandi M, Ghiasvand A, Barkhordari A. Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Merone G, Tartaglia A, Rossi S, Santavenere F, Bassotti E, D'Ovidio C, Rosato E, de Grazia U, Locatelli M, Boccio PD, Savini F. Fast LC–MS/MS screening method for the evaluation of drugs, illicit drugs, and other compounds in biological matrices. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
25
|
Zatrochová S, Martínez-Pérez-Cejuela H, Catalá-Icardo M, Simó-Alfonso EF, Lhotská I, Šatínský D, Herrero-Martínez JM. Development of hybrid monoliths incorporating metal–organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Mikrochim Acta 2022; 189:92. [PMID: 35132465 PMCID: PMC8821068 DOI: 10.1007/s00604-022-05208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
A novel coating based on hybrid monolith with metal–organic framework (MOF) onto conventional Teflon-coated magnetic stir bars was developed. For this purpose, the external surface of the Teflon stir bar was firstly vinylized in order to immobilize a glycidyl methacrylate (GMA)–based polymer onto the magnet. Then, an amino-modified MOF of type MIL-101 (NH2-MIL-101(Al)) was covalently attached to the GMA-based monolith. After the synthesis process, several parameters affecting extraction of target estrogens by stir bar sorptive extraction (SBSE) including pH, ionic strength, extraction time, stirring rate, desorption solvent, and desorption time were also investigated. The resulting hybrid monolith was evaluated as SBSE sorbent for extraction of three estrogens (estrone, 17β-estradiol, estriol) and synthetic 17β-ethinylestradiol from water and human urine samples followed by HPLC with fluorescence detection (excitation and emission wavelengths, 280 and 310 nm, respectively). Under the optimal experimental conditions, the analytical figures of the method were established, achieving satisfactory limits of detection in the range of 0.015–0.58 µg L−1, recovery results ranging from 70 to 95% with RSD less than 6%, and precision values (intra- and inter-extraction units) below 6%.
Collapse
|
26
|
Mohamed HM. Solventless Microextration Techniques for Pharmaceutical Analysis: The Greener Solution. Front Chem 2022; 9:785830. [PMID: 35096766 PMCID: PMC8792605 DOI: 10.3389/fchem.2021.785830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive efforts have been made in the last decades to simplify the holistic sample preparation process. The idea of maximizing the extraction efficiency along with the reduction of extraction time, minimization/elimination of hazardous solvents, and miniaturization of the extraction device, eliminating sample pre- and posttreatment steps and reducing the sample volume requirement is always the goal for an analyst as it ensures the method’s congruency with the green analytical chemistry (GAC) principles and steps toward sustainability. In this context, the microextraction techniques such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), fabric phase sorptive extraction (FPSE), in-tube extraction dynamic headspace (ITEX-DHS), and PAL SPME Arrow are being very active areas of research. To help transition into wider applications, the new solventless microextraction techniques have to be commercialized, automated, and validated, and their operating principles to be anchored to theory. In this work, the benefits and drawbacks of the advanced microextraction techniques will be discussed and compared, together with their applicability to the analysis of pharmaceuticals in different matrices.
Collapse
|
27
|
Manousi N, Kabir A, Furton KG, Samanidou VF, Zacharis CK. Exploiting the capsule phase microextraction features in bioanalysis: Extraction of ibuprofen from urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Kalogiouri NP, Kabir A, Olayanju B, Furton KG, Samanidou VF. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J Chromatogr A 2021; 1664:462785. [PMID: 34992043 DOI: 10.1016/j.chroma.2021.462785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Α novel, green, and facile fabric phase sorptive extraction (FPSE) prior to high pressure liquid chromatography with diode array detection (HPLC-DAD) methodology was developed for the efficient extraction and quantitative determination of tocopherols (α-, sum of (β+γ), and δ-) in edible oils. Among several highly hydrophobic FPSE membranes, sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated polyester FPSE membrane was found as the most efficient in extracting tocopherol homologues from edible oil samples. To maximize the extraction efficiency of FPSE membrane, major parameters of FPSE including the membrane size, sample loading time, the choice of the appropriate elution solvent and the elution solvent volume, desorption time, and the influence of stirring were systematically optimized. The developed FPSE-HPLC-DAD methodology was validated and presented adequately low limits of detection (LODs) and limits of quantification (LOQs) over the ranges 0.05-0.10 μg/g, and 0.17-0.33 μg/g, respectively. The RSD% of the within-day and between-day assays were lower than 1.3, and 11.8, respectively, demonstrating good method precision. The trueness of the method was assessed by means of relative percentage of recovery and ranged between 90.8 and 95.1% for within-day assay, and between 88.7-92.8% for between-day assay. The developed methodology was applied in the analysis of edible oils.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka-1207, Bangladesh
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
29
|
Gazioglu I, Evrim Kepekci Tekkeli S, Tartaglia A, Aslan C, Locatelli M, Kabir A. Simultaneous determination of febuxostat and montelukast in human plasma using fabric phase sorptive extraction and high performance liquid chromatography-fluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123070. [PMID: 34920289 DOI: 10.1016/j.jchromb.2021.123070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
In the present work, a new sensitive and selective high-performance liquid chromatography-fluorimetric detection (HPLC-FLD) method was developed and validated to quantify febuxostat (FBX) and montelukast (MON) in human plasma. The developed procedure was successfully applied to a study aimed at evaluating the pharmacokinetic profiles of febuxostat and montelukast in human plasma. A sol-gel poly (caprolactone)-block-poly(dimethylsiloxane)-block-poly(caprolactone) (sol-gel PCAP-PDMS-PCAP) extraction sorbent coated fabric phase sorptive extraction membrane was used in the extraction process. The entire chromatographic analysis was performed with isocratic elution of the composition of the mobile phase (acetonitrile:water, 60:40, v:v, 0.032% glacial acetic acid) on the C18 column. The flow rate is varied during the analysis, particularly from 0.5 mL min-1 at the start and linearly increased to 1.5 mL min-1 in 7 min. The detection and quantification of the analytes was carried out by means of a fluorimetric detector at 320 nm and 350 nm as absorption wavelengths and at 380 and 400 nm as emission wavelengths for FBX and MON, respectively. The calibration curves demonstrated linearity in the range 0.3-10 ng mL-1 and 5-100 ng mL-1 for FBX and MON, respectively, while the LOD and LOQ values were 0.1 and 0.3 ng mL-1 for FBX and 1.5 and 5 ng mL-1 for MON. Intraday and interday RSD% values were found lower than 5.79%. As reported, the method was applied to real plasma samples obtained from a volunteer who was co-administered both the drugs. Pharmacokinetic data reveal that the concentration of both the drugs reaches the plateau approximately at the same time, but exhibits an elimination phase at different rates. This study demonstrated the usefulness of the new method and its applicability in therapeutic drug monitoring (TDM).
Collapse
Affiliation(s)
- Isil Gazioglu
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey.
| | - S Evrim Kepekci Tekkeli
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Ceylin Aslan
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| |
Collapse
|
30
|
|
31
|
Vejar-Vivar C, Bustamante L, Lucena R, Ortega C, Valenzuela M, Mardones C. Direct coupling of MEPS to ESI-QqTOF-MS for the simultaneous analysis of tricyclic antidepressants and benzodiazepines in postmortem blood. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Tartaglia A, Romasco T, D'Ovidio C, Rosato E, Ulusoy HI, Furton KG, Kabir A, Locatelli M. Determination of phenolic compounds in human saliva after oral administration of red wine by high performance liquid chromatography. J Pharm Biomed Anal 2021; 209:114486. [PMID: 34847459 DOI: 10.1016/j.jpba.2021.114486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
Red wine is a relevant source of bioactive compounds, which contribute to its antioxidant activity and other beneficial advantages for human health. However, the bioavailability of phenols in humans is not well understood, and the inter-individual variability in the production of phenolic compounds has not been comprehensively assessed to date. The present work describes a new method for the extraction and analysis of phenolic compounds including gallic acid (Gal), vanillic acid (Van), caffeic acid (Caf), syringic acid (Sir); (-)-epicatechin (Epi); p-coumaric acid (Cum) and resveratrol (Rsv) in human saliva samples. The target analytes were extracted using Fabric Phase Sorptive Extraction (FPSE), and subsequently analysed by high-performance liquid chromatography (HPLC) coupled with photodiode array detector (PDA). Chromatographic separation was achieved using a Symmetry C18 RP column in gradient elution mode, with methanol and phosphate buffer as the mobile phases. The linearity (intercept, slope, and determination coefficient) was evaluated in the range from 1 to 50 µg/mL. The limit of quantification (LOQ) was 1 µg/mL (LLOQ ≥0.8 µg/mL), whereas limit of detection was 0.25 µg/mL. The intra and inter-day RSD% and BIAS% values were less than± 15%. The analytical performances were further tested on human saliva collected from healthy volunteers after administering red wine. To the best of our knowledge, this is the first FPSE procedure for the analysis of phenols in saliva, using a non-invasive and easy to perform sample collection protocol. The proposed fast and inexpensive approach can be deployed as a reliable tool to study other biological matrices to proliferate understanding of these compounds distribution in human body.
Collapse
Affiliation(s)
- A Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - T Romasco
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - C D'Ovidio
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - E Rosato
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - H I Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas 58140, Turkey
| | - K G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - A Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - M Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy.
| |
Collapse
|
33
|
Maroubo LA, Pedrina G, Melchert WR. Total sulfonamides determination in bovine milk using smartphone-based digital images. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Application of cloud point extraction for residues of chloramphenicol and amoxicillin in milk samples by HPLC–DAD. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03889-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
A comprehensive review on microextraction techniques for sampling and analysis of fuel ether oxygenates in different matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Vuran B, Ulusoy HI, Sarp G, Yilmaz E, Morgül U, Kabir A, Tartaglia A, Locatelli M, Soylak M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021; 230:122307. [PMID: 33934773 DOI: 10.1016/j.talanta.2021.122307] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
A magnetic solid phase extraction (MSPE) coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) methodology was developed for the determination of chloramphenicol (CP) and tetracycline (TET) antibiotic residues in milk samples. As a solid phase sorbent, C-nanofiber coated magnetic nanoparticles were synthesized and extensively characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Raman Spectroscopy and X-ray Powder Diffraction (XRD) analysis. Experimental variables of MSPE method for both antibiotic analytes were investigated and optimized systematically. After MSPE, the linear range for both the analytes (r2 > 0.9954) were obtained in a range 10.0-600.0 ng mL-1. The limit of detections (LODs) for CP and TET were 3.02 and 3.52 ng mL-1, respectively while RSDs % were below than 4.0%. Finally, the developed method based on MPSE-HPLC-DAD was applied to real milk samples to quantify the antibiotic residues. Recovery values for each antibiotic compound were found in the range of 94.6-105.4% (n = 3) by using spiked model solution.
Collapse
Affiliation(s)
- Busra Vuran
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
| | - Ummügülsüm Morgül
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| |
Collapse
|
37
|
Tinte MM, Chele KH, van der Hooft JJJ, Tugizimana F. Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview. Metabolites 2021; 11:445. [PMID: 34357339 PMCID: PMC8305945 DOI: 10.3390/metabo11070445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.
Collapse
Affiliation(s)
- Morena M. Tinte
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | - Kekeletso H. Chele
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | | | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
38
|
Song Y, Feng XS. Sample Preparation and Analytical Methods for Steroid Hormones in Environmental and Food Samples: An Update Since 2012. Crit Rev Anal Chem 2021; 53:69-87. [PMID: 34152888 DOI: 10.1080/10408347.2021.1936446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Steroid hormones (SHs) have been widely used over the past few decades as both human and veterinary drugs to prevent or treat infectious diseases and anti-inflammatory benefits in clinical. Unfortunately, their residues in foodstuffs and environmental samples can produce adverse effects on human and animal life such as disrupting the endocrine system. For these reasons, sensitive, simple and efficient methods have been developed for the determination of these compounds in various matrices. This critical review summarized the articles published in the period from 2012 to 2019 and can be used to help researchers to understand development of the sample pretreatment protocols and analytical methods used to detect SHs. The developed extraction and purification techniques used for steroids in different samples, such as cloud point extraction, solid phase extraction based on different novel materials, microextraction methods, QuEChERS and other methods are summarized and discussed. Analytical methods used to quantify these compounds, such as different chromatography methods, electrochemical methods, as well as other methods, are illustrated and compared. We focused on the latest advances in SHs pretreatment, and the application of new technologies in SHs analysis.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Kermani M, Jafari MT, Saraji M. Self-rotating stir mesh screen sorptive extraction for analyzing chlorpyrifos by ion mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2631-2644. [PMID: 34036984 DOI: 10.1039/d1ay00595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A mesh screen was electrochemically coated with polypyrrole and used as a sorptive extractor device, for the first time. This configuration acts in such a way that it is self-rotating in the presence of a magnetic force and can be used for extraction and concentration of analytes. Actually, applying a mesh screen instead of a bar or plate in sorptive extraction provided a more effective contact area between the sorptive materials and sample solution, resulting in higher sorption efficiency. The device performance was assessed by using chlorpyrifos pesticide as a model analyte. A thermal desorption unit was coupled to an ion mobility spectrometer and applied for evaporating the extracted analyte. Different parameters affecting the extraction efficiency during the electro-polymerization and the extraction process, including the time of electrodeposition, the concentration of pyrrole, oxalic acid and salt, temperature and time of extraction, and the stirring rate of the extractor device were investigated and optimized, simultaneously. The detection and quantification limits of the method were calculated to be 0.035 and 0.1 μg L-1, respectively. The linear dynamic range obtained was from 0.1 to 20 μg L-1, with a determination coefficient of 0.9984. The intra-day and inter-day-relative standard deviations (RSD, n = 3) were lower than 3% and 8%, respectively. Under the optimal conditions, the absolute recovery and the enrichment factor were found to be 97% and 5820, respectively. Finally, the relative recoveries of the proposed method were calculated to be in the range of 86-111% for spiked water, wastewater, and apple samples. The results obtained from the method were validated by EPA method 622.
Collapse
Affiliation(s)
- Mansoure Kermani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | | |
Collapse
|
40
|
Nuckowski Ł, Dzieszkowski K, Rafiński Z, Studzińska S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3146. [PMID: 34201146 PMCID: PMC8226603 DOI: 10.3390/ma14123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles coated with zwitterionic poly(ionic liquid)s were applied for dispersive solid-phase extraction of oligonucleotides. The materials were synthesized by miniemulsion copolymerization of ionic liquids and divinylbenzene on magnetic nanoparticles. The functional monomers contain a positively charged imidazolium ring and one of the anionic groups: derivatives of acetate, malonate, or butyl sulfonate ions. Adsorption of unmodified DNA oligonucleotide on obtained materials was possible in ion-exchange (IE) and hydrophilic interactions (HI) mode. The adsorption in IE was possible at low pH and was almost complete. The adsorption in HI mode required the usage of appropriate addition of organic solvent but did not provide full adsorption. Studies on the desorption of the analytes included determining the impact of ammonium acetate concentration and pH and organic solvents addition on the recovery. The material containing acetic fragments as an anionic group was selected for the final procedure with the use of 10 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v) as an elution solution. The magnetic dispersive solid-phase extraction procedure was tested for the oligonucleotides with various modifications and lengths. Moreover, it was applied to extract DNA oligonucleotide and its synthetic metabolites from enriched human plasma without any pre-purification, with recoveries greater than 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| |
Collapse
|
41
|
Merone GM, Tartaglia A, Rossi S, Santavenere F, Bassotti E, D'Ovidio C, Bonelli M, Rosato E, de Grazia U, Zanardo A, Locatelli M, Savini F. Fast liquid chromatography-tandem mass spectrometry method for the simultaneous determination of phytocannabinoids in oily based preparations. J Pharm Biomed Anal 2021; 203:114174. [PMID: 34062478 DOI: 10.1016/j.jpba.2021.114174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
The reported method aims to be a powerful aid for the simultaneous determination of tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), cannabigerol (CBG), tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), and tetrahydrocannabivarin (THCV) in oily based preparations. The chromatographic separation was carried out using an Hypersil Gold PFP (50 × 2.1 mm, 1.9 μm) column, using H2O + 2 mM ammonium formate + 0.2 % formic acid (M1) and Methanol + 2 mM ammonium formate + 0.2 % formic acid (M2) as mobile phases. The flow rate was set 0.4 mL/min. Specifically, this method was validated in terms of linearity, limit of detections and quantifications (LODs and LOQs), accuracy (precision and trueness, both intra and interday), selectivity, and matrix effects. This procedure allowed quantifying seven phytocannabinoids in less than 10 min. The validated method shows a good linearity within the range 0.25-1000 ng/mL, while precision and trueness (intra- and inter-day) were below <13.25 % and 7.59 %, respectively. Regarding the matrix effect, the method satisfies all the requirements, except for the THC and THCV, where it reaches about 120 %. This element does not affect the method performances as it has been observed that this value is constant and reproducible and therefore does not involve errors in the quantitative analysis. The method was tested and applied on more 70 different oily based preparations. Furthermore, starting from four different cannabis cultivar (FM2, Bedrolite, Bedrocan, and Bediol), it allowed to evaluate the reproducibility of the magistrali preparations. The real samples, in fact, derive from different local pharmacies, and were analyzed by the accredited UNI CEI EN ISO/IEC 17025:2018, Pharmatoxicology Laboratory (ACCREDIA, lab n. 2274 ASLPE, accreditation number 1822 L), accordingly to the current regulations.
Collapse
Affiliation(s)
- G M Merone
- Pharmatoxicology Laboratory - Hospital "Santo Spirito", Via Fonte Romana 8, Pescara, 65124, Italy
| | - A Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - S Rossi
- Pharmatoxicology Laboratory - Hospital "Santo Spirito", Via Fonte Romana 8, Pescara, 65124, Italy
| | - F Santavenere
- Pharmatoxicology Laboratory - Hospital "Santo Spirito", Via Fonte Romana 8, Pescara, 65124, Italy
| | - E Bassotti
- R&D Department Eureka Lab Division, Chiaravalle, Italy
| | - C D'Ovidio
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University of Chieti-Pescara "G. d'Annunzio", Chieti, 66100, Italy
| | - M Bonelli
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University of Chieti-Pescara "G. d'Annunzio", Chieti, 66100, Italy
| | - E Rosato
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - U de Grazia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Laboratory of Neurological Biochemistry and Neuropharmacology, Via Celoria 11, 20133, Milan, Italy
| | - A Zanardo
- Section of Pharmatoxicology - Regional Hospital "Ca' Foncello", Piazzale Ospedale 1, Treviso, 31100, Italy
| | - M Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy.
| | - F Savini
- Pharmatoxicology Laboratory - Hospital "Santo Spirito", Via Fonte Romana 8, Pescara, 65124, Italy
| |
Collapse
|
42
|
Oliveira MN, Gonçalves OC, Ahmad SM, Schneider JK, Krause LC, Neng NR, Caramão EB, Nogueira JMF. Application of Bar Adsorptive Microextraction for the Determination of Levels of Tricyclic Antidepressants in Urine Samples. Molecules 2021; 26:3101. [PMID: 34067333 PMCID: PMC8196885 DOI: 10.3390/molecules26113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
This work entailed the development, optimization, validation, and application of a novel analytical approach, using the bar adsorptive microextraction technique (BAμE), for the determination of the six most common tricyclic antidepressants (TCAs; amitriptyline, mianserin, trimipramine, imipramine, mirtazapine and dosulepin) in urine matrices. To achieve this goal, we employed, for the first time, new generation microextraction devices coated with convenient sorbent phases, polymers and novel activated carbons prepared from biomaterial waste, in combination with large-volume-injection gas chromatography-mass spectrometry operating in selected-ion monitoring mode (LVI-GC-MS(SIM)). Preliminary assays on sorbent coatings, showed that the polymeric phases present a much more effective performance, as the tested biosorbents exhibited low efficiency for application in microextraction techniques. By using BAμE coated with C18 polymer, under optimized experimental conditions, the detection limits achieved for the six TCAs ranged from 0.2 to 1.6 μg L-1 and, weighted linear regressions resulted in remarkable linearity (r2 > 0.9960) between 10.0 and 1000.0 μg L-1. The developed analytical methodology (BAμE(C18)/LVI-GC-MS(SIM)) provided suitable matrix effects (90.2-112.9%, RSD ≤ 13.9%), high recovery yields (92.3-111.5%, RSD ≤ 12.3%) and a remarkable overall process efficiency (ranging from 84.9% to 124.3%, RSD ≤ 13.9%). The developed and validated methodology was successfully applied for screening the six TCAs in real urine matrices. The proposed analytical methodology proved to be an eco-user-friendly approach to monitor trace levels of TCAs in complex urine matrices and an outstanding analytical alternative in comparison with other microextraction-based techniques.
Collapse
Affiliation(s)
- Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Forensic and Psychological Sciences Laboratory Egas Moniz, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Jaderson K. Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Laiza C. Krause
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Elina B. Caramão
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, 49032-490 Aracaju, Brazil
| | - José M. F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
43
|
Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods. Forensic Toxicol 2021. [DOI: 10.1007/s11419-021-00582-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Sarıkaya M, Ulusoy HI, Morgul U, Ulusoy S, Tartaglia A, Yılmaz E, Soylak M, Locatelli M, Kabir A. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J Chromatogr A 2021; 1648:462215. [PMID: 34000593 DOI: 10.1016/j.chroma.2021.462215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
A new analyte separation and preconcentration method for the trace determination of antidepressant drugs, Fluoxetine (FLU) and Citalopram (CIT) in urine and wastewaters, was developed based on HPLC-DAD analysis after magnetic solid phase extraction (MSPE). In the proposed method, FLU and CIT were retained on the newly synthetized magnetic sorbent (Fe3O4@PPy-GO) in the presence of buffer (pH 10.0) and then were desorbed into a lower volume of acetonitrile prior to the chromatographic determinations. Before HPLC analysis, all samples were filtered through a 0.45 µm PTFE filter. Experimental parameters such as interaction time, desorption solvent and volume, and pH were studied and optimized in order to establish the detection limit, linearity, enrichment factor and other analytical figures of merit under optimum operation conditions. In the developed method, FLU and CIT were analyzed by diode array detector at the corresponding maximum wavelengths of 227 and 238 nm, respectively, by using an isocratic elution of 60% pH 3.0 buffer, 30% acetonitrile, and 10% methanol. By using the optimum conditions, limit of detections for FLU and CIT were 1.58 and 1.43 ng mL-1, respectively, while the limit of quantifications was 4.82 and 4.71 ng mL-1, respectively. Relative standard deviations (RSD%) for triplicate analyses of model solutions containing 100 ng mL-1 target molecules were found to be less than 5.0 %. Finally, the method was successfully applied to urine (both simulated and real healthy human) and wastewater samples, and quantitative results were obtained in recovery experiments.
Collapse
Affiliation(s)
- Merve Sarıkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Ummugulsum Morgul
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, 58140, Sivas , Turkey
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, 38039, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
45
|
Tsalbouris A, Kalogiouri NP, Kabir A, Furton KG, Samanidou VF. Bisphenol A migration to alcoholic and non-alcoholic beverages – An improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Fate and distribution of benzotriazole UV filters and stabilizers in environmental compartments from Gran Canaria Island (Spain): A comparison study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144086. [PMID: 33280864 DOI: 10.1016/j.scitotenv.2020.144086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 05/25/2023]
Abstract
Tourism is an economic sector of great importance worldwide. In coastal areas, this activity is associated with the use of personal care products, such as ultraviolet (UV) filters and stabilizers. Therefore, assessing their presence and the exposure of living organisms to the impact of this kind of pollutant in such areas could be especially important. The Canary Islands (Spain) are considered an outermost region, and their main economic activity is based on tourism, both national and international. Thus, this area could be remarkably vulnerable to this kind of pollution, and its characterization could be useful to infer conclusions for other similar regions. With this aim, the occurrence of organic UV filters and stabilizers in different environmental matrices in Gran Canaria Island is presented in this work. Six benzotriazole compounds, UV-P, UV-326, UV-327, UV-328, UV-329 and UV-360, were found in wastewater, seawater, sludge, sediment, seaweed and fish samples. The numerous studies devoted to establishing the distribution of these target compounds in many different matrices on a touristic and particularly overcrowded island such as Gran Canaria can be used to understand the pollution situation in similar locations. The works in which determination procedures using different extraction techniques were optimized and validated for the analysis of liquid and solid samples are summarized. They are critically discussed regarding their characteristics and analytical parameters. This research is of interest to environmental managers specializing in the conservation of coastal areas where tourism is an important industry since the active components of UV filters and stabilizers can bioaccumulate and biomagnify in the trophic chain.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
47
|
Xu X, Feng X, Liu Z, Xue S, Zhang L. 3D flower-liked Fe 3O 4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs. Mikrochim Acta 2021; 188:52. [PMID: 33496871 DOI: 10.1007/s00604-021-04708-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
A low cost-effective and simple synthesis method was adopted to acquire three-dimensional flower-like structure Fe3O4/C that has large specific area, suitable pore structure and sufficient saturation magnetism. The obtained Fe3O4/C exhibits outstanding preconcentration ability and was applied to extracting non-steroidal anti-inflammatory drugs from complex environmental and biological samples. The parameters of magnetic solid-phase extraction were optimized by univariate and multivariate methods (Box-Behnken design). The high degree of linearity from 2.5 to 1000.0 ng mL-1 (R2 ≥ 0.9976), the limits of detection from 0.25 to 0.5 ng mL- 1 (S/N = 3), and the limits of quantitation from 1.0 to 2.0 ng mL- 1 (S/N = 10) were yielded by adopting this novel method after the optimization. Moreover, the recoveries of non-steroidal anti-inflammatory drugs from 89.6 to 107.0% were acquired in spiked plasma, urine and lake samples. In addition, the adsorption of non-steroidal anti-inflammatory drugs on Fe3O4/C was explored by adsorption isotherms and kinetic studies. Furthermore, the adsorption mechanism for non-steroidal anti-inflammatory drugs by Fe3O4/C was proposed, which was hydrogen bonding and π-π interaction between non-steroidal anti-inflammatory drugs and Fe3O4/C. Graphical abstract.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| | - Xue Feng
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Zhen Liu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Shan Xue
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
48
|
Kalogiouri NP, Pritsa A, Kabir A, Furton KG, Samanidou VF. A green molecular imprinted solid-phase extraction protocol for bisphenol A monitoring with HPLC-UV to guarantee the quality and safety of walnuts under different storage conditions. J Sep Sci 2021; 44:1633-1640. [PMID: 33448130 DOI: 10.1002/jssc.202001199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Monitoring the residual toxicant concentrations in foods is the key step for minimizing potential hazards. The huge interest about food contamination and exposure to endocrine disruptors such as bisphenol A has emerged the development of sensitive analytical methodologies to guarantee the safety and quality of foods. In this work, a green molecularly imprinted solid-phase extraction protocol coupled with high-performance liquid chromatography with UV detection was optimized following the principles of green analytical chemistry. An imprinted sol-gel silica-based hybrid inorganic-organic polymeric sorbent was used to monitor the leaching of bisphenol A from different packaging materials (glass vessels, cans, and polypropylene containers) in walnuts stored within a period of 6 months at 25 and 4°C. Extraction parameters including loading time (5-20 min), solvent type (acetonitrile, ethanol, methanol, acetone, acetonitrile:methanol, 50:50, v/v), and elution flow rate (0.2-1 mL/min) were optimized with one-factor-at-a-time method. The selected extraction optimum parameters incorporated elution with acetonitrile at 0.2 mL/min flow rate, for 10 min sample holding time. The imprinting factor was equal to 4.55 ± 0.26 (n = 3). The optimized method presented high recovery (94.3 ± 4.2%, n = 3), good linearity (>0.999), intra-assay repeatability (90.2-95.6%, n = 3), and interassay precision (86.7-93.1%, n = 3).
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Agathi Pritsa
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
49
|
Gazioglu I, Kabir A, Zengin OS, Kepekci Tekkeli E, Furton KG, Tartaglia A, Locatelli M. Development of sol-gel phenyl/methyl/poly (dimethylsiloxane) sorbent coating for fabric phase sorptive extraction and its application in monitoring human exposure to selected polycyclic aromatic hydrocarbons using high performance liquid chromatography-fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122520. [PMID: 33429126 DOI: 10.1016/j.jchromb.2020.122520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/17/2023]
Abstract
Following the convenient, yet very powerful pathway to create designer extraction sorbent using sol-gel chemistry, a novel sol-gel phenyl/methyl/poly(dimethylsiloxane) sorbent coating was created on polyester fabric substrate for fabric phase sorptive extraction (FPSE) and was subsequently applied to monitor human exposure to selected polycyclic aromatic hydrocarbons (PAHs) including pyrene, chrysene, and benzo[a]pyrene in plasma samples obtained from tobacco smoker volunteers using high performance liquid chromatography-fluorescence detector (HPLC-FLD). A rapid FPSE-HPLC-FLD method was developed that adequately resolved the PAHs chromatographically, after their successful extraction from human plasma using fabric phase absorption extraction (FPSE) and subsequently analysed in the liquid chromatographic system by means of an analytical column (InterSustain C-18 column 150 × 4.6 mm, 5 μm) using acetonitrile (ACN) and water as mobile phases in gradient elution mode. With the optimized conditions, the retention times were found to be 6.168, 7.214, and 10.404 min for pyrene, chrysene, and benzo[a]pyrene, respectively. The total chromatographic runtime was limited to 12.5 min. The method, validated through the calculation of all the analytical parameters according to the International Guidelines, was applied to the analysis of real samples collected from informed volunteers. The proposed approach which included the use of sol-gel phenyl/methyl/poly(dimethylsiloxane) immobilized on hydrophobic polyester substrate and C18 stationary phase used in HPLC, has shown a high potential as a rapid tool for future clinical, forensic and toxicological applications, also in the light of the LOD and LOQ values comparable to those normally obtainable with more sophisticated, and expensive instruments that often require highly trained personnel. The results reported here further consolidate the application of FPSE in the analysis of biological samples for both diagnostic and analytical-clinical purposes.
Collapse
Affiliation(s)
- Isil Gazioglu
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey.
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Ozge S Zengin
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey
| | - Evrim Kepekci Tekkeli
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, Fatih, 34093 Istanbul, Turkey
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Angela Tartaglia
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti, CH, Italy
| | - Marcello Locatelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti, CH, Italy
| |
Collapse
|
50
|
Carneiro AF, Carneiro CN, Gomez FJ, Spisso A, Silva MF, Minho LA, dos Santos WN, Dias FDS. Doehlert matrix for the optimization of ultrasound dispersive liquid–liquid microextraction of melatonin in Argentine and Brazilian wine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|