1
|
Oyovwi MO, Atere AD, Chimwuba P, Joseph UG. Implication of Pyrethroid Neurotoxicity for Human Health: A Lesson from Animal Models. Neurotox Res 2024; 43:1. [PMID: 39680194 DOI: 10.1007/s12640-024-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Pyrethroids, synthetic insecticides used in pest management, pose health risks, particularly neurotoxic effects, with studies linking exposure to a neurodegenerative disorder. This review examines the neurotoxic mechanisms of pyrethroids analyzing literature from animal model studies. It identifies critical targets for neurotoxicity, including ion channels, oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The review also discusses key therapeutic targets and signaling pathways relevant to Pyrethroids neurotoxicity management, including calcium, Wnt/β-catenin, mTOR, MAPK/Erk, PI3K/Akt, Nrf2, Nurr1, and PPARγ. Our findings demonstrate that pyrethroid exposure triggers multiple neurotoxic pathways that bear resemblance to the mechanisms underlying neurotoxicity. Oxidative stress and inflammation emerge as prominent factors that contribute to neuronal degeneration, alongside disrupted mitochondrial function. The investigation highlights the significance of ion channels as primary neurodegeneration targets while acknowledging the potential involvement of various other receptors and enzymes that may exacerbate neurological damage. Additionally, we elucidate how pyrethroids may interfere with therapeutic targets associated with neuronal dysfunction, potentially impairing treatment efficacy.Also, exposure to these chemicals can alter DNA methylation patterns and histone modifications, ultimately leading to changes in gene expression that may enhance susceptibility to neurological disorders. Pyrethroid neurotoxicity poses a significant public health risk, necessitating future research for protective strategies against pesticide-induced neurological disorders and understanding the interplay between neurodegenerative diseases, potentially leading to innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Paul Chimwuba
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
2
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
4
|
Rodríguez-Carrillo A, Verheyen VJ, Van Nuijs ALN, Fernández MF, Remy S. Brain-derived neurotrophic factor (BDNF): an effect biomarker of neurodevelopment in human biomonitoring programs. FRONTIERS IN TOXICOLOGY 2024; 5:1319788. [PMID: 38268968 PMCID: PMC10806109 DOI: 10.3389/ftox.2023.1319788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The present narrative review summarizes recent findings focusing on the role of brain-derived neurotrophic factor (BDNF) as a biomarker of effect for neurodevelopmental alterations during adolescence, based on health effects of exposure to environmental chemical pollutants. To this end, information was gathered from the PubMed database and the results obtained in the European project Human Biomonitoring for Europe (HBM4EU), in which BDNF was measured at two levels of biological organization: total BDNF protein (serum) and BDNF gene DNA methylation (whole blood) levels. The obtained information is organized as follows. First, human biomonitoring, biomarkers of effect and the current state of the art on neurodevelopmental alterations in the population are presented. Second, BDNF secretion and mechanisms of action are briefly explained. Third, previous studies using BDNF as an effect biomarker were consulted in PubMed database and summarized. Finally, the impact of bisphenol A (BPA), metals, and non-persistent pesticide metabolites on BDNF secretion patterns and its mediation role with behavioral outcomes are addressed and discussed. These findings were obtained from three pilot studies conducted in HBM4EU project. Published findings suggested that exposure to some chemical pollutants such as fine particle matter (PM), PFAS, heavy metals, bisphenols, and non-persistent pesticides may alter circulating BDNF levels in healthy population. Therefore, BDNF could be used as a valuable effect biomarker to investigate developmental neurotoxicity of some chemical pollutants.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Toxicological Centre, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Mariana F. Fernández
- Biomedical Research Center and School of Medicine, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Granada, Granada, Spain
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
5
|
Navarrete-Meneses MDP, Salas-Labadía C, Juárez-Velázquez MDR, Moreno-Lorenzana D, Gómez-Chávez F, Olaya-Vargas A, Pérez-Vera P. Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci 2023; 24:6259. [PMID: 37047231 PMCID: PMC10094043 DOI: 10.3390/ijms24076259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 μM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.
Collapse
Affiliation(s)
- María del Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Consuelo Salas-Labadía
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - María del Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Dafné Moreno-Lorenzana
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Fernando Gómez-Chávez
- Maestría y Doctorado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Doctorado en Ciencias en Biotecnología, Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Instituto Politécnico Nacional-ENMyH, Mexico City 07738, Mexico;
| | - Alberto Olaya-Vargas
- Unidad de Trasplante de Células Hematopoyeticas y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| |
Collapse
|
6
|
Capra ME, Stanyevic B, Giudice A, Monopoli D, Decarolis NM, Esposito S, Biasucci G. The Effects of COVID-19 Pandemic and Lockdown on Pediatric Nutritional and Metabolic Diseases: A Narrative Review. Nutrients 2022; 15:nu15010088. [PMID: 36615746 PMCID: PMC9823544 DOI: 10.3390/nu15010088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 was the first pathogen implied in a worldwide health emergency in the last decade. Containment measures have been adopted by various countries to try to stop infection spread. Children and adolescents have been less clinically involved by COVID-19, but the pandemic and consequent containment measures have had an important influence on the developmental ages. The COVID-19 pandemic and the subsequent lockdown periods have influenced the nutrition and lifestyles of children and adolescents, playing an epigenetic role in the development of nutrition and metabolic diseases in this delicate age group. The aim of our review is to investigate the effects of the COVID-19 pandemic on nutrition and metabolic diseases in the developmental ages. Moreover, we have analyzed the effect of different containment measures in children and adolescents. An increase in being overweight, obesity and type 2 diabetes mellitus has been detected. Concerning type 1 diabetes mellitus, although a validated mechanism possibly linking COVID-19 with new onset type 1 diabetes mellitus has not been yet demonstrated, barriers to the accessibility to healthcare services led to delayed diagnosis and more severe presentation of this disease. Further studies are needed to better investigate these relationships and to establish strategies to contain the nutritional and metabolic impact of new pandemics in the developmental ages.
Collapse
Affiliation(s)
- Maria Elena Capra
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Brigida Stanyevic
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonella Giudice
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Delia Monopoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Mattia Decarolis
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
7
|
Rodríguez-Carrillo A, D'Cruz SC, Mustieles V, Suárez B, Smagulova F, David A, Peinado F, Artacho-Cordón F, López LC, Arrebola JP, Olea N, Fernández MF, Freire C. Exposure to non-persistent pesticides, BDNF, and behavioral function in adolescent males: Exploring a novel effect biomarker approach. ENVIRONMENTAL RESEARCH 2022; 211:113115. [PMID: 35292247 DOI: 10.1016/j.envres.2022.113115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Numerous contemporary non-persistent pesticides may elicit neurodevelopmental impairments. Brain-derived neurotrophic factor (BDNF) has been proposed as a novel effect biomarker of neurological function that could help to understand the biological responses of some environmental exposures. OBJECTIVES To investigate the relationship between exposure to various non-persistent pesticides, BDNF, and behavioral functioning among adolescents. METHODS The concentrations of organophosphate (OP) insecticide metabolites 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), malathion diacid (MDA), and diethyl thiophosphate (DETP); metabolites of pyrethroids 3-phenoxybenzoic acid (3-PBA) and dimethylcyclopropane carboxylic acid (DCCA), the metabolite of insecticide carbaryl 1-naphthol (1-N), and the metabolite of ethylene-bis-dithiocarbamate fungicides ethylene thiourea (ETU) were measured in spot urine samples, as well as serum BDNF protein levels and blood DNA methylation of Exon IV of BDNF gene in 15-17-year-old boys from the INMA-Granada cohort in Spain. Adolescents' behavior was reported by parents using the Child Behavior Check List (CBCL/6-18). This study included 140 adolescents of whom 118 had data on BDNF gene DNA methylation. Multivariable linear regression, weighted quantile sum (WQS) for mixture effects, and mediation models were fit. RESULTS IMPy, MDA, DCCA, and ETU were detected in more than 70% of urine samples, DETP in 53%, and TCPy, 3-PBA, and 1-N in less than 50% of samples. Higher levels of IMPy, TCPy, and ETU were significantly associated with more behavioral problems as social, thought problems, and rule-breaking symptoms. IMPy, MDA, DETP, and 1-N were significantly associated with decreased serum BDNF levels, while MDA, 3-PBA, and ETU were associated with higher DNA methylation percentages at several CpGs. WQS models suggest a mixture effect on more behavioral problems and BDNF DNA methylation at several CpGs. A mediated effect of serum BDNF within IMPy-thought and IMPy-rule breaking associations was suggested. CONCLUSION BDNF biomarkers measured at different levels of biological complexity provided novel information regarding the potential disruption of behavioral function due to contemporary pesticides, highlighting exposure to diazinon (IMPy) and the combined effect of IMPy, MDA, DCCA, and ETU. However, further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Shereen C D'Cruz
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Fátima Smagulova
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Francisco Peinado
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Luis C López
- University of Granada, Department of Physiology, 18016, Granada, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; University of Granada, Department of Preventive Medicine and Public Health, 18016, Granada, Spain
| | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
8
|
Yu G, Su Q, Chen Y, Wu L, Wu S, Li H. Epigenetics in neurodegenerative disorders induced by pesticides. Genes Environ 2021; 43:55. [PMID: 34893084 PMCID: PMC8662853 DOI: 10.1186/s41021-021-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are becoming major socio-economic burdens. However, most of them still have no effective treatment. Growing evidence indicates excess exposure to pesticides are involved in the development of various forms of neurodegenerative and neurological diseases through trigger epigenetic changes and inducing disruption of the epigenome. This review summaries studies on epigenetics alterations in nervous systems in relation to different kinds of pesticides, highlighting potential mechanism in the etiology, precision prevention and target therapy of various neurodegenerative diseases. In addition, the current gaps in research and future areas for study were also discussed.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingyan Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
9
|
Menouni A, Duca RC, Berni I, Khouchoua M, Ghosh M, El Ghazi B, Zouine N, Lhilali I, Akroute D, Pauwels S, Creta M, Poels K, Hoet P, Vanoirbeeck J, Kestemont MP, Janssen P, Attwood TS, Godderis L, El Jaafari S. The Parental Pesticide and Offspring's Epigenome Study: Towards an Integrated Use of Human Biomonitoring of Exposure and Effect Biomarkers. TOXICS 2021; 9:332. [PMID: 34941766 PMCID: PMC8703387 DOI: 10.3390/toxics9120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
In Morocco, due to the lack of education and the presence of a counterfeit market, pesticides constitute a major problem to be addressed by occupational and environmental health agencies. This paper aims to introduce the PaPOE (Parental Pesticides and Offspring Epigenome) prospective study and its goals, to motivate the study rationale and design, and to examine comprehensively whether multi-residue exposure to commonly used pesticides could induce epigenetic alterations through the oxidative stress pathway. The PaPOE project includes a cross-sectional study assessing the occupational exposure among 300 farmworkers in Meknes, and initiates a birth cohort of 1000 pregnant women. Data and biological samples are collected among farmworkers, and throughout pregnancy, and at birth. Oxidative stress biomarkers include Glutathione, Malondialdehyde, and 8-OHdG. Global and gene-specific DNA methylation is assessed. The study began enrollment in 2019 and is ongoing. As of 30 June 2021, 300 farmworkers and 125 pregnant women have enrolled. The results are expected to showcase the importance of biomonitoring for understanding individual risks, and to identify a number of regions where DNA methylation status is altered in the pesticides-exposed population, paving the way for an integrated biomonitoring system in Morocco and Africa to assess environmental exposures and their long-term health consequences.
Collapse
Affiliation(s)
- Aziza Menouni
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Radu Corneliu Duca
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
- Unit of Environmental Hygiene and Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), L-3555 Dudelange, Luxembourg
| | - Imane Berni
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Mohamed Khouchoua
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Manosij Ghosh
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Brahim El Ghazi
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Noura Zouine
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Ilham Lhilali
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Dina Akroute
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| | - Sara Pauwels
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Matteo Creta
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
- Unit of Environmental Hygiene and Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), L-3555 Dudelange, Luxembourg
| | - Katrien Poels
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Peter Hoet
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Jeroen Vanoirbeeck
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
| | - Marie-Paule Kestemont
- Louvain School of Management, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium;
| | - Paul Janssen
- Center for Statistics, Hasselt University, 3590 Hasselt, Belgium;
| | - Tara Sabo Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA;
| | - Lode Godderis
- Health and Environment Unit, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (R.C.D.); (M.G.); (S.P.); (M.C.); (K.P.); (P.H.); (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Samir El Jaafari
- Cluster of Competence Environment and Health, Moulay Ismail University, Meknes 50000, Morocco; (I.B.); (M.K.); (B.E.G.); (N.Z.); (I.L.); (D.A.); (S.E.J.)
| |
Collapse
|
10
|
Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021; 13:nu13114176. [PMID: 34836431 PMCID: PMC8624977 DOI: 10.3390/nu13114176] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a major epidemic in the 21st century. It increases the risk of dyslipidemia, hypertension, and type 2 diabetes, which are known cardiometabolic risk factors and components of the metabolic syndrome. Although overt cardiovascular (CV) diseases such as stroke or myocardial infarction are the domain of adulthood, it is evident that the CV continuum begins very early in life. Recognition of risk factors and early stages of CV damage, at a time when these processes are still reversible, and the development of prevention strategies are major pillars in reducing CV morbidity and mortality in the general population. In this review, we will discuss the role of well-known but also novel risk factors linking obesity and increased CV risk from prenatal age to adulthood, including the role of perinatal factors, diet, nutrigenomics, and nutri-epigenetics, hyperuricemia, dyslipidemia, hypertension, and cardiorespiratory fitness. The importance of 'tracking' of these risk factors on adult CV health is highlighted and the economic impact of childhood obesity as well as preventive strategies are discussed.
Collapse
|
11
|
Blanc M, Antczak P, Cousin X, Grunau C, Scherbak N, Rüegg J, Keiter SH. The insecticide permethrin induces transgenerational behavioral changes linked to transcriptomic and epigenetic alterations in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146404. [PMID: 33752003 DOI: 10.1016/j.scitotenv.2021.146404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The pyrethroid insecticide permethrin is widely used for agricultural and domestic purposes. Previous data indicated that it acts as a developmental neurotoxicant and can induce transgenerational effects in non-target organisms. However, associated underlying mechanisms remain unclear. The aim of this study was to investigate permethrin-related transgenerational effects in the zebrafish model, and to identify possible molecular mechanisms underlying inheritance. Zebrafish (F0) were exposed to permethrin during early-life (2 h post-fertilization up to 28 days). The F1 and F2 offspring generations were obtained by pairing exposed F0 males and females, and were bred unexposed. Locomotor and anxiety behavior were investigated, together with transcriptomic and epigenomic (DNA methylation) changes in brains. Permethrin exposed F0 fish were hypoactive at adulthood, while males from the F1 and F2 generations showed a specific decrease in anxiety-like behavior. In F0, transcriptomic data showed enrichment in pathways related to glutamatergic synapse activity, which may partly underlie the behavioral effects. In F1 and F2 males, dysregulation of similar pathways was observed, including a subset of differentially methylated regions that were inherited from the F0 to the F2 generation and indicated stable dysregulation of glutamatergic signaling. Altogether, the present results provide novel evidence on the transgenerational neurotoxic effects of permethrin, as well as mechanistic insight: a transient exposure induces persistent transcriptional and DNA methylation changes that may translate into transgenerational alteration of glutamatergic signaling and, thus, into behavioral alterations.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France.
| | - Philipp Antczak
- Centre for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Xavier Cousin
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Christoph Grunau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Nikolai Scherbak
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
12
|
Curtis GH, Nogueiro S, Schneider S, Bernhofer M, McDermott M, Nixon E, Perez KN, Reeve RE, Easterling MR, Crespi EJ. Trans-ovo permethrin exposure affects growth, brain morphology and cardiac development in quail. ENVIRONMENTAL TOXICOLOGY 2021; 36:1447-1456. [PMID: 33844419 DOI: 10.1002/tox.23141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Permethrin is a commonly used, highly effective pesticide in poultry agriculture, and has recently been trialed in conservation efforts to protect Galápagos finch hatchlings from an invasive ectoparasite. Although permethrin is considered safe for adults, pesticides can have health consequences when animals are exposed during early life stages. The few studies that have examined permethrin's effects in embryonic chicks and rats have shown hydrocephaly, anencephaly, reduced cellular energy conversion, and disruption of developing heart muscle. To test whether trans-ovo exposure of permethrin affects early development in birds, we exposed Japanese quail (Coturnix japonica) eggs to cotton treated with 1% permethrin that was incorporated into nests in two amounts (0.2, 0.8 g), each with a paired untreated cotton control group. When measured on incubation Day 15, we found permethrin-treated developing birds were smaller and showed signs of microcephaly, although mortality rates were the same. Despite no difference in heart mass, ventricular tissue was less compact, cardiac arteries were reduced and heart rates were slower in permethrin-treated birds. Differences in heart development were also observed at 5 days of incubation, indicating that abnormalities are present from early in cardiac development. Future studies are needed to examine permethrin's effects on developmental pathways and to determine if these effects persist after hatching to affect offspring health. This study provides evidence that permethrin can cross the eggshell to cause non-lethal but adverse effects on embryonic development, and studies should look beyond hatching when monitoring the efficacy of permethrin on wild bird populations.
Collapse
Affiliation(s)
- Grace H Curtis
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Sara Nogueiro
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Sydney Schneider
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marissa Bernhofer
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Mara McDermott
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Erin Nixon
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Kylie Noelle Perez
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Robyn E Reeve
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Epigenetic effects of insecticides on early differentiation of mouse embryonic stem cells. Toxicol In Vitro 2021; 75:105174. [PMID: 33865946 DOI: 10.1016/j.tiv.2021.105174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates that many insecticides produce significant epigenetic changes during embryogenesis, leading to developmental toxicities. However, the effects of insecticides on DNA methylation status during early development have not been well studied. We developed a novel nuclear phenotypic approach using mouse embryonic stem cells harboring enhanced green fluorescent protein fused with methyl CpG-binding protein to evaluate global DNA methylation changes via high-content imaging analysis. Exposure to imidacloprid, carbaryl, and o,p'-DDT increased the fluorescent intensity of granules in the nuclei, indicating global DNA methylating effects. However, DNA methylation profiling in cell-cycle-related genes, such as Cdkn2a, Dapk1, Cdh1, Mlh1, Timp3, and Rarb, decreased in imidacloprid treatments, suggesting the potential influence of DNA methylation patterns on cell differentiation. We developed a rapid method for evaluating global DNA methylation and used this approach to show that insecticides pose risks of developmental toxicity through DNA methylation.
Collapse
|
14
|
Chrustek A, Hołyńska-Iwan I, Olszewska-Słonina D. The influence of pyrethroides: permethrin, deltamethrin
and alpha-cypermetrin on oxidative damage. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrethroids, synthetic derivatives of natural pyrethrins derived from Chrysanthemum cinerariaefolim,
are commonly used for plant protection in the forestry, agricultural, pharmaceutical industry
as well as in medicine and veterinary medicine. They can enter the body by inhalation,
ingestion and skin contact. It was assumed that they are characterized by low toxicity to humans,
are quickly metabolized and do not accumulate in tissues, and are excreted in the urine. Despite
the existing restrictions, their use carries a great risk, because these compounds and their metabolites
can get into the natural environment, contaminating water, soil and food. The consequences
of using pyrethroids as a direct threat to animal and human health have been described
for many years. They are published on an ongoing basis informing about poisoning with these
compounds in humans and animals, and about fatalities after their taking. Children are most at
risk because pyrethroids can be found in breast milk. These compounds have nephrotoxic, hepatotoxic,
immunotoxic, neurotoxic effects and have a negative effect on the reproductive system
and the fetus. Pyrethroids such as permethrin, deltamethrin, alpha-cypermethrin are approved
by the World Health Organization for daily use; however, numerous scientific studies indicate
that they can cause oxidative stress. They lead to DNA, protein, lipid damage and induction of
apoptosis. The purpose of the work was to collect and systematize the available knowledge regarding
the induction of oxidative stress by selected pyrethroids.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Iga Hołyńska-Iwan
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Dorota Olszewska-Słonina
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
15
|
Abstract
Human and animal welfare primarily depends on the availability of food and surrounding environment. Over a century and half, the quest to identify agents that can enhance food production and protection from vector borne diseases resulted in the identification and use of a variety of pesticides, of which the pyrethroid based ones emerged as the best choice. Pesticides while improved the quality of life, on the other hand caused enormous health risks. Because of their percolation into drinking water and food chain and usage in domestic settings, humans unintentionally get exposed to the pesticides on a daily basis. The health hazards of almost all known pesticides at a variety of doses and exposure times are reported. This review provides a comprehensive summation on the historical, epidemiological, chemical and biological (physiological, biochemical and molecular) aspects of pyrethroid based insecticides. An overview of the available knowledge suggests that the synthetic pyrethroids vary in their chemical and toxic nature and pose health hazards that range from simple nausea to cancers. Despite large number of reports, studies that focused on identifying the health hazards using doses that are equivalent or relevant to human exposure are lacking. It is high time such studies are conducted to provide concrete evidence on the hazards of consuming pesticide contaminated food. Policy decisions to decrease the residual levels of pesticides in agricultural products and also to encourage organic farming is suggested.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Luparello C, Cruciata I, Joerger AC, Ocasio CA, Jones R, Tareque RK, Bagley MC, Spencer J, Walker M, Austin C, Ferrara T, D′Oca P, Bellina R, Branni R, Caradonna F. Genotoxicity and Epigenotoxicity of Carbazole-Derived Molecules on MCF-7 Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22073410. [PMID: 33810274 PMCID: PMC8038095 DOI: 10.3390/ijms22073410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/01/2022] Open
Abstract
The carbazole compounds PK9320 (1-(9-ethyl-7-(furan-2-yl)-9H-carbazol-3-yl)-N-methylmethanamine) and PK9323 (1-(9-ethyl-7-(thiazol-4-yl)-9H-carbazol-3-yl)-N-methylmethanamine), second-generation analogues of PK083 (1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine), restore p53 signaling in Y220C p53-mutated cancer cells by binding to a mutation-induced surface crevice and acting as molecular chaperones. In the present paper, these three molecules have been tested for mutant p53-independent genotoxic and epigenomic effects on wild-type p53 MCF-7 breast adenocarcinoma cells, employing a combination of Western blot for phospho-γH2AX histone, Comet assay and methylation-sensitive arbitrarily primed PCR to analyze their intrinsic DNA damage-inducing and DNA methylation-changing abilities. We demonstrate that small modifications in the substitution patterns of carbazoles can have profound effects on their intrinsic genotoxic and epigenetic properties, with PK9320 and PK9323 being eligible candidates as “anticancer compounds” and “anticancer epi-compounds” and PK083 a “damage-corrective” compound on human breast adenocarcinoma cells. Such different properties may be exploited for their use as anticancer agents and chemical probes.
Collapse
Affiliation(s)
- Claudio Luparello
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
- Correspondence: (C.L.); (J.S.); (F.C.)
| | - Ilenia Cruciata
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
| | - Andreas C. Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany;
- Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium (SGC), 60438 Frankfurt am Main, Germany
| | - Cory A. Ocasio
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; (C.A.O.); (R.J.); (R.K.T.); (M.C.B.)
| | - Rhiannon Jones
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; (C.A.O.); (R.J.); (R.K.T.); (M.C.B.)
| | - Raysa Khan Tareque
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; (C.A.O.); (R.J.); (R.K.T.); (M.C.B.)
| | - Mark C. Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; (C.A.O.); (R.J.); (R.K.T.); (M.C.B.)
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; (C.A.O.); (R.J.); (R.K.T.); (M.C.B.)
- Correspondence: (C.L.); (J.S.); (F.C.)
| | - Martin Walker
- Eurofins Integrated Discovery UK Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, UK; (M.W.); (C.A.)
| | - Carol Austin
- Eurofins Integrated Discovery UK Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, UK; (M.W.); (C.A.)
| | - Tiziana Ferrara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
| | - Pietro D′Oca
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
| | - Rossella Bellina
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
| | - Rossella Branni
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
| | - Fabio Caradonna
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (I.C.); (T.F.); (P.D.); (R.B.); (R.B.)
- Correspondence: (C.L.); (J.S.); (F.C.)
| |
Collapse
|
17
|
Bordoni L, Petracci I, Calleja-Agius J, Lalor JG, Gabbianelli R. NURR1 Alterations in Perinatal Stress: A First Step towards Late-Onset Diseases? A Narrative Review. Biomedicines 2020; 8:E584. [PMID: 33302583 PMCID: PMC7764589 DOI: 10.3390/biomedicines8120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby's health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta;
| | - Joan G. Lalor
- School of Nursing and Midwifery, Trinity College Dublin, 24 D’Olier Street, Dublin 2, Ireland;
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
18
|
Blanc M, Cormier B, Hyötyläinen T, Krauss M, Scherbak N, Cousin X, Keiter SH. Multi- and transgenerational effects following early-life exposure of zebrafish to permethrin and coumarin 47: Impact on growth, fertility, behavior and lipid metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111348. [PMID: 32979803 DOI: 10.1016/j.ecoenv.2020.111348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Transgenerational effects induced by environmental stressors are a threat to ecosystems and human health. However, there is still limited observation and understanding of the potential of chemicals to influence life outcomes over several generations. In the present study, we investigated the effects of two environmental contaminants, coumarin 47 and permethrin, on exposed zebrafish (F0) and their progeny (F1-F3). Coumarin 47 is commonly found in personal care products and dyes, whereas permethrin is used as a domestic and agricultural pyrethroid insecticide/insect repellent. Zebrafish (F0) were exposed during early development until 28 days post-fertilization and their progeny (F1-F3) were bred unexposed. On one hand, the effects induced by coumarin 47 suggest no multigenerational toxicity. On the other hand, we found that behavior of zebrafish larvae was significantly affected by exposure to permethrin in F1 to F3 generations with some differences depending on the concentration. This suggests persistent alteration of the neural or neuromuscular function. In addition, lipidomic analyses showed that permethrin treatment was partially correlated with lysophosphatidylcholine levels in zebrafish, an important lipid for neurodevelopment. Overall, these results stress out one of the most widely used pyrethroids can trigger long-term, multi- and possibly transgenerational changes in the nervous system of zebrafish. These neurobehavioral changes echo the effects observed under direct exposure to high concentrations of permethrin and therefore call for more research on mechanisms underlying effect inheritance.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden.
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden; University of Bordeaux, EPOC UMR CNRS, 5805, Pessac, France
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nikolai Scherbak
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, F-34250, Palavas-les-Flots, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, F-78350, Jouy-en-Josas, France
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| |
Collapse
|
19
|
DeCourten BM, Forbes JP, Roark HK, Burns NP, Major KM, White JW, Li J, Mehinto AC, Connon RE, Brander SM. Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13849-13860. [PMID: 32989987 DOI: 10.1021/acs.est.0c02892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Joshua P Forbes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hunter K Roark
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Nathan P Burns
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kaley M Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| |
Collapse
|
20
|
Blanc M, Rüegg J, Scherbak N, Keiter SH. Environmental chemicals differentially affect epigenetic-related mechanisms in the zebrafish liver (ZF-L) cell line and in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105272. [PMID: 31442592 DOI: 10.1016/j.aquatox.2019.105272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
A number of chemicals have been shown to affect epigenetic patterning and functions. Since epigenetic mechanisms regulate transcriptional networks, epigenetic changes induced by chemical exposure can represent early molecular events for long-term adverse physiological effects. Epigenetics has thus appeared as a research field of major interest within (eco)toxicological sciences. The present study aimed at measuring effects on epigenetic-related mechanisms of selected environmental chemicals (bisphenols, perfluorinated chemicals, methoxychlor, permethrin, vinclozolin and coumarin 47) in zebrafish embryos and liver cells (ZFL). Transcription of genes related to DNA methylation and histone modifications was measured and global DNA methylation was assessed in ZFL cells using the LUMA assay. The differences in results gathered from both models suggest that chemicals affect different mechanisms related to epigenetics in embryos and cells. In zebrafish embryos, exposure to bisphenol A, coumarin 47, methoxychlor and permethrin lead to significant transcriptional changes in epigenetic factors suggesting that they can impact early epigenome reprogramming related to embryonic development. In ZFL cells, significant transcriptional changes were observed upon exposure to all chemicals but coumarin 47; however, only perfluorooctane sulfonate induced significant effects on global DNA methylation. Notably, in contrast to the other tested chemicals, perfluorooctane sulfonate affected only the expression of the histone demethylase kdm5ba. In addition, kdm5ba appeared as a sensitive gene in zebrafish embryos as well. Taken together, the present results suggest a role for kdm5ba in regulating epigenetic patterns in response to chemical exposure, even though mechanisms remain unclear. To confirm these findings, further evidence is required regarding changes in site-specific histone marks and DNA methylation together with their long-term effects on physiological outcomes.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden.
| | - Joëlle Rüegg
- Institute for Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 65, Solna, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| |
Collapse
|
21
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
22
|
Bordoni L, Nasuti C, Fedeli D, Galeazzi R, Laudadio E, Massaccesi L, López-Rodas G, Gabbianelli R. Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity. Exp Gerontol 2019; 124:110629. [PMID: 31175960 DOI: 10.1016/j.exger.2019.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Permethrin is a synthetic pyrethroid extensively used as anti-woodworm agent and for indoor and outdoor pest control. The main route of human exposure is through fruit, vegetable and milk intake. Low dosage exposure to permethrin during neonatal brain development (from postnatal day 6 to postnatal day 21) leads to dopamine decrease in rat striatum nucleus, oxidative stress and behavioural changes linked to the development of Parkinson's like neurodegeneration later in life. The aim of this study was to evaluate the expression of genes involved in the dopaminergic pathway and epigenetic regulatory mechanisms in adolescent rats treated with permethrin during neonatal brain development. Furthermore, in order to shed light on the mechanisms associated with molecular impairments, in silico studies were performed. The outcomes show increased expression of genes related to the dopamine-synthesis pathway (Nurr1, Th, Snca), epigenetics (TET proteins and Mecp2) and exposure to toxicants (Pon1 and Pon2) in adolescent rats compared with control group. Furthermore, increased global 5mC and 5hmC levels were observed in the DNA extracted from striatum of early-life treated rats in comparison with controls. FAIRE-qPCR analysis shows that permethrin induces an enrichment of chromatin-free DNA at the level of Th and Nurr1 promoters, and ChIP-qPCR reveals a significant reduction in methylation levels at H3K9me3 position at both Th and Nurr1 promoter regions. In silico studies show that permethrin competes for the same two binding sites of known NURR1 agonists, with a lower binding free energy for permethrin, suggesting an important durable association of permethrin with the orphan receptor. Moreover, alpha-synuclein shows a strong affinity for NURR1, corroborating previous experimental outcomes on the interactions between them. This study focuses on an emerging role of early-life exposure to environmental pollutants in the regulation of late onset diseases through intriguing mechanisms that change crucial epigenetic patterns starting from adolescent age.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Cinzia Nasuti
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Donatella Fedeli
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Emiliano Laudadio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Luca Massaccesi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| | | |
Collapse
|
23
|
Differential global and MTHFR gene specific methylation patterns in preeclampsia and recurrent miscarriages: A case-control study from North India. Gene 2019; 704:68-73. [PMID: 30986448 DOI: 10.1016/j.gene.2019.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/23/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
AIM The purpose of the present study is to evaluate and understand the association of global and MTHFR gene specific methylation in preeclampsia and recurrent miscarriages in light of MTHFR C677T polymorphism. METHODS The subjects comprised of recurrent miscarriage cases, their gestation matched controls, preeclampsia cases and matched controls. A set of women at full term were also recruited. Fasting blood sample (~5 ml) was drawn from all the participants followed by DNA extraction, global DNA methylation and MTHFR gene specific methylation. MTHFR C677T polymorphism was analysed by PCR followed by RFLP. RESULTS HIGHER Global DNA methylation at maternal front (p = 0.04) and hypomethylation of MTHFR gene at fetal front (p = 0.001) might be a characteristic of preeclampsia. Recurrent miscarriage cases were having significantly (p = 0.002) hyper MTHFR gene specific methylation as compared to controls. Women carrying CT genotype were found to be having significantly (p = 0.001) higher global DNA methylation in PE cases and MTHFR gene specific methylation (p = 0.005) in RM cases. Intergenerational analysis revealed similar patterns of global DNA methylation and MTHFR gene specific methylation among both PE and RM cases at maternal and fetal fronts. CONCLUSION The study highlights the importance of global DNA methylation in Preeclampsia and MTHFR gene specific methylation in recurrent miscarriages. MTHFR C677T gene polymorphism in association with global and gene specific methylation seem to play a pivotal role in PE and RM respectively.
Collapse
|
24
|
Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019; 160:156-171. [PMID: 30878492 DOI: 10.1016/j.biochi.2019.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between genotype and phenotype is a central goal not just for genetics but also for medicine and biological sciences. Despite outstanding technological progresses, genetics alone is not able to completely explain phenotypes, in particular for complex diseases. Given the existence of a "missing heritability", growing attention has been given to non-mendelian mechanisms of inheritance and to the role of the environment. The study of interaction between gene and environment represents a challenging but also a promising field with high potential for health prevention, and epigenetics has been suggested as one of the best candidate to mediate environmental effects on the genome. Among environmental factors able to interact with both genome and epigenome, nutrition is one of the most impacting. Not just our genome influences the responsiveness to food and nutrients, but vice versa, nutrition can also modify gene expression through epigenetic mechanisms. In this complex picture, nutrigenetics and nutrigenomics represent appealing disciplines aimed to define new prospectives of personalized nutrition. This review introduces to the study of gene-environment interactions and describes how nutrigenetics and nutrigenomics modulate health, promoting or affecting healthiness through life-style, thus playing a pivotal role in modulating the effect of genetic predispositions.
Collapse
|
25
|
Epigenetic Memory of Early-Life Parental Perturbation: Dopamine Decrease and DNA Methylation Changes in Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1472623. [PMID: 30915194 PMCID: PMC6399534 DOI: 10.1155/2019/1472623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022]
Abstract
Early-life exposure (from postnatal day 6 to postnatal day 21) to permethrin has been associated with long-term development of dopaminergic neurodegeneration in rats. Here, we first investigated if the dopamine decrease observed following early postnatal exposure to permethrin, an oxidative stressor, can impair the dopamine level in the brain of their untreated offspring. Secondly, we evaluated whether this adverse event affects the epigenome of both directly exposed rats (F0) and their untreated offspring (F1). The results show that early-life exposure to the stressor is associated with changes in global DNA methylation and hydroxymethylation in adult age. Furthermore, parental exposure leads to a significant reduction in dopamine level in the offspring (F1) born from parents or just mothers early-life treated (72.72% and 47.35%, respectively). About 2/3 of pups from exposed mothers showed a significant reduction in dopamine level compared to controls. Global DNA methylation and hydroxymethylation impairment was associated with the F1 pups that showed reduced dopamine. This study provides pivotal evidences on intergenerational effects of postnatal exposure to permethrin emphasizing that this xenobiotic can influence the epigenetic memory of early-life parental perturbations disturbing offspring health.
Collapse
|
26
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
27
|
Chrustek A, Hołyńska-Iwan I, Dziembowska I, Bogusiewicz J, Wróblewski M, Cwynar A, Olszewska-Słonina D. Current Research on the Safety of Pyrethroids Used as Insecticides. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E61. [PMID: 30344292 PMCID: PMC6174339 DOI: 10.3390/medicina54040061] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022]
Abstract
Pyrethroids are synthetic derivatives of natural pyrethrins extracted from Chrysanthemum cinerariaefolium. They are 2250 times more toxic to insects than to vertebrates due to insects' smaller size, lower body temperature and more sensitive sodium channels. In particular, three pyrethroid compounds, namely deltamethrin, permethrin, and alpha-cypermethrin, are commonly used as insecticides and are recommended for in-home insect control because they are considered to be relatively non-toxic to humans in all stages of life. However, recent data show that they are not completely harmless to human health as they may enter the body through skin contact, by inhalation and food or water, and absorption level depending on the type of food. Permethrin seems to have an adverse effect on fertility, the immune system, cardiovascular and hepatic metabolism as well as enzymatic activity. Deltamethrin induces inflammation, nephro- and hepatotoxicity and influences the activity of antioxidant enzymes in tissues. Alpha-cypermethrin may impair immunity and act to increase glucose and lipid levels in blood. The aim of the review is to provide comprehensive information on potential hazards associated to human exposure to deltamethrin, permethrin and alpha-cypermethrin. The results of presented studies prove that the insecticides must be used with great caution.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Inga Dziembowska
- Department of Pathophysiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-089 Torun, Poland.
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, L. Rydygier Collegium Medicum of Nicolaus Copernicus University, 85-092 Torun, Poland.
| | - Anna Cwynar
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| |
Collapse
|
28
|
|
29
|
Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:51-57. [PMID: 28943456 DOI: 10.1016/j.cbpc.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
The mechanisms associated to the development of neurodegeneration due to pesticide exposure are not clear yet. In this study we evaluated how permethrin pesticide (PERM) can influence the Nurr1 gene and protein expression, and if a pro-oxidant activity of the pesticide contributes to up-regulation of Nurr1 in a dopaminergic cell line. Incubation of PC12 cells with 1μM PERM for 72h, leads to over expression of Nurr1 gene. This effect occurs with both corn oil and extra virgin olive oil (EVO) used to solubilize the toxicant. In order to investigate if the Nurr1 up-regulation induced by PERM, was associated to the pro-oxidant activity of the pesticide, anti-oxidants as glutathione (GSH), tocotrienols (TOC) and Electrolyzed Reduced Water (ERW) were tested. RT-PCR of Nurr1 showed that its up-regulation was significantly reduced in the presence of antioxidants, especially by addition of ERW. Western-blot analysis reveals that ERW was able to counterbalance the up-regulation of Nurr1 protein induced by permethrin exposure.
Collapse
Affiliation(s)
- Laura Bordoni
- Schools of Advanced Studies, University of Camerino, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Cinzia Nasuti
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Melania Capitani
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dennis Fiorini
- School of Science and Technology, University of Camerino, 62032 Camerino, MC, Italy
| | | |
Collapse
|
30
|
Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017; 340:411-423. [DOI: 10.1016/j.neuroscience.2016.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/16/2023]
|
31
|
Domingues VF, Nasuti C, Piangerelli M, Correia-Sá L, Ghezzo A, Marini M, Abruzzo PM, Visconti P, Giustozzi M, Rossi G, Gabbianelli R. Pyrethroid Pesticide Metabolite in Urine and Microelements in Hair of Children Affected by Autism Spectrum Disorders: A Preliminary Investigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:388. [PMID: 27482573 PMCID: PMC4847050 DOI: 10.3390/ijerph13040388] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The number of children affected by Autism Spectrum Disorders (ASD) is dramatically increasing as well as the studies aimed at understanding the risk factors associated with the development of ASD. Since the etiology of ASD is partly genetic and partly environmental, factors (i.e., heavy metals, pesticides) as well as lifestyle seem to have a key role in the development of the disease. ASD and Control (CTR) children, aged 5–12 years, were compared. Gas chromatography coupled with trap mass detector was used to measure the level of 3-PBA, the main pyrethroid metabolite in urine in a group of ASD patients, while optical emission spectrometry analysis was employed to estimate the level of metals and microelements in hair in a different group of ASD children. The presence of 3-PBA in urine seems to be independent of age in ASD children, while a positive correlation between 3-PBA and age was observed in the control group of the same age range. Urine concentration of 3-BPA in ASD children had higher values than in the control group, which were marginally significant (p = 0.054). Mg results were significantly decreased in ASD with respect to controls, while V, S, Zn, and Ca/Mg were marginally increased, without reaching statistical significance. Results of Principal Component (PC) analysis of metals and microelements in hair were not associated with either age or health status. In conclusion, 3-PBA in urine and Mg in hair were changed in ASD children relative to control ones.
Collapse
Affiliation(s)
- Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (V.F.D.); (L.C.-S.)
| | - Cinzia Nasuti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Marco Piangerelli
- Computer Science Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (V.F.D.); (L.C.-S.)
| | - Alessandro Ghezzo
- DIMES, School of Medicine, Università di Bologna, 40126 Bologna, Italy and Don Carlo Gnocchi Foundation ONLUS, 20162 Milan, Italy; (A.G.); (M.M.); (P.M.A.)
| | - Marina Marini
- DIMES, School of Medicine, Università di Bologna, 40126 Bologna, Italy and Don Carlo Gnocchi Foundation ONLUS, 20162 Milan, Italy; (A.G.); (M.M.); (P.M.A.)
| | - Provvidenza M. Abruzzo
- DIMES, School of Medicine, Università di Bologna, 40126 Bologna, Italy and Don Carlo Gnocchi Foundation ONLUS, 20162 Milan, Italy; (A.G.); (M.M.); (P.M.A.)
| | - Paola Visconti
- IRCCS Institute of Neurological Sciences-Bologna, 40126 Bologna, Italy;
| | | | - Gerardo Rossi
- Laboratorio NovEra srl, 62012 Civitanova Marche, Italy; (M.G.); (G.R.)
| | - Rosita Gabbianelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
- Correspondence: ; Tel.: +39-737-403208
| |
Collapse
|
32
|
Vester A, Caudle WM. The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. TOXICS 2016; 4:toxics4030018. [PMID: 29051423 PMCID: PMC5606656 DOI: 10.3390/toxics4030018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies.
Collapse
Affiliation(s)
- Aimee Vester
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Larsen K, Momeni J, Farajzadeh L, Callesen H, Bendixen C. Molecular characterization and analysis of the porcine NURR1 gene. BIOCHIMIE OPEN 2016; 3:26-39. [PMID: 29450128 PMCID: PMC5801910 DOI: 10.1016/j.biopen.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
Orphan receptor NURR1 (also termed NR4A2) belongs to the nuclear receptor superfamily and functions as a regulatory factor of differentiation, migration, maturation and maintenance of mesencephalic dopaminergic neurons. NURR1 plays an important role in nigrostriatal dopamine neuron development and is therefore implicated in the pathogenesis of neurodegenerative diseases linked to the dopamine system of the midbrain. Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99%) NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development. The porcine NURR1 gene was cloned and characterized. NURR1 transcript was detected early in pig embryo brain development. Methylation status of NURR1 may be a determinant for its expression.
Collapse
Key Words
- CNS, central nervous system
- DAN, dopaminergic neuron
- DAT, dopamin transporter
- DBD, DNA binding domain
- DNA methylation
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- NTD, N-terminal domain
- NURR1
- PCR, polymerase chain reaction
- Parkinson's disease
- Pig
- RT-PCR, reverse transcriptase polymerase chain reaction
- SNP
- SNP, Single nucleotide polymorphism
- TSS, transcription start site
- Transcription factor
- UTR, untranslated region
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
34
|
Nasuti C, Ferraro S, Giovannetti R, Piangerelli M, Gabbianelli R. Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats. TOXICS 2016; 4:toxics4010003. [PMID: 29051409 PMCID: PMC5606634 DOI: 10.3390/toxics4010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Abstract
Hair is a non-invasive biological material useful in the biomonitoring of trace elements because it is a vehicle for substance excretion from the body, and it permits evaluating long-term metal exposure. Here, hair from an animal model of neurodegeneration, induced by early life permethrin treatment from the sixth to 21th day of life, has been analyzed with the aim to assess if metal and microelement content could be used as biomarkers. A hair trace element assay was performed by the ICP-MS technique in six- and 12-month-old rats. A significant increase of As, Mg, S and Zn was measured in the permethrin-treated group at 12 months compared to six months, while Si and Cu/Zn were decreased. K, Cu/Zn and S were increased in the treated group compared to age-matched controls at six and 12 months, respectively. Cr significantly decreased in the treated group at 12 months. PCA analysis showed both a best difference between treated and age-matched control groups at six months. The present findings support the evidence that the Cu/Zn ratio and K, measured at six months, are the best biomarkers for neurodegeneration. This study supports the use of hair analysis to identify biomarkers of neurodegeneration induced by early life permethrin pesticide exposure.
Collapse
Affiliation(s)
- Cinzia Nasuti
- Unit of Pharmacology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Stefano Ferraro
- Unit of Chemistry, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Rita Giovannetti
- Unit of Chemistry, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Marco Piangerelli
- Computer Science Division, School of Science and Technology, University of Camerino, Via del Bastione 1, 62032 Camerino, MC, Italy.
| | - Rosita Gabbianelli
- Unit of Biochemistry and Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| |
Collapse
|
35
|
Burger J, Fossi C, McClellan-Green P, Orlando EF. Methodologies, bioindicators, and biomarkers for assessing gender-related differences in wildlife exposed to environmental chemicals. ENVIRONMENTAL RESEARCH 2007; 50:8977-92. [PMID: 17207477 DOI: 10.1021/acs.est.6b02253] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 07/19/2006] [Accepted: 08/03/2006] [Indexed: 05/27/2023]
Abstract
Male and female organisms may have significant differences in their exposure, toxicokinetics, and response to chemicals, but gender effects have received relatively little attention, often viewed as a confounder rather than of primary importance. In this paper, we examine some of the key issues and methodologies for incorporating gender in studies of the effects of chemicals on wildlife, and explore bioindicators and biomarkers of gender effects. Examining gender-related differences in response to chemicals is complicated in wildlife because of the vast array of species, and differences in niches, lifespans, reproductive cycles and modes, and population dynamics. Further, organisms are more at risk in some ecosystems than others, which may increase the magnitude of effects. Only by studying wild animals, especially native species, can we truly understand the potential impact of gender-specific effects of chemical exposure on populations. Several factors affect gender-related differences in responses to chemicals, including exposure, age, size, seasonality, and genetic and phenotypic variation. There are clear examples where gender-related differences have had significant effects on reproductive success and population stability, including destabilization of gamete release in invertebrates, and alterations of endocrine and neuroendocrine system functioning in vertebrates. A wide range of new technologies and methods are available for examining gender-related differences in responses to chemicals. We provide examples that show that there are gender-related differences in responses to chemicals that have significant biological effects, and these gender-related differences should be taken into account by scientists, regulators, and policy makers, as well as the public.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854P-8082, USA.
| | | | | | | |
Collapse
|