1
|
Ahmed S, Azli B, Abdul Razak M, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N. Delayed nuclear localization of CRISPR/Cas9-modified fiber of fowl adenovirus serotype 8b reduces pathogenicity in Specific pathogen-free chicken embryonic liver cells. Microb Pathog 2025; 203:107482. [PMID: 40097027 DOI: 10.1016/j.micpath.2025.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Fowl adenovirus (FAdV) poses incessant outbreaks to poultry production worldwide, and Inclusion body hepatitis (IBH) is a predominant FAdV infectious disease. Currently, limited vaccines are available in Malaysia to fight against the local predominant FAdV strain 8b isolate (FAdV-8b), posing a desperate demand for efficient vaccine development. The fiber protein of FAdV is one of the major constituents of the adenoviral capsid involved in the virulence of pathogens. Hence, the aim was to modify the fiber gene of FAdV-8b UPMT27 to develop a live attenuated FAdV vaccine via the gene-editing CRISPR/Cas9 technology. Primary specific pathogen-free (SPF) chicken embryonic liver cells (CELs) infected with the modified isolated (cfUPMT27) were reported with significantly reduced cytopathic effects, delayed viral localization into the nucleus, and low apoptotic rates. cfUPMT27 isolate also exhibited constant amino acid substitution of Y179D in subsequent passages. Meanwhile, the liver of cfUPMT27 inoculated-SPF chicken embryonic eggs (CEE) was observed with mild hydropericardium and reported with a delayed mortality at 6-days post-infection (dpi). This holistic, integrative study incorporating genetic, pathology, and immunology analysis proposed cfUPMT27 isolate as a candidate vaccine for FAdV infections, providing efficient future protection in chickens.
Collapse
Affiliation(s)
- Salisu Ahmed
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Science Laboratory Technology, Jigawa State Polytechnic, 7040, Dutse, Jigawa state, Nigeria.
| | - Bahiyah Azli
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mariatulqabtiah Abdul Razak
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mohd Hair-Bejo
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Abdul Rahman Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Aini Ideris
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Nurulfiza Mat Isa
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Ma L, Wang X, Zhang M, Zhu M. Rapid detection of FAdV-4 by one-tube RPA-CRISPR/Cas12a assay. Front Microbiol 2025; 16:1541943. [PMID: 39963492 PMCID: PMC11830807 DOI: 10.3389/fmicb.2025.1541943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Fowl adenovirus serotype 4 (FAdV-4) is a highly contagious viral pathogen of global significance that affects various avian species. It primarily infects poultry and wild birds, leading to avian inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS). The development of rapid diagnostic tools for detecting FAdV-4 is crucial for effective disease control and eradication efforts. Methods In this study, we developed a recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a assay, specifically targeting the FAdV-4 Hexon gene. RPA and CRISPR/Cas12a reagents were added to the bottom and lid of the test tube at once, allowing the detection process to occur within a single reaction tube. This approach reduced contamination. Results The RPA-CRISPR/Cas12a detection method can identify as few as 10 copies of the genome per reaction, demonstrating 100% sensitivity comparable to that of fluorescence PCR (qPCR). This approach exhibits high specificity for FAdV-4, with no cross-reactivity observed with other FAdV serotypes or common avian pathogens. Additionally, the agreement rate between the results of RPA-CRISPR/Cas12a and qPCR for detecting clinical samples is as high as 97.5%. Discussion Therefore, the RPA-CRISPR/Cas12a assay presents a promising alternative for the simple, sensitive, and specific identification of FAdV-4.
Collapse
Affiliation(s)
- Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xueping Wang
- College of Animal Science and Technology, Tarim University, AIar, China
| | - Mingliang Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Mengjie Zhu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
3
|
Chai Y, Jin Q, Zhu R, Guo Z, Lu Q, Chai S, Xing Y, Han L, Xing G, Zhang G. Precise location of three novel linear epitopes using the generated monoclonal antibodies against the Knob domain of FAdV-4 surface structural protein, fiber1. Front Cell Infect Microbiol 2024; 14:1468428. [PMID: 39359940 PMCID: PMC11445615 DOI: 10.3389/fcimb.2024.1468428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Background Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of hepatitis-hydropericardium syndrome (HHS), which brings huge economic losses to the poultry industry worldwide. Fiber-1 protein plays an important role in viral infection and pathogenesis by binding directly to cellular receptors of FAdV-4. In particular, the knob domain of fiber-1 protein has been reported to induce the production of neutralizing antibodies and arouse protection against the lethal challenge of chickens with FAdV-4. Methods The fiber-1 knob (F1K) protein was expressed in a prokaryotic expression system and purified using Ni-NTA affinity chromatography. Monoclonal antibodies (mAbs) against FAdV-4 were generated by immunizing BALB/c mice with the purified F1K protein and screened using a series of immunoassays. Potential B cell epitopes on the knob domain of fiber-1 protein were mapped using enzyme-linked immunosorbent assay (ELISA) and dot-blot. Precious location and crucial amino acids of the identified epitopes were determined using peptide array scanning, truncations and alanine-scanning mutagenesis. The epitopes were analyzed and visualized on the knob trimer of FAdV-4 fiber-1 protein using the PyMOL software. Results Water-soluble recombinant fiber-1 knob (F1K) protein was obtained with the assistance of chaperone. Four monoclonal antibodies (5C10, 6F8, 8D8, and 8E8) against FAdV-4 were generated and characterized using indirect ELISA, Western blot, dot-blot, and immunological fluorescence assay (IFA). The mAbs were demonstrated to be from different hybridoma cell lines based on the sequences of the variable regions. Meanwhile, three distinct novel linear B-cell epitopes (319SDVGYLGLPPH329, 328PHTRDNWYV336, and 407VTTGPIPFSYQ417) on the knob domain of fiber-1 protein were identified and the key amino acid residues in the epitopes were determined. Structural analysis showed that the two adjacent epitopes 319SDVGYLGLPPH329 and 328PHTRDNWYV336 were exposed on the surface of the fiber-1 knob trimer, whereas the epitope 407VTTGPIPFSYQ417 was located inside of the spatial structure. Conclusion This was the first identification of B-cell epitopes on the knob domain of fiber-1 protein and these findings provided a sound basis for the development of subunit vaccines, therapeutics, and diagnostic methods to control FAdV infections.
Collapse
Affiliation(s)
- Yongxiao Chai
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Rongfang Zhu
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenhua Guo
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunrui Xing
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu Han
- Henan Husbandry Technology Promotion Station, Zhengzhou, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Immunology, Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Feng X, Yin D, Fang T, Zhao C, Yue J, Zhu E, Cheng Z. Fowl adenovirus serotype 4 (FAdV-4) infection induces inflammatory responses in chicken embryonic cardiac fibroblasts via PI3K/Akt and IκBα/NF-κB signaling pathways. Res Vet Sci 2024; 176:105349. [PMID: 38968647 DOI: 10.1016/j.rvsc.2024.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1β, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.
Collapse
Affiliation(s)
- Xiaoao Feng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Dejing Yin
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Tian Fang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Chao Zhao
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Jun Yue
- Animal Disease Prevention and Control Center of Guizhou Province, Guiyang 550001, PR China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
5
|
Yang Y, Jiang G, He W, Tian X, Zheng H, Xiang B, Sun Y. Network of Interactions between the Mut Domains of the E2 Protein of Atypical Porcine Pestivirus and Host Proteins. Genes (Basel) 2024; 15:991. [PMID: 39202352 PMCID: PMC11354059 DOI: 10.3390/genes15080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of the E2 protein of APPV. This study identified 14 host cellular proteins that exhibit potential interactions with the Mut domains of the E2 protein using yeast two-hybrid screening. Using bioinformatics analysis, we discovered that the Mut domains of the E2 protein might exert regulatory effects on apoptosis by modulating energy metabolism within the mitochondria. We also conducted co-immunoprecipitation, glutathione S-transferase pull-down, and immunofluorescence assays to confirm the interaction between the Mut domains of the E2 protein and cathepsin H and signal sequence receptor subunit 4 (SSR4). Ultimately, SSR4 enhanced APPV replication in vitro. In summary, our study successfully elucidated the interactions between the Mut domains of the E2 protein and host cell protein, predicted the potential pathways implicated in these interactions, and demonstrated SSR4 involvement in APPV infection. These significant findings contribute valuable knowledge toward a deeper understanding of APPV pathogenesis and the role of the Mut domains of the E2 protein in this intricate process.
Collapse
Affiliation(s)
- Yuai Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Guangfei Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Weiqi He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Xin Tian
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Huanli Zheng
- Yunnan Animal Health Supervision Institute, Kunming 650201, China;
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Yongke Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| |
Collapse
|
6
|
Hou X, Wang L, Zhang R, Liu G, Wang T, Wen B, Chang W, Han S, Han J, Fang J, Qi X, Wang J. Differential innate immune responses to fowl adenovirus serotype 4 infection in Leghorn male hepatocellular and chicken embryo fibroblast cells. Poult Sci 2024; 103:103741. [PMID: 38670055 PMCID: PMC11066554 DOI: 10.1016/j.psj.2024.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.
Collapse
Affiliation(s)
- Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gen Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangzhou, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Li Y, Zhou H, Li B, Li J, Shen Y, Jiang Y, Cui W, Tang L. Immunoprotection of FliBc chimeric fiber2 fusion proteins targeting dendritic cells against Fowl adenovirus serotype 4 infection. Poult Sci 2024; 103:103474. [PMID: 38387285 PMCID: PMC10899072 DOI: 10.1016/j.psj.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein, and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 d postvaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Bolong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yuanmeng Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China.
| |
Collapse
|
8
|
Lee R, Sung HW, Cheong HT, Park J. Protective immune response induced by Leghorn male hepatoma cell-adapted fowl adenovirus-4. Heliyon 2024; 10:e25366. [PMID: 38356505 PMCID: PMC10864904 DOI: 10.1016/j.heliyon.2024.e25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Fowl adenovirus-4 (FAdV-4) is a highly contagious virus that causes acute and lethal hepatitis. It leads to substantial economic losses in the poultry industry. Among the structural proteins of FAdV-4, hexon and fiber2 are associated with immunopathogenesis. A frameshift mutation was generated in the fiber2 protein by seral passages in the Leghorn male hepatoma (LMH) cell line. Immunization using the attenuated virus (80 times passaged) before the virulent FAdV-4 challenge protected hosts from the infection and cleared the invading virus. In immunized animals, activated CD4+ and CD8+ T cell populations were larger during the FAdV-4 challenge. The change in the B cell population was similar. Myeloid cells were highly increased during FAdV-4 infection after the immunization, but the immunization inhibited the expansion in both liver and spleen. The functional gene expression for immune modulation was strongly associated with immune cell changes in the liver, however, this association was not strong in the spleen. The present findings imply that genetic modification by cellular adaptation regulates immune cell phenotype and function in the target organ. In addition, we suggest the attenuated virus as a protective strategy against the novel FAdV-4 strains.
Collapse
Affiliation(s)
- Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
9
|
Athukorala A, Lacasse C, Curtiss JB, Phalen DN, Sarker S. Characterisation of a novel aviadenovirus associated with disease in tawny frogmouths (Podargus strigoides). Virology 2023; 588:109904. [PMID: 37856912 DOI: 10.1016/j.virol.2023.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Aviadenoviruses are widespread in wild birds but rarely cause disease in nature. However, when naïve species are exposed to poultry or aviaries, aviadenoviruses can lead to disease outbreaks. This study characterised a novel aviadenovirus infection in a native Australian bird, the tawny frogmouth (Podargus strigoides) during an outbreak investigation. The identified complete genome of aviadenovirus, named tawny frogmouth aviadenovirus A (TwAviAdV-A) was 41,175 bp in length containing 52 putative genes. TwAviAdV-A exhibits the common aviadenovirus genomic organisation but with a notable monophyletic subclade in the phylogeny. The TwAviAdV-A virus was hepatotrophic and the six frogmouths presented to the wildlife hospitals in South Eastern Queensland most commonly exhibited regurgitation (in four frogmouths). Three were died or euthanized, two recovered, and one showed no signs. The detection of TwAviAdV-A in frogmouths coming into care re-emphasizes the need for strict biosecurity protocols in wildlife hospitals and care facilities.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Claude Lacasse
- RSPCA Queensland, 139 Wacol Station Road, Wacol, Queensland, 4076, Australia.
| | - Jeffrey B Curtiss
- IDEXX Laboratories, 3 Overend Street, East Brisbane, Queensland, 4169, Australia.
| | - David N Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, Australia; Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843-4467, USA.
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia; Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
10
|
Lai J, Yang L, Chen F, He X, Zhang R, Zhao Y, Gao G, Mu W, Chen X, Luo S, Ren T, Xiang B. Prevalence and Molecular Characteristics of FAdV-4 from Indigenous Chicken Breeds in Yunnan Province, Southwestern China. Microorganisms 2023; 11:2631. [PMID: 38004643 PMCID: PMC10673041 DOI: 10.3390/microorganisms11112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fashun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Gan Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Hou L, Wang W, Chi Z, Zhang Y, Zou Z, Zhao P. FAdV-4 Promotes Expression of Multiple Cytokines and Inhibits the Proliferation of aHEV in LMH Cells. Viruses 2023; 15:2072. [PMID: 37896849 PMCID: PMC10612091 DOI: 10.3390/v15102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Single or mixed infections of multiple pathogens such as avian hepatitis E virus (aHEV) and avian leukosis virus subgroup J (ALV-J) have been detected in numerous laying hens with severe liver injury in China. Thus, aHEV and immunosuppressive viruses are speculated to cause co-infections. In this study, co-infection with aHEV and fowl adenovirus (FAdV) was confirmed by nested RT-PCR and recombinase-aided amplification combined with gene sequencing in two flocks with severe liver injury. Subsequently, the two reference strains, aHEV and FAdV-4, were inoculated into LMH cells to identify their co-infection potential. Confocal microscopy revealed aHEV and FAdV-4 co-infected LMH cells. In addition, the replication dynamics of aHEV and FAdV-4 along with the expression levels of immuno-cytokines were measured. The results indicated colocalization of aHEV and FAdV-4 and inhibition of viral replication in LMH cells. The transcription levels of MDA5, Mx, OASL, and IFN-α were significantly upregulated in LMH cells, whereas those of immune-related factors induced by FAdV-4 were downregulated upon FAdV-4 and aHEV co-infection. These results confirmed the co-infection of aHEV and FAdV-4 in vitro and prompted the antagonistic pathogenic effects of FAdV-4 and aHEV, thereby providing novel insights into the counterbalancing effects of these viruses.
Collapse
Affiliation(s)
- Lidan Hou
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Wei Wang
- Zhaoyuan Center for Disease Control and Prevention, Yantai 265400, China;
| | - Zengna Chi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.C.); (Y.Z.)
| | - Yawen Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.C.); (Y.Z.)
| | - Zhong Zou
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.C.); (Y.Z.)
| |
Collapse
|
12
|
Wang T, Wang L, Li W, Hou X, Chang W, Wen B, Han S, Chen Y, Qi X, Wang J. Fowl adenovirus serotype 4 enters leghorn male hepatocellular cells via the clathrin-mediated endocytosis pathway. Vet Res 2023; 54:24. [PMID: 36918926 PMCID: PMC10015710 DOI: 10.1186/s13567-023-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) induced by fowl adenovirus serotype-4 (FAdV-4) has caused large economic losses to the world poultry industry in recent years. HHS is characterized by pericardial effusion and hepatitis, manifesting as a swollen liver with focal necroses and petechial haemorrhage. However, the process of FAdV-4 entry into hepatic cells remains largely unknown. In this paper, we present a comprehensive study on the entry mechanism of FAdV-4 into leghorn male hepatocellular (LMH) cells. We first observed that FAdV-4 internalization was inhibited by chlorpromazine and clathrin heavy chain (CHC) knockdown, suggesting that FAdV-4 entry into LMH cells depended on clathrin. By using the inhibitor dynasore, we showed that dynamin was required for FAdV-4 entry. In addition, we found that FAdV-4 entry was dependent on membrane cholesterol, while neither the knockdown of caveolin nor the inhibition of a tyrosine kinase-based signalling cascade affected FAdV-4 infection. These results suggested that FAdV-4 entry required cholesterol but not caveolae. We also found that macropinocytosis played a role, and phosphatidylinositol 3-kinase (PI3K) was required for FAdV-4 internalization. However, inhibitors of endosomal acidification did not prevent FAdV-4 entry. Taken together, our findings demonstrate that FAdV-4 enters LMH cells through dynamin- and cholesterol-dependent clathrin-mediated endocytosis, accompanied by the involvement of macropinocytosis requiring PI3K. Our work potentially provides insight into the entry mechanisms of other avian adenoviruses.
Collapse
Affiliation(s)
- Ting Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yan Chen
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Li S, Zhao R, Yang Q, Wu M, Ma J, Wei Y, Pang Z, Wu C, Liu Y, Gu Y, Liao M, Sun H. Phylogenetic and pathogenic characterization of current fowl adenoviruses in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105366. [PMID: 36115642 DOI: 10.1016/j.meegid.2022.105366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent years, fowl adenoviruses (FAdVs) continue to outbreak and cause huge economic losses to the poultry industry in China. The homologous recombination accounts for the diversity serotypes of adenovirus. However, the prevalence, recombination and pathogenicity of current FAdVs remain unclear. Herein, the prevalence, phylogenetic feature and pathogenicity of FAdVs in China in 2019 were characterized. Our findings showed that multiple species and serotypes of FAdVs currently circulate in China, including A, C, D and E species, and 1, 2, 4, 8a and 8b serotypes. Notably, the recombination occurred between FAdV-8a and FAdV-8b, and the recombination regions included Hexon, Fiber, ORF19 and ORF20. All five FAdVs replicated effectively in various chicken tissues, and viral shedding peaked at 4-8 dpi. Except CH/GDSZ/1905(FAdV-1/A), the remaining FAdVs caused obvious inclusion body hepatitis (IBH) in 3-week-old specific-pathogen-free (SPF) chickens, of which CH/JSXZ/1905(FAdV-4/C) caused hydropericardium-hepatitis syndrome (HHS) with a mortality rate of 62.5%. Taken together, our findings illustrate the prevalence, recombination and pathogenicity of current FAdVs in China and strengthen surveillance and further pathogenicity studies of FAdVs are extremely urgent.
Collapse
Affiliation(s)
- Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Rui Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Qingzhou Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Jinhuan Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Zifeng Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, PR China.
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
14
|
Niu Y, Liu Z, Wang M, Du K, Chang K, Ding Y. TMT-based quantitative proteomics analysis reveals the role of Notch signaling in FAdV-4-infected LMH cell. Front Microbiol 2022; 13:988259. [PMID: 36187945 PMCID: PMC9520525 DOI: 10.3389/fmicb.2022.988259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is recognized as a pathogen that causes hydropericardium syndrome. Irrespective of the pathway used by the virus to invade the chicken, the pathological characteristics of the disease include degeneration and necrosis of hepatocytes, formation of intranuclear inclusions, as well as inflammatory cell infiltration. Liver dysfunction constitutes one of the critical factors leading to death. Therefore, it is vital to investigate the virus-mediated severe pathological liver damage to further understand the pathogenesis of FAdV-4. Here, proteomics, a tandem mass tag (TMT)-based approach to directly analyze protein expression, was used to determine the protein expression during FAdV-4 proliferation in leghorn male hepatoma (LMH) cells. We identified 177 differentially expressed proteins associated with various biological processes and pathways. The functional enrichment analysis revealed that FAdV-4 could downregulate some signaling pathways in LMH cells, including NOD-like receptor signaling, RIG-I-like receptor signaling, NF-κB signaling, TNF signaling pathway, and Notch signaling, FoxO signaling, PI3K-Akt signaling, and autophagy. The results of proteomics screening suggested an association between FAdV-4 infection and Notch signaling in LMH in vitro, indicating that Notch signaling regulated the expression of inflammatory cytokines and interferons but not viral replication in LMH cells. These data contributed to the understanding of the immunopathogenesis and inflammopathogenesis of FAdV-4 infection and also provided valuable information for the further analysis of the molecular mechanisms underlying viral pathogenesis.
Collapse
|
15
|
Transcriptome Analysis Reveals Critical Factors For Survival After Adenovirus Serotype 4 Infection. Poult Sci 2022; 102:102150. [PMID: 36989855 PMCID: PMC10070941 DOI: 10.1016/j.psj.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fowl adenovirus serotype-4 (FAdV-4) is highly lethal to poultry, making it one of the leading causes of economic losses in the poultry industry. However, a small proportion of poultry can survive after FAdV-4 infection. It is unclear whether there are genetic factors that protect chickens from FAdV-4 infection. Therefore, the livers from chickens uninfected with FAdV-4 (Normal), dead after FAdV-4 infection (Dead) or surviving after FAdV-4 infection (Survivor) were collected for RNA-seq, and 2,649 differentially expressed genes (DEGs) were identified. Among these, many immune-related cytokines and chemokines were significantly upregulated in the Dead group compared with the Survivor group, which might indicate that death is related to an excessive inflammatory immune response (cytokine storm). Subsequently, the KEGG results for DEGs specifically expressed in each comparison group indicated that cell cycle and apoptosis-related DEGs were upregulated and metabolism-related DEGs were downregulated in the Dead group, which also validated the reliability of the samples. Furthermore, GO and KEGG results showed DEGs expressed in all three groups were mainly associated with cell cycle. Among them, BRCA1, CDK1, ODC1, and MCM3 were screened as factors that might influence FAdV-4 infection. The qPCR results demonstrated that these 4 factors were not only upregulated in the Dead group but also significantly upregulated in the LMH cells after 24 h infection by FAdV-4. Moreover, interfering with BRCA1, CDK1, ODC1, and MCM3 significantly attenuated viral replication of FAdV-4. And interfering of BRCA1, CDK1, and MCM3 had more substantial hindering effects. These results provided novel insights into the molecular changes following FAdV-4 infection but also shed light on potential factors driving the survival of FAdV-4 infection in chickens.
Collapse
|
16
|
Jia Z, Pan X, Zhi W, Chen H, Bai B, Ma C, Ma D. Probiotics Surface-Delivering Fiber2 Protein of Fowl Adenovirus 4 Stimulate Protective Immunity Against Hepatitis-Hydropericardium Syndrome in Chickens. Front Immunol 2022; 13:919100. [PMID: 35837390 PMCID: PMC9273852 DOI: 10.3389/fimmu.2022.919100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background and ObjectivesHepatitis-hydropericardium syndrome (HHS) caused by Fowl adenoviruses serotype 4 (FAdV-4) leads to severe economic losses to the poultry industry. Although various vaccines are available, vaccines that effectively stimulate intestinal mucosal immunity are still deficient. In the present study, novel probiotics that surface-deliver Fiber2 protein, the major virulence determiner and efficient immunogen for FAdV-4, were explored to prevent this fecal–oral-transmitted virus, and the induced protective immunity was evaluated after oral immunization.MethodsThe probiotic Enterococcus faecalis strain MDXEF-1 and Lactococcus lactis NZ9000 were used as host strains to deliver surface-anchoring Fiber2 protein of FAdV-4. Then the constructed live recombinant bacteria were orally vaccinated thrice with chickens at intervals of 2 weeks. Following each immunization, immunoglobulin G (IgG) in sera, secretory immunoglobulin A (sIgA) in jejunum lavage, immune-related cytokines, and T-cell proliferation were detected. Following challenge with the highly virulent FAdV-4, the protective effects of the probiotics surface-delivering Fiber2 protein were evaluated by verifying inflammatory factors, viral load, liver function, and survival rate.ResultsThe results demonstrated that probiotics surface-delivering Fiber2 protein stimulated humoral and intestinal mucosal immune responses in chickens, shown by high levels of sIgA and IgG antibodies, substantial rise in mRNA levels of cytokines, increased proliferative ability of T cells in peripheral blood, improved liver function, and reduced viral load in liver. Accordingly, adequate protection against homologous challenges and a significant increase in the overall survival rate were observed. Notably, chickens orally immunized with E. faecalis/DCpep-Fiber2-CWA were completely protected from the FAdV-4 challenge, which is better than L. lactis/DCpep-Fiber2-CWA.ConclusionThe recombinant probiotics surface-expressing Fiber2 protein could evoke remarkable humoral and cellular immune responses, relieve injury, and functionally damage target organs. The current study indicates a promising method used for preventing FAdV-4 infection in chickens.
Collapse
Affiliation(s)
- Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| |
Collapse
|
17
|
Wang XP, Wen B, Zhang XJ, Ma L, Liang XL, Zhang ML. Transcriptome Analysis of Genes Responding to Infection of Leghorn Male Hepatocellular Cells With Fowl Adenovirus Serotype 4. Front Vet Sci 2022; 9:871038. [PMID: 35774982 PMCID: PMC9237548 DOI: 10.3389/fvets.2022.871038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a highly pathogenic virus with a broad host range that causes huge economic losses for the poultry industry worldwide. RNA sequencing has provided valuable and important mechanistic clues regarding FAdV-4–host interactions. However, the pathogenic mechanism and host's responses after FAdV-4 infection remains limited. In this study, we used transcriptome analysis to identify dynamic changes in differentially expressed genes (DEGs) at five characteristic stages (12, 24, 36, 48, and 60 h) post infection (hpi) with FAdV-4. A total of 8,242 DEGs were identified based on comparison of five infection stages: 0 and 12, 12 and 24, 24 and 36, 36 and 48, and 48 and 60 hpi. In addition, at these five important time points, we found 37 common upregulated or downregulated DEGs, suggesting a common role for these genes in host response to viral infection. The predicted function of these DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these DEGs were associated with viral invasion, host metabolic pathways and host immunosuppression. Interestingly, genes involved in viral invasion, probably EGR1, SOCS3, and THBS1, were related to FAdV-4 infection. Validation of nine randomly selected DEGs using quantitative reverse-transcription PCR produced results that were highly consistent with those of RNA sequencing. This transcriptomic profiling provides valuable information for investigating the molecular mechanisms underlying host–FAdV-4 interactions. These data support the current molecular knowledge regarding FAdV-4 infection and chicken defense mechanisms.
Collapse
Affiliation(s)
- Xueping P. Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
- *Correspondence: Xueping P. Wang
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiao J. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Lei Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Xiu L. Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Ming L. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
18
|
Xiang S, Huang R, He Q, Xu L, Wang C, Wang Q. Arginine regulates inflammation response-induced by Fowl Adenovirus serotype 4 via JAK2/STAT3 pathway. BMC Vet Res 2022; 18:189. [PMID: 35590365 PMCID: PMC9118595 DOI: 10.1186/s12917-022-03282-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Fowl Adenovirus serotype 4 (FAdV-4) infection causes severe inflammatory response leading to hepatitis-hydropericardium syndrome (HHS) in poultry. As an essential functional amino acid of poultry, arginine plays a critical role in anti-inflammatory and anti-oxidative stress. Results In this study, the differential expression genes (DEGs) were screened by transcriptomic techniques, and the DEGs in gene networks of inflammatory response-induced by FAdV-4 in broiler’s liver were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The results showed that the cytokines pathway and JAK/STAT pathway were significantly enriched, in which the DEGs levels of IL-6, IL-1β, IFN-α, JAK and STAT were significantly up-regulated after FAdV-4 infection. It was further verified with real-time fluorescence quantitative polymerase chain reaction (Real-time qPCR) and Western blotting (WB) in vitro and in vivo. The findings demonstrated that FAdV-4 induced inflammatory response and activated JAK2/STAT3 pathway. Furthermore, we investigated whether arginine could alleviate the liver inflammation induced by FAdV-4. After treatment with 1.92% arginine level diet to broilers or 300 μg/mL arginine culture medium to LMH cell line with FAdV-4 infection at the same time, we found that the mRNA levels of IL-6, IL-1β, IFN-α and the protein levels of p-JAK2, p-STAT3 were down-regulated, compared with FAdV-4 infection group. Furthermore, we confirmed that the inflammation induced by FAdV-4 was ameliorated by pre-treatment with JAK inhibitor AG490 in LMH cells, and it was further alleviated in LMH cells treatment with AG490 and ARG. Conclusions These above results provide new insight that arginine protects hepatocytes against inflammation induced by FAdV-4 through JAK2/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03282-9.
Collapse
Affiliation(s)
- Silin Xiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Ruiling Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Qing He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Lihui Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Quanxi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry Univesity, Fuzhou, 350002, P.R. China.
| |
Collapse
|
19
|
The Role of Hexon Amino Acid 188 Varies in Fowl Adenovirus Serotype 4 Strains with Different Virulence. Microbiol Spectr 2022; 10:e0149322. [PMID: 35587634 PMCID: PMC9241812 DOI: 10.1128/spectrum.01493-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) induced by fowl adenovirus serotype 4 (FAdV-4) has caused huge economic losses to poultry industries. The key genes responsible for different virulence of FAdV-4 strains are not fully elucidated. Previous studies indicated that hexon of pathogenic FAdV-4 has a conserved arginine (R) at position 188, and a conserved isoleucine (I) is present at this position in reported nonpathogenic FAdV-4. Recently, it was reported that R188 of hexon is the determinant site for pathogenicity of the emerging Chinese FAdV-4 strain. However, the role of hexon amino acid 188 (aa188) has not been examined in the nonpathogenic FAdV-4 strain. In this study, three recombinant FAdV-4 viruses, H/H/R188I, O/O/I188R, and H/O/I188R, were constructed by mutating hexon aa188 of FAdV-4 pathogenic strain CH/HNJZ/2015 (H) and nonpathogenic strain ON1 (O), and pathogenicity was assessed in specific-pathogen-free (SPF) chickens. Consistent with previous findings, H/O/I188R exhibited pathogenicity similar to that of CH/HNJZ/2015, yet H/H/R188I induced no mortality. Unexpectedly, all chickens infected with O/O/I188R survived. Postmortem examination of O/O/I188R-infected chickens showed typical lesions of inclusion body hepatitis rather than HHS. Expression of proinflammatory cytokines in CH/HNJZ/2015- and H/O/I188R-infected chickens was significantly higher than that in H/H/R188I-, ON1-, and O/O/I188R-infected chickens. Analysis of predicted hexon protein structures indicated that aa188 mutation leads to conformational changes in the L1 loop of HNJZ-hexon but not in ON1-hexon. In summary, the present study demonstrated that the role of hexon aa188 in the virulence of FAdV-4 varies between different strains. Induction of HHS requires factors aside from hexon aa188 in the emerging Chinese FAdV-4 strain. IMPORTANCE HHS induced by FAdV-4 has caused huge economic losses to the poultry industry. The key determinants for the different virulence of FAdV-4 have not been fully elucidated. Here, we investigated the role of hexon aa188 in FAdV-4 strains with different virulence and showed that the role of hexon aa188 varies in FAdV-4 strains with different genetic contents. The hexon R188 may be the key amino acid for causing inclusion body hepatitis by the pathogenic FAdV-4 strain, and induction of HHS by FAdV-4 may need other viral cofactors. Moreover, the hexon R188I mutation greatly affected the expression of proinflammatory cytokines induced by the pathogenic strain CH/HNJZ/2015, but no significant difference was observed between the nonpathogenic strain ON1 and ON1 with hexon I188R mutation. We found that hexon aa188 mutation induced conformational changes to hexon protein in CH/HNJZ/2015 but not in ON1, which might be the underlying reason for the changing virulence.
Collapse
|
20
|
Cellular protein HSC70 promotes fowl adenovirus serotype 4 replication in LMH cells via interacting with viral 100K protein. Poult Sci 2022; 101:101941. [PMID: 35679674 PMCID: PMC9189218 DOI: 10.1016/j.psj.2022.101941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4), the predominant causative agent of hepatitis-hydropericardium syndrome (HHS), has caused severe economic losses to poultry industry since 2015. Although fiber2 and hexon have been confirmed to be the virulence-related factors, the roles of nonstructural viral proteins in pathogenicity of FAdV-4 remain poorly understood. Here, a tandem mass spectrometry (MS) was used to identify host factors interacted with 100K protein of hypervirulent FAdV-4 isolate (CH/HNJZ/2015), and 2595 cellular proteins associated with many biological processes and pathways were identified according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Among the proteins, HSC70 was verified to interact with 100K through co-immunoprecipitation assay. Notably, overexpression of HSC70 promoted the replication of FAdV-4 in LMH cells, whereas blocking HSC70 with inhibitor ver-155008 markedly suppressed viral replication. Collectively, these findings suggested that many cellular proteins involved in FAdV-4 infection through interacting with 100K and HSC70 positively regulated virus replication.
Collapse
|
21
|
Schachner A, Hess M. Special Issue: Avian Adenoviruses. Viruses 2022; 14:v14040680. [PMID: 35458410 PMCID: PMC9025726 DOI: 10.3390/v14040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Anna Schachner
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
22
|
Mase M, Tanaka Y, Iseki H, Watanabe S. Genomic characterization of a fowl adenovirus serotype 4 strain isolated from a chicken with hydropericardium syndrome in Japan. Arch Virol 2022; 167:1191-1195. [PMID: 35182243 DOI: 10.1007/s00705-022-05390-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
Here, we report the genomic characterization of a fowl adenovirus serotype 4 strain isolated from a chicken with hydropericardium syndrome in Japan. The viral genome of FAdV-4 strain JP/LVP-1/96 was found to be 45,688 bp long. Amino acid substitutions at position 219 (G to D) in the fiber-2 protein and at position 188 (I to R) in the hexon protein, which are commonly found in virulent FAdV-4 strains, were also found in the JP/LVP-1/96 strain. Additional specific amino acid substitutions commonly found in virulent FAdV-4 strains were found in ORFs 4 and 43, which are present only in members of the species Fowl adenovirus C. Phylogenetic analysis based on complete hexon protein gene sequences showed that strain JP/LVP-1/96 belongs to a different genetic cluster from the strains circulating in neighboring countries.
Collapse
Affiliation(s)
- Masaji Mase
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan. .,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan. .,Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Yuko Tanaka
- Kyoto Prefectural Chutan Livestock Hygiene Center, 371-2 Handa Fukuchiyama, Kyoto, 602-8570, Japan
| | - Hiroshi Iseki
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Satoko Watanabe
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
23
|
Ma H, Niu Y. Metabolomic Profiling Reveals New Insight of Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022; 12:784745. [PMID: 35111140 PMCID: PMC8801735 DOI: 10.3389/fmicb.2021.784745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic fowl adenovirus serotype 4 (FAdV-4) is the causative agent of hydropericardium syndrome (HPS), which is characterized by pericardial effusion and hepatitis, and is one of the foremost causes of economic losses to the poultry industry over the last 30 years. However, the metabolic changes in cells in response to FAdV-4 infection remain unclear. In order to understand the metabolic interactions between the host cell and virus, we utilized ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry to analyze the metabolic profiles with hepatocellular carcinoma cell line (LMH) infected with FAdV-4. The results showed that FAdV-4 could restore metabolic networks in LMH cells and tricarboxylic acid cycle, glycolysis, and metabolism of purines, pyrimidines, alanine, aspartate, glutamate, and amino sugar and nucleotide sugar moieties. Moreover, FAdV-4 production was significantly reduced in LMH cells cultured in glucose or glutamine-deficient medium. These observations highlighted the importance of host cell metabolism in virus replication. Therefore, similarities and disparities in FAdV-4-regulation of the metabolism of host cells could help improve targeted drug and reduce infection.
Collapse
|
24
|
Wang B, Guo H, Qiao Q, Huang Q, Yang P, Song C, Song M, Wang Z, Li Y, Miao Y, Zhao J. Hypervirulent FAdV-4 infection induces activation of the NLRP3 inflammasome in chicken macrophages. Poult Sci 2021; 101:101695. [PMID: 35077922 PMCID: PMC8792265 DOI: 10.1016/j.psj.2021.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 10/28/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent of hepatitis-hydropericardium syndrome (HHS) causing great economic losses to the world poultry industry. The exact factors responsible for the pathogenesis of hypervirulent FAdV-4 have not been completely elucidated. Hypervirulent FAdV-4 infection induces inflammatory damages in accompany with a high level of proinflammatory interleukin-1 beta (IL-1β) secretion in a variety of organs. Investigation of the mechanisms underlying hypervirulent FAdV-4-induced IL-1β secretion would contribute to understanding of the pathogenesis of FAdV-4. Here, we investigated whether FAdV-4 infection activates NLRP3 inflammasome in chicken macrophage cell line HD11. The results showed that stimulation of HD11 with hypervirulent FAdV-4 induced NLRP3- and Caspase-1-dependent secretion of IL-1β. Genetic knockdown of NLRP3 or Caspase-1 expression, a critical component of inflammasome, significantly downregulated IL-1β expression, indicating that activation of the NLRP3 inflammasome contributed to the FAdV-4-induced IL-1β secretion. Moreover, ATP signaling and potassium efflux were involved in the process of NLRP3 inflammasome activation. Our data indicated that hypervirulent FAdV-4 infection induces the activation of NLRP3 inflammasome and followed by massive secretion of IL-1β of macrophages, which thereby contribute to the inflamed lesion of tissues.
Collapse
Affiliation(s)
- Baiyu Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huifang Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qilong Qiao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qing Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Yang
- Fujian Shengwei Biotech Co., Ltd., Nanping 354100, China
| | - Congcong Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingzhen Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuhe Miao
- Fujian Shengwei Biotech Co., Ltd., Nanping 354100, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
25
|
Borman P, Campa C, Delpierre G, Hook E, Jackson P, Kelley W, Protz M, Vandeputte O. Selection of Analytical Technology and Development of Analytical Procedures Using the Analytical Target Profile. Anal Chem 2021; 94:559-570. [PMID: 34928590 DOI: 10.1021/acs.analchem.1c03854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A structured approach to method development can help to ensure an analytical procedure is robust across the lifecycle of its use. The analytical target profile (ATP), which describes the required quality of the reportable value to be produced by the analytical procedure, enables the analytical scientist to select the best analytical technology on which to develop their procedure(s). Once the technology has been identified, screening of potentially fit for purpose analytical procedures should take place. Analytical procedures that have been demonstrated to meet the ATP should be evaluated against business drivers (e.g., operational constraints) to determine the most suitable analytical procedure. Three case studies are covered from across small molecules, vaccines, and biotherapeutics. The case studies cover different aspects of the analytical procedure selection process, such as the use of platform method development processes and procedures, the development of multiattribute analytical procedures, and the use of analytical technologies to provide product characterization knowledge in order to define or redefine the ATP. Challenges associated with method selection are discussed such as where existing pharmacopoeial monographs link acceptance criteria to specific types of analytical technology.
Collapse
Affiliation(s)
- Phil Borman
- Product Development and Supply, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Cristiana Campa
- Technical Research & Development, Vaccines, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elliot Hook
- Global Pharma Analytical Science and Technology, Pharma Supply Chain, GSK, Priory Street, Ware, SG12 0DJ, U.K
| | - Patrick Jackson
- Product Development and Supply, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Wayne Kelley
- Product Development and Supply, GSK, King of Prussia, Pennsylvania 19406, United States
| | - Michel Protz
- Analytical Research and Development, GSK, 1330 Rixensart, Belgium
| | | |
Collapse
|
26
|
The pros and cons of cytokines for fowl adenovirus serotype 4 infection. Arch Virol 2021; 167:281-292. [PMID: 34839444 DOI: 10.1007/s00705-021-05318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has spread on chicken farms worldwide, causing huge economic losses. Currently, the exact mechanism of pathogenesis of FAdV-4 remains unknown. Despite the severe inflammatory damage observed in chickens infected with pathogenic FAdV-4, few studies have focused on the host immune system-virus interactions and cytokine secretion. Host immunity acts as one of the most robust defense mechanisms against infection by pathogens, and cytokines are important in their elimination. However, excessive inflammatory cytokine secretion could contribute to the pathogenesis of FAdV-4. Understanding of the roles of cytokines produced during FAdV-4 infection is important for the study of pathogenicity and for developing strategies to control FAdV-4. Several previous studies have addressed the immune responses to FAdV-4 infection, but there has not been a systematic review of this work. The present review provides a detailed summary of the current findings on cytokine production induced by FAdV-4 infection to accelerate our understanding of FAdV-4 pathogenesis.
Collapse
|
27
|
Hou L, Su Q, Zhang Y, Liu D, Mao Y, Zhao P. Development of a PCR-based dot blot assay for the detection of fowl adenovirus. Poult Sci 2021; 101:101540. [PMID: 34823181 PMCID: PMC8626688 DOI: 10.1016/j.psj.2021.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
Group-I Fowl adenovirus (FAdV) is still widespread in China's chicken farms, leading to huge economic losses. The traditional PCR method, which can detect all serotypes at the same time, is not sensitive enough to obtain accurate results, especially in some samples containing only a low titer of virus, such as contaminated live vaccine. In order to solve this problem, this study developed a dot blot assay based on the above PCR method. A total of 6 probes targeting the conserved region of FAdV were designed and systematically optimized through sensitivity, accuracy, and stability analyses. Results showed that it is not only suitable for 12 serotypes, but also effectively improve the sensitivity, which increased more than 100 times in comparison with PCR assay. Moreover, this sensitivity was increased 100 times when detecting contaminated live vaccine samples, showing the great prospect of this method in daily monitoring.
Collapse
Affiliation(s)
- Lidan Hou
- China Institute of Veterinary Drug Control, Beijing 100081, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271001, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271001, China
| | - Dan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaqing Mao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271001, China.
| |
Collapse
|
28
|
Yin D, Shao Y, Yang K, Tu J, Song X, Qi K, Pan X. Fowl adenovirus serotype 4 uses gga-miR-181a-5p expression to facilitate viral replication via targeting of STING. Vet Microbiol 2021; 263:109276. [PMID: 34785478 DOI: 10.1016/j.vetmic.2021.109276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) has caused substantial economic losses to the poultry industry and it has become a serious pathogen of poultry in China since 2015. MicroRNAs (miRNAs) play vital roles in regulating viral infection. However, how miRNAs regulate FAdV-4 replication in Leghorn male hepatocellular (LMH) cells remains unclear. This study aimed to elucidate the role of gga-miR-181a-5p in regulating FAdV-4 replication. The findings indicated that the expression of gga-miR-181a-5p was significantly upregulated in LMH cells during FAdV-4 infection. Also, the transfection of gga-miR-181a-5p mimics promoted FAdV-4 replication, while the opposite result was observed when gga-miR-181a-5p inhibitor was transfected in LMH cells. Moreover, the stimulator of interferon genes (STING) was found to be the target gene of gga-miR-181a-5p using software analysis, further confirming that STING was the target of gga-miR-181a-5p and gga-miR-181a-5p could negatively regulate the expression of STING at the mRNA and protein levels. Finally, the results showed that the overexpression of STING inhibited FAdV-4 replication and the knockout of STING promoted FAdV-4 replication. The collective findings revealed a novel host evasion mechanism adopted by FAdV-4 via gga-miR-181a-5p, suggesting novel strategies for designing miRNA-based vaccines and therapies.
Collapse
Affiliation(s)
- Dongdong Yin
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China; Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230031, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Kankan Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Xiaocheng Pan
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230031, PR China.
| |
Collapse
|
29
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Mo J. Historical Investigation of Fowl Adenovirus Outbreaks in South Korea from 2007 to 2021: A Comprehensive Review. Viruses 2021; 13:2256. [PMID: 34835062 PMCID: PMC8621494 DOI: 10.3390/v13112256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Fowl adenoviruses (FAdVs) have long been recognized as critical viral pathogens within the poultry industry, associated with severe economic implications worldwide. This specific group of viruses is responsible for a broad spectrum of diseases in birds, and an increasing occurrence of outbreaks was observed in the last ten years. Since their first discovery forty years ago in South Korea, twelve antigenically distinct serotypes of fowl adenoviruses have been described. This comprehensive review covers the history of fowl adenovirus outbreaks in South Korea and updates the current epidemiological landscape of serotype diversity and replacement as well as challenges in developing effective broadly protective vaccines. In addition, transitions in the prevalence of dominant fowl adenovirus serotypes from 2007 to 2021, alongside the history of intervention strategies, are brought into focus. Finally, future aspects are also discussed.
Collapse
Affiliation(s)
- Jongseo Mo
- US National Poultry Research Center, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, U.S. Department of Agriculture, 934 College Station Rd., Athens, GA 30605, USA
| |
Collapse
|
31
|
Transcriptome Analysis Reveals the Potential Role of Long Noncoding RNAs in Regulating Fowl Adenovirus Serotype 4-Induced Apoptosis in Leghorn Male Hepatocellular Cells. Viruses 2021; 13:v13081623. [PMID: 34452487 PMCID: PMC8402884 DOI: 10.3390/v13081623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is caused by fowl adenovirus serotype 4 (FAdV-4) and has resulted in considerable economic losses to the poultry industry globally. FAdV-4 elicits apoptosis in host cells. Long noncoding RNAs (lncRNAs) have emerged as important regulatory RNAs with profound effects on various biological processes, including apoptosis. However, it remains unknown whether lncRNAs participate in FAdV-4-induced apoptosis. In this study, RNA sequencing was applied to determine the transcription of cellular lncRNA in leghorn male hepatocellular (LMH) cells infected with FAdV-4. Cellular RNA transcription analysis demonstrated that FAdV-4 infection elicited 1798 significantly differentially expressed (DE) lncRNAs in infected LMH cells at 24 h post-infection (hpi) compared to mock control infection. In addition, 2873 DE mRNAs were also found. Target prediction and analyses revealed that 775 DE lncRNAs whose 671 target mRNAs were among the DE mRNAs were involved in several signaling pathways, including the AMPK signaling pathway, p53 signaling pathway and insulin signaling pathway. From these 775 DE lncRNAs, we identified 71 DE lncRNAs related to apoptosis based on their target gene functions. Subsequently, lncRNA 54128 was selected from the 71 identified DE lncRNAs, and its role in FAdV-4-induced apoptosis was verified. LncRNA 54128 interference significantly suppressed the rate of apoptosis, which was accompanied by reduced BMP4 transcription levels. To the best of our knowledge, this is the first study to analyze host lncRNA transcription during FAdV-4 infection. Our findings provide a better understanding of host responses to FAdV-4 infection and provide new directions for understanding the potential association between lncRNAs and FAdV-4 pathogenesis.
Collapse
|
32
|
Hou L, Chen X, Wang J, Li J, Yang H. A tandem mass tag-based quantitative proteomic analysis of fowl adenovirus serotype 4-infected LMH cells. Vet Microbiol 2021; 255:109026. [PMID: 33743407 DOI: 10.1016/j.vetmic.2021.109026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is recognized as an economically important pathogen for the poultry industry worldwide. FAdV-4 infection causes a metabolic disturbance of hepatocytes, leading to hydropericardium-hepatitis syndrome (HHS) in poultry. However, the metabolic response of hepatocytes to FAdV-4 infection remains poorly investigated. Here, a tandem mass tag (TMT)-based approach was first used to quantitatively identify differentially expressed proteins (DEPs) in leghorn male hepatoma (LMH) cells infected with the virulent FAdV-4 strain GY. We identified 666 DEPs associated with many biological processes and pathways, according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Functional enrichment analysis revealed that three pathways, including metabolism-related signaling pathways, apoptosis, and autophagy responses, were enriched during FAdV-4 infection. Moreover, excessive induction of metabolism-related signaling pathways by FAdV-4 infection might be associated with HHS induced by the virus. Meanwhile, among the proteins in these pathways, RRM2, SAE1, AEN, and RAD50 were verified through western blotting to be markedly altered in FAdV-4-infected LMH cells. Notably, overexpression of SAE1 inhibited the replication of FAdV-4 in vitro, whereas silencing of SAE1 expression promoted the replication of the virus. Collectively, our findings show for the first time that SAE1 is a host cellular protein that plays roles in regulating the life cycle of FAdV-4.
Collapse
Affiliation(s)
- Lidan Hou
- Key Laboratory of Animal Epidemiology of Chinese Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Xiaochun Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Jia Wang
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Junping Li
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Chinese Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
33
|
Fowl Adenovirus Serotype 4 Induces Hepatic Steatosis via Activation of Liver X Receptor-α. J Virol 2021; 95:JVI.01938-20. [PMID: 33361420 DOI: 10.1128/jvi.01938-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic virus that causes severe hepatic damage characterized by basophilic intranuclear inclusion bodies, vacuolar degeneration, and multifocal necrosis in hepatocytes. Many aspects of FAdV-4 infection and pathogenesis, however, remain unknown. Here, we found that FAdV-4-induced hepatic injury is accompanied by the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in FAdV-4-infected chickens. Significant upregulation of adipose synthesis-related genes, such as liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding protein-1c (SREBP-1c), and significant downregulation of low-density lipoprotein secretion-related genes and lipid oxidation- and lipid decomposition-related genes were observed in the infected chickens. FAdV-4 infection in cultured leghorn male hepatoma (LMH) cells caused similar signs of steatosis, with alterations in various lipogenesis-related genes. We eliminated the effect of LXR-α activation on FAdV-4-induced steatosis and found that treatment with an LXR-α antagonist (SR9243) and RNA interference (small interfering RNA targeting LXR-α [Si-LXR-α]) decreased the number of oil droplets and the accumulation of lipogenic genes, but treatment with an LXR-α agonist (T0901317) increased the number of oil droplets and the accumulation of lipogenic genes in the cells. Additionally, SR9243 treatment or Si-LXR-α transfection led to significant reductions in viral DNA level, protein expression, and virus production, whereas T0901317 treatment caused significant increases in viral DNA level, protein expression, and virus production. However, inhibition of SREBP-1c activity had no significant effect on virus production. Collectively, these results indicated that FAdV-4-induced steatosis involves activation of the LXR-α signaling pathway, which might be a molecular mechanism underlying the hepatic injury associated with FAdV-4 infection.IMPORTANCE Fowl adenovirus serotype 4 (FAdV-4) is an important hepatotropic adenovirus in chicken, but the underlying mechanism of FAdV-4-induced hepatic injury remains unclear. We report here that infection with FAdV-4 induced the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in the livers of chickens. FAdV-4-induced steatosis might be caused by a disrupted balance of fat metabolism, as evidenced by differential regulation of various lipase genes. The significant upregulation of liver X receptor-α (LXR-α) prompted us to investigate the interplay between LXR-α activation and FAdV-4-induced steatosis. Treatment with an agonist, an antagonist, or RNA interference targeting LXR-α in cultured leghorn male hepatoma (LMH) cells indicated that FAdV-4-induced steatosis was dependent upon LXR-α activation, which contributed to virus replication. These results provide important mechanistic insights, revealing that FAdV-4 induces hepatic steatosis by activating the LXR-α signaling pathway and highlighting the therapeutic potential of strategies targeting the LXR-α pathway for the treatment of FAdV-4 infection.
Collapse
|
34
|
Jia Z, Ma C, Yang X, Pan X, Li G, Ma D. Oral Immunization of Recombinant Lactococcus lactis and Enterococcus faecalis Expressing Dendritic Cell Targeting Peptide and Hexon Protein of Fowl Adenovirus 4 Induces Protective Immunity Against Homologous Infection. Front Vet Sci 2021; 8:632218. [PMID: 33708811 PMCID: PMC7940690 DOI: 10.3389/fvets.2021.632218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hepatitis-hydropericardium syndrome (HPS) causes severe economic losses in the global poultry industry. The present study aims to explore oral immunization of recombinant Lactococcus lactis and Enterococcus faecalis expressing Hexon protein of fowl adenovirus 4 (FAdV-4). The bacteria L. lactis NZ9000 and E. faecalis MDXEF-1 were, respectively, modified as host strain to deliver truncated Hexon protein (ΔHexon) or ΔHexon protein fusing with dendritic cell (DC) targeting peptide (DC-ΔHexon) on the surface of bacteria. The expression of target protein in L. lactis NZ9000 and E. faecalis MDXEF-1 were detected by western blot. To evaluate the immune responses and protective efficacies provided by the live recombinant bacteria, chickens were immunized with the constructed ΔHexon-expressing bacteria three times at 2-week intervals, then experimentally challenged with hypervirulent FAdV-4/GX01. The results showed that oral immunizations with the four ΔHexon-expressing bacteria (NZ9000/ΔHexon-CWA, NZ9000/DC-ΔHexon-CWA, MDXEF-1/ΔHexon-CWA, and MDXEF-1/DC-ΔHexon-CWA), especially the two bacteria carrying DC-targeting peptide, stimulated higher levels of ΔHexon-specific sera IgG and secretory IgA (sIgA) in jejunal lavage fluid, higher proliferation of peripheral blood lymphocytes (PBLs) and higher levels of Th1/Th2-type cytokines, along with significantly decreased virus loads in liver and more offered protective efficacies against FAdV infection compared with PBS and empty vector control groups (p < 0.01). For chickens in the group MDXEF-1/DC-ΔHexon-CWA, the levels of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) in sera, and the virus loads in livers were significantly decreased vs. the other three ΔHexon-expressing bacteria (p < 0.01). The pathological changes in the hearts, livers, spleens and kidneys of chickens in MDXEF-1/DC-ΔHexon-CWA group were relatively slight compared to infection control group and other three ΔHexon-expressing bacteria groups. The rate of protection in MDXEF-1/DC-ΔHexon-CWA group was 90%. The present work demonstrated that cell surface-displayed target protein and immune enhancers in L. lactis and E. faecalis might be a promising approach to enhance immunity and immune efficacy against pathogen FAdV-4 infection.
Collapse
Affiliation(s)
- Zhipeng Jia
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin, China
| | - Xuelian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xinghui Pan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Guangxing Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dexing Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
35
|
Mei C, Xian H, Blackall PJ, Hu W, Zhang X, Wang H. Concurrent infection of Avibacterium paragallinarum and fowl adenovirus in layer chickens. Poult Sci 2020; 99:6525-6532. [PMID: 33248567 PMCID: PMC7704954 DOI: 10.1016/j.psj.2020.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
The diagnosis of a concurrent infection of Avibacterium paragallinarum and fowl adenovirus (FAdV) in an infectious coryza–like outbreak in the outskirt of Beijing is reported. The primary signs of the infection were acute respiratory signs, a drop in egg production, and the presence of hydropericardium–hepatitis syndrome–like gross lesions. Laboratory examination confirmed the presence of A. paragallinarum by bacterial isolation and a species-specific PCR test. In addition, conventional serotyping identified the isolates as Page serovar A. Fowl adenovirus was isolated from chicken liver specimen and identified by hexon gene amplification. In addition, histopathologic analysis and transmission electron microscopy examination further confirmed the presence of the virus. Both hexon gene sequencing and phylogenetic analysis defined the viral isolate as FAdV-4. The pathogenic role of A. paragallinarum and FAdV was evaluated by experimental infection of specific-pathogen-free chickens. The challenge trial showed that combined A. paragallinarum and FAdV infection resulted in more severe clinical signs than that by FAdV infection alone. The concurrent infection caused 50% mortality compared with 40% mortality by FAdV infection alone and zero mortality by A. paragallinarum infection alone. To our knowledge, this is the first report of A. paragallinarum coinfection with FAdV. The case implies that concurrent infections with these 2 agents do occur and more attention should be given to the potential of multiple agents during disease diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Mei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong Xian
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - P J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| | - Wei Hu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hongjun Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China.
| |
Collapse
|
36
|
Schachner A, Grafl B, Hess M. Spotlight on avian pathology: fowl adenovirus (FAdV) in chickens and beyond - an unresolved host-pathogen interplay. Avian Pathol 2020; 50:2-5. [PMID: 32795192 DOI: 10.1080/03079457.2020.1810629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fowl adenovirus (FAdV) infections in chickens have undergone substantial changes in recent decades, driven by host and pathogen factors. Based on the pathogenesis of inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS), modern broilers are much more inclined to have difficulties keeping the metabolic homeostasis, whereas adenoviral gizzard erosion (AGE) is noticed equally in broilers and egg-layers. Defining the importance of certain serotypes for specific FAdV diseases is a major achievement of recent years but the isolation of viruses from clinically healthy birds remains unexplained, as virulence factors are hardly known and continue to be a "black box". Together with further studies on pathogenesis of FAdV-induced diseases, such knowledge on virulence factors would help to improve protection strategies, which presently mainly concentrate on autogenous vaccines of breeders to prevent vertical transmission.
Collapse
Affiliation(s)
- Anna Schachner
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Austria
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Michael Hess
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Austria.,Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
37
|
Research Note: Molecular relationship of the fowl adenovirus serotype 4 isolated from the contaminated live vaccine and wild strains isolated in China, 2013-2018. Poult Sci 2020; 99:6643-6646. [PMID: 33248579 PMCID: PMC7704713 DOI: 10.1016/j.psj.2020.08.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Since June 2013, hydropericardium-hepatitis syndrome caused by putative novel fowl adenovirus 4 (FAdV-4) infection has spread all over China, leading to great economic losses. Previous study found that the use of attenuated vaccines contaminated with FAdV-4 is likely to be an important cause of such large-scale transmission. Here, we sequenced the whole genome of this strain through the next-generation sequencing and carried out a retrospective analysis of the FAdV-4 strains that have been determined in China recently. Results show the vaccine strain was almost 100% identical with wild virus strains, especially with 4 strains considering the difference of the GA repeat region, further linking the relationship between vaccine contamination and FAdV-4 prevalence in China. Meanwhile, there is no time and regional preference for the emergence of FAdV-4 strains with different molecular characteristics in China, which indicates that there may be multiple routes of transmission of this virus, suggesting that we still need to pay more attention to and formulate correct prevention and control in the future.
Collapse
|
38
|
Hahm B. Special Issue "Viral Evasion or Suppression of Host Immunity". Viruses 2020; 12:v12060656. [PMID: 32570695 PMCID: PMC7354569 DOI: 10.3390/v12060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
39
|
Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens. Int J Biol Macromol 2020; 146:497-507. [PMID: 31923489 DOI: 10.1016/j.ijbiomac.2020.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a predominant DNA sensor inducing the activation of the innate immune responses that produce proinflammatory cytokines and type I interferons, which has been well-investigated in mammals. However, chicken cGAS (chcGAS), which participates in avian innate immunity, has not been well-investigated. Here, we cloned the complete open reading frame sequence of chcGAS. Multiple sequence alignment and phylogenetic analysis revealed that chcGAS was homologous to mammalian cGAS. The chcGAS mRNA was highly expressed in the bone marrow and ileum. The subcellular localization of chcGAS was mainly in the cytoplasm, and partial co-localization was observed in the endoplasmic reticulum. Through overexpression and RNA interference, we demonstrated that chcGAS responded to exogenous dsDNA, HS-DNA, and poly(dA:dT), and to self dsDNA from the DNA damage response, thereby triggering the activation of STING/TBK1/IRF7-mediated innate immunity in both chicken embryonic fibroblasts and chicken liver cancer cells. Furthermore, downregulation of chcGAS enhanced the infection of fowl adenovirus serotype 4 in LMH cells. Our results demonstrated that chcGAS was an important cytosolic DNA sensor activating innate immune responses and may shed light on a strategy for preventing infectious diseases in the poultry industry.
Collapse
|