1
|
Charman M, Weitzman MD. Mysteries of adenovirus packaging. J Virol 2025:e0018025. [PMID: 40243339 DOI: 10.1128/jvi.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
It is conventionally held that most DNA viruses package their genomes by one of two fundamental mechanisms: described by the sequential or concurrent models of assembly and packaging. Sequential packaging involves the translocation of a viral genome into a pre-formed capsid, often referred to as the pro-capsid. In contrast, concurrent packaging does not require the assembly of a pro-capsid. Instead, the genome is condensed, and the capsid shell is formed around the genome. The accumulation of empty particles in adenovirus infected cells has led to the assumption that adenovirus packaging may be best described by the sequential model. However, existing models fail to adequately explain all experimental observations, leaving many mysteries of adenovirus genome packaging unresolved. In this review, we describe key findings in adenovirus assembly and packaging, and we discuss them in the context of the competing models of sequential versus concurrent packaging. We discuss recent findings that have redefined our understanding of adenovirus packaging, including the role of viral biomolecular condensates and visualization of viral assembly and packaging in situ. These advances have renewed interest in the concurrent model of packaging. We anticipate that lessons learned from adenovirus packaging will be highly valuable for the advancement of viral vectors and gene-delivery technologies. In reviewing this topic, we hope to stimulate discussion and facilitate future investigation that will ultimately resolve gaps in knowledge and expand our understanding of DNA virus genome packaging.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Center for Genome Integrity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Yang Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A. The S-Phase Arrest of Host Cells Caused by an Alpha-Herpesvirus Genome Replication Facilitates Viral Recruitment of RNA Polymerase II to Transcribe Viral Genes. Cell Prolif 2025:e13811. [PMID: 39870514 DOI: 10.1111/cpr.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus. The results demonstrated that the formation of viral replication compartments (vRCs) and the subsequent recruitment of RNA pol II are positively correlated with AnHV-1 DNA synthesis. As viral DNA replication progresses, host cells are arrested in the S phase, which not only halts host gene transcription but also facilitates viral transcription. This cell cycle arrest in the S phase promotes viral DNA (vDNA) synthesis and vRC formation, which further enhances the preferential recruitment of RNA Pol II to viral promoters, enabling efficient viral gene transcription. We propose that this S phase arrest and the hijacking of RNA Pol II represent a novel mechanism by which AnHV-1 enhances viral transcription, offering a unique survival strategy compared to the known strategy in herpesviruses. These findings expand our understanding of herpesvirus-host interactions and highlight potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Qiqi Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
3
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
4
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
5
|
Glon D, Léonardon B, Guillemot A, Albertini A, Lagaudrière-Gesbert C, Gaudin Y. Biomolecular condensates with liquid properties formed during viral infections. Microbes Infect 2024; 26:105402. [PMID: 39127089 DOI: 10.1016/j.micinf.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
Collapse
Affiliation(s)
- Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Benjamin Léonardon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ariane Guillemot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Gomez-Gonzalez A, Burkhardt P, Bauer M, Suomalainen M, Mateos JM, Loehr MO, Luedtke NW, Greber UF. Stepwise virus assembly in the cell nucleus revealed by spatiotemporal click chemistry of DNA replication. SCIENCE ADVANCES 2024; 10:eadq7483. [PMID: 39454009 PMCID: PMC11506174 DOI: 10.1126/sciadv.adq7483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Biomolecular assemblies are fundamental to life and viral disease. The spatiotemporal coordination of viral replication and assembly is largely unknown. Here, we developed a dual-color click chemistry procedure for imaging adenovirus DNA (vDNA) replication in the cell nucleus. Late- but not early-replicated vDNA was packaged into virions. Early-replicated vDNA segregated from the viral replication compartment (VRC). Single object tracking, superresolution microscopy, fluorescence recovery after photobleaching, and correlative light-electron microscopy revealed a stepwise assembly program involving vDNA and capsid intermediates. Depending on replication and the scaffolding protein 52K, late-replicated vDNA with rapidly exchanging green fluorescent protein-tagged capsid linchpin protein V and incomplete virions emerged from the VRC periphery. These nanogel-like puncta exhibited restricted movements and were located with the capsid proteins hexon, VI, and virions in the nuclear periphery, suggestive of sites for virion formation. Our findings identify VRC dynamics and assembly intermediates, essential for stepwise productive adenovirus morphogenesis.
Collapse
Affiliation(s)
| | - Patricia Burkhardt
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
| | - José María Mateos
- Center for Microscopy and Image Analyses, University of Zurich (UZH), Zurich, Switzerland
| | - Morten O. Loehr
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | | | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
7
|
Petrich A, Hwang GM, La Rocca L, Hassan M, Anders-Össwein M, Sonntag-Buck V, Heuser AM, Laketa V, Müller B, Kräusslich HG, Klaus S. Expanding Insights: Harnessing Expansion Microscopy for Super-Resolution Analysis of HIV-1-Cell Interactions. Viruses 2024; 16:1610. [PMID: 39459943 PMCID: PMC11512423 DOI: 10.3390/v16101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.
Collapse
Affiliation(s)
- Annett Petrich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gyu Min Hwang
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Laetitia La Rocca
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mariam Hassan
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vera Sonntag-Buck
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Anke-Mareil Heuser
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Severina Klaus
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Singh P, Zhu L, Shipley MA, Ye ZA, Neumann DM. The HSV-1 encoded CCCTC-binding factor, CTRL2, impacts the nature of viral chromatin during HSV-1 lytic infection. PLoS Pathog 2024; 20:e1012621. [PMID: 39374265 PMCID: PMC11486355 DOI: 10.1371/journal.ppat.1012621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
HSV-1 genomes are rapidly heterochromatinized following entry by host cells to limit viral gene expression. Efficient HSV-1 genome replication requires mechanisms that de-repress chromatin associated with the viral genome. CCCTC-binding factors, or CTCF insulators play both silencing and activating roles in cellular transcriptional regulation. Importantly, the HSV-1 genome encodes several CTCF insulators that flank IE genes, implying that individual HSV-1 encoded CTCF insulators regulate IE transcription during all stages of the HSV-1 life cycle. We previously reported that the HSV-1 encoded CTCF insulator located downstream of the LAT (CTRL2) controlled IE gene silencing during latency. To further characterize the role of this insulator during the lytic infection we leveraged a ΔCTRL2 recombinant virus to show that there was a genome replication defect that stemmed from decreased IE gene expression in fibroblasts and epithelial cells at early times following initiation of infection. Further experiments indicated that the defect in gene expression resulted from chromatin inaccessibility in the absence of the insulator. To elucidate how chromatin accessibility was altered in the absence of the CTRL2 insulator, we showed that enrichment of Alpha-thalassemia/mental retardation, X-linked chromatin remodeler (ATRX), and the histone variant H3.3, both of which are known for their roles in maintaining repressive histone markers on the HSV-1 viral genome were increased on IE regions of HSV-1. Finally, both H3K27me3 and H3K9me3 repressive histone marks remained enriched by 4 hours post infection in the absence of the CTRL2 insulator, confirming that the CTRL2 insulator is required for de-repression of IE genes of viral genomes. To our knowledge these are the first data that show that a specific CTCF insulator in the HSV-1 genome (CTRL2) regulates chromatin accessibility during the lytic infection.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Liqian Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- College of Life sciences, Hebei University, Baoding, China
| | - Mason A. Shipley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Ziyun A. Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Donna M. Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Packard JE, Kumar N, Weitzman MD, Dembowski JA. Identifying Protein Interactions with Viral DNA Genomes during Virus Infection. Viruses 2024; 16:845. [PMID: 38932138 PMCID: PMC11209293 DOI: 10.3390/v16060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Namrata Kumar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill A. Dembowski
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
11
|
King CR, Dodge MJ, MacNeil KM, Tessier TM, Mymryk JS, Mehle A. Expanding the adenovirus toolbox: reporter viruses for studying the dynamics of human adenovirus replication. J Virol 2024; 98:e0020724. [PMID: 38639487 PMCID: PMC11092356 DOI: 10.1128/jvi.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Tanner M. Tessier
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
- Department of Otolaryngology, University of Western Ontario, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Yan AP, Salnikov PA, Gridina MM, Belokopytova PS, Fishman VS. Towards Development of the 4C-Based Method Detecting Interactions of Plasmid DNA with Host Genome. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:653-662. [PMID: 38831502 DOI: 10.1134/s0006297924040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 03/02/2024] [Indexed: 06/05/2024]
Abstract
Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.
Collapse
Affiliation(s)
- Alexandra P Yan
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Paul A Salnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maria M Gridina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Polina S Belokopytova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
13
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
15
|
Bertzbach LD, Seddar L, von Stromberg K, Ip WH, Dobner T, Hidalgo P. The adenovirus DNA-binding protein DBP. J Virol 2024; 98:e0188523. [PMID: 38197632 PMCID: PMC10878046 DOI: 10.1128/jvi.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Adenoviruses are a group of double-stranded DNA viruses that can mainly cause respiratory, gastrointestinal, and eye infections in humans. In addition, adenoviruses are employed as vector vaccines for combatting viral infections, including SARS-CoV-2, and serve as excellent gene therapy vectors. These viruses have the ability to modulate the host cell machinery to their advantage and trigger significant restructuring of the nuclei of infected cells through the activity of viral proteins. One of those, the adenovirus DNA-binding protein (DBP), is a multifunctional non-structural protein that is integral to the reorganization processes. DBP is encoded in the E2A transcriptional unit and is highly abundant in infected cells. Its activity is unequivocally linked to the formation, structure, and integrity of virus-induced replication compartments, molecular hubs for the regulation of viral processes, and control of the infected cell. DBP also plays key roles in viral DNA replication, transcription, viral gene expression, and even host range specificity. Notably, post-translational modifications of DBP, such as SUMOylation and extensive phosphorylation, regulate its biological functions. DBP was first investigated in the 1970s, pioneering research on viral DNA-binding proteins. In this literature review, we provide an overview of DBP and specifically summarize key findings related to its complex structure, diverse functions, and significant role in the context of viral replication. Finally, we address novel insights and perspectives for future research.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Paloma Hidalgo
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
16
|
Grams N, Charman M, Halko E, Lauman R, Garcia BA, Weitzman MD. Phosphorylation regulates viral biomolecular condensates to promote infectious progeny production. EMBO J 2024; 43:277-303. [PMID: 38177504 PMCID: PMC10897327 DOI: 10.1038/s44318-023-00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Biomolecular condensates (BMCs) play important roles in diverse biological processes. Many viruses form BMCs which have been implicated in various functions critical for the productive infection of host cells. The adenovirus L1-52/55 kilodalton protein (52K) was recently shown to form viral BMCs that coordinate viral genome packaging and capsid assembly. Although critical for packaging, we do not know how viral condensates are regulated during adenovirus infection. Here we show that phosphorylation of serine residues 28 and 75 within the N-terminal intrinsically disordered region of 52K modulates viral condensates in vitro and in cells, promoting liquid-like properties. Furthermore, we demonstrate that phosphorylation of 52K promotes viral genome packaging and the production of infectious progeny particles. Collectively, our findings provide insights into how viral condensate properties are regulated and maintained in a state conducive to their function in viral progeny production. In addition, our findings have implications for antiviral strategies aimed at targeting the regulation of viral BMCs to limit viral multiplication.
Collapse
Affiliation(s)
- Nicholas Grams
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Edwin Halko
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Lauman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Zhao Z, Liu X, Zong Y, Shi X, Sun Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023; 16:12. [PMID: 38275947 PMCID: PMC10819745 DOI: 10.3390/v16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as illustrative examples.
Collapse
Affiliation(s)
- Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
18
|
Chalabi Hagkarim N, Ip WH, Bertzbach LD, Abualfaraj T, Dobner T, Molloy DP, Stewart GS, Grand RJ. Identification of Adenovirus E1B-55K Interaction Partners through a Common Binding Motif. Viruses 2023; 15:2356. [PMID: 38140597 PMCID: PMC10747525 DOI: 10.3390/v15122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Luca D. Bertzbach
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Tareq Abualfaraj
- Department of Medical Microbiology and Immunology, Taibah University, P.O. Box 344, Madinah 41477, Saudi Arabia
| | - Thomas Dobner
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - David P. Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Grant S. Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|
20
|
陈 一, 凌 晓, 于 浩, 丁 俊. [Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:857-862. [PMID: 37866939 PMCID: PMC10579061 DOI: 10.12182/20230960302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research.
Collapse
Affiliation(s)
- 一龙 陈
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 晓茹 凌
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
| | - 浩澎 于
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 俊军 丁
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M 2-1. Viruses 2023; 15:1329. [PMID: 37376628 DOI: 10.3390/v15061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.
Collapse
Affiliation(s)
- Araceli Visentin
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Nicolás Demitroff
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Mariano Salgueiro
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Silvia Susana Borkosky
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gabriela Camporeale
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Gonzalo de Prat-Gay
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| |
Collapse
|
22
|
Charman M, Grams N, Kumar N, Halko E, Dybas JM, Abbott A, Lum KK, Blumenthal D, Tsopurashvili E, Weitzman MD. A viral biomolecular condensate coordinates assembly of progeny particles. Nature 2023; 616:332-338. [PMID: 37020020 DOI: 10.1038/s41586-023-05887-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2023] [Indexed: 04/07/2023]
Abstract
Biomolecular condensates formed by phase separation can compartmentalize and regulate cellular processes1,2. Emerging evidence has suggested that membraneless subcellular compartments in virus-infected cells form by phase separation3-8. Although linked to several viral processes3-5,9,10, evidence that phase separation contributes functionally to the assembly of progeny particles in infected cells is lacking. Here we show that phase separation of the human adenovirus 52-kDa protein has a critical role in the coordinated assembly of infectious progeny particles. We demonstrate that the 52-kDa protein is essential for the organization of viral structural proteins into biomolecular condensates. This organization regulates viral assembly such that capsid assembly is coordinated with the provision of viral genomes needed to produce complete packaged particles. We show that this function is governed by the molecular grammar of an intrinsically disordered region of the 52-kDa protein, and that failure to form condensates or to recruit viral factors that are critical for assembly results in failed packaging and assembly of only non-infectious particles. Our findings identify essential requirements for coordinated assembly of progeny particles and demonstrate that phase separation of a viral protein is critical for production of infectious progeny during adenovirus infection.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Namrata Kumar
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edwin Halko
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph M Dybas
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Abbott
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Krystal K Lum
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Matthew D Weitzman
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Membraneless Compartmentalization of Nuclear Assembly Sites during Murine Cytomegalovirus Infection. Viruses 2023; 15:v15030766. [PMID: 36992475 PMCID: PMC10053344 DOI: 10.3390/v15030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Extensive reorganization of infected cells and the formation of large structures known as the nuclear replication compartment (RC) and cytoplasmic assembly compartment (AC) is a hallmark of beta-herpesvirus infection. These restructurings rely on extensive compartmentalization of the processes that make up the virus manufacturing chain. Compartmentalization of the nuclear processes during murine cytomegalovirus (MCMV) infection is not well described. In this study, we visualized five viral proteins (pIE1, pE1, pM25, pm48.2, and pM57) and replicated viral DNA to reveal the nuclear events during MCMV infection. As expected, these events can be matched with those described for other beta and alpha herpesviruses and contribute to the overall picture of herpesvirus assembly. Imaging showed that four viral proteins (pE1, pM25, pm48.2, and pM57) and replicated viral DNA condense in the nucleus into membraneless assemblies (MLAs) that undergo a maturation sequence to form the RC. One of these proteins (pM25), which is also expressed in a cytoplasmic form (pM25l), showed similar MLAs in the AC. Bioinformatics tools for predicting biomolecular condensates showed that four of the five proteins had a high propensity for liquid–liquid phase separation (LLPS), suggesting that LLPS may be a mechanism for compartmentalization within RC and AC. Examination of the physical properties of MLAs formed during the early phase of infection by 1,6-hexanediol treatment in vivo revealed liquid-like properties of pE1 MLAs and more solid-like properties of pM25 MLAs, indicating heterogeneity of mechanisms in the formation of virus-induced MLAs. Analysis of the five viral proteins and replicated viral DNA shows that the maturation sequence of RC and AC is not completed in many cells, suggesting that virus production and release is carried out by a rather limited number of cells. This study thus lays the groundwork for further investigation of the replication cycle of beta-herpesviruses, and the results should be incorporated into plans for high-throughput and single-cell analytic approaches.
Collapse
|
24
|
Two-Color CRISPR Imaging Reveals Dynamics of Herpes Simplex Virus 1 Replication Compartments and Virus-Host Interactions. J Virol 2022; 96:e0092022. [PMID: 36453882 PMCID: PMC9769385 DOI: 10.1128/jvi.00920-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Real-time imaging tools for single-virus tracking provide spatially resolved, quantitative measurements of viral replication and virus-host interactions. However, efficiently labeling both parental and progeny viruses in living host cells remains challenging. Here, we developed a novel strategy using the CRISPR-Tag system to detect herpes simplex virus 1 (HSV-1) DNA in host cells. We created recombinant HSV-1 harboring an ~600-bp CRISPR-Tag sequence which can be sufficiently recognized by dCas9-fluorescent protein (FP) fusion proteins. CRISPR-assisted single viral genome tracking (CASVIT) allows us to assess the temporal and spatial information of viral replication at the single-cell level. Combining the advantages of SunTag and tandem split green fluorescent protein (GFP) in amplifying fluorescent signals, dSaCas9-tdTomato10x and dSpCas9-GFP14x were constructed to enable efficient two-color CASVIT detection. Real-time two-color imaging indicates that replication compartments (RCs) frequently come into contact with each other but do not mix, suggesting that RC territory is highly stable. Last, two-color CASVIT enables simultaneous tracking of viral DNA and host chromatin, which reveals that a dramatic loss of telomeric and centromeric DNA occurs in host cells at the early stage of viral replication. Overall, our work has established a framework for developing CRISPR-Cas9-based imaging tools to study DNA viruses in living cells. IMPORTANCE Herpes simplex virus 1 (HSV-1), a representative of the family Herpesviridae, is a ubiquitous pathogen that can establish lifelong infections and widely affects human health. Viral infection is a dynamic process that involves many steps and interactions with various cellular structures, including host chromatin. A common viral replication strategy is to form RCs that concentrate factors required for viral replication. Efficient strategies for imaging the dynamics of viral genomes, RC formation, and the interaction between the virus and host offer the opportunity to dissect the steps of the infection process and determine the mechanism underlying each step. We have developed an efficient two-color imaging system based on CRISPR-Cas9 technology to detect HSV-1 genomes quantitatively in living cells. Our results shed light on novel aspects of RC dynamics and virus-host interactions.
Collapse
|
25
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
27
|
A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli. Cell Rep 2022; 40:111179. [PMID: 35977483 PMCID: PMC9891218 DOI: 10.1016/j.celrep.2022.111179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Nucleus-forming jumbo phages establish an intricate subcellular organization, enclosing phage genomes within a proteinaceous shell called the phage nucleus. During infection in Pseudomonas, some jumbo phages assemble a bipolar spindle of tubulin-like PhuZ filaments that positions the phage nucleus at midcell and drives its intracellular rotation. This facilitates the distribution of capsids on its surface for genome packaging. Here we show that the Escherichia coli jumbo phage Goslar assembles a phage nucleus surrounded by an array of PhuZ filaments resembling a vortex instead of a bipolar spindle. Expression of a mutant PhuZ protein strongly reduces Goslar phage nucleus rotation, demonstrating that the PhuZ cytoskeletal vortex is necessary for rotating the phage nucleus. While vortex-like cytoskeletal arrays are important in eukaryotes for cytoplasmic streaming and nucleus alignment, this work identifies a coherent assembly of filaments into a vortex-like structure driving intracellular rotation within the prokaryotic cytoplasm.
Collapse
|
28
|
Wei W, Bai L, Yan B, Meng W, Wang H, Zhai J, Si F, Zheng C. When liquid-liquid phase separation meets viral infections. Front Immunol 2022; 13:985622. [PMID: 36016945 PMCID: PMC9395683 DOI: 10.3389/fimmu.2022.985622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells have both membranous and membraneless organelles. While the formation mechanism of membranous organelles is well understood, the formation mechanism of membraneless organelles remains unknown. Many biomolecules in the cytoplasm transition from the liquid phase to the agglutinated phase are known as liquid-liquid phase separation (LLPS). The biomolecular agglomerates’ physical properties enable them to function as dynamic compartments that respond to external pressures and stimuli. Scientists have gradually recognized the importance of phase separation during viral infections. LLPS provides a powerful new framework for understanding the viral life cycle from viral replication to evasion of host immune surveillance. As a result, this review focuses on the progress of LLPS research in viral infection and immune regulation to provide clues for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Bai
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bing Yan
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weiquan Meng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| |
Collapse
|
29
|
Lin S, Rajan S, Lemberg S, Altawil M, Anderson K, Bryant R, Cappeta S, Chin B, Hamdan I, Hamer A, Hyzny R, Karp A, Lee D, Lim A, Nayak M, Palaniappan V, Park S, Satishkumar S, Seth A, Sri Dasari U, Toppari E, Vyas A, Walker J, Weston E, Zafar A, Zielke C, Mahabeleshwar GH, Tartakoff AM. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics 2022; 221:iyac070. [PMID: 35657327 PMCID: PMC9252279 DOI: 10.1093/genetics/iyac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
35S rRNA transcripts include a 5'-external transcribed spacer followed by rRNAs of the small and large ribosomal subunits. Their processing yields massive precursors that include dozens of assembly factor proteins. In Saccharomyces cerevisiae, nucleolar assembly factors form 2 coaxial layers/volumes around ribosomal DNA. Most of these factors are cyclically recruited from a latent state to an operative state, and are extensively conserved. The layers match, at least approximately, known subcompartments found in higher eukaryotic cells. ∼80% of assembly factors are essential. The number of copies of these assembly factors is comparable to the number of nascent transcripts. Moreover, they exhibit "isoelectric balance," with RNA-binding candidate "nucleator" assembly factors being notably basic. The physical properties of pre-small subunit and pre-large subunit assembly factors are similar, as are their 19 motif signatures detected by hierarchical clustering, unlike motif signatures of the 5'-external transcribed spacer rRNP. Additionally, many assembly factors lack shared motifs. Taken together with the progression of rRNP composition during subunit maturation, and the realization that the ribosomal DNA cable is initially bathed in a subunit-nonspecific assembly factor reservoir/microenvironment, we propose a "3-step subdomain assembly model": Step (1): predominantly basic assembly factors sequentially nucleate sites along nascent rRNA; Step (2): the resulting rRNPs recruit numerous less basic assembly factors along with notably basic ribosomal proteins; Step (3): rRNPs in nearby subdomains consolidate. Cleavages of rRNA then promote release of rRNPs to the nucleoplasm, likely facilitated by the persistence of assembly factors that were already associated with nucleolar precursors.
Collapse
Affiliation(s)
- Samantha Lin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suchita Rajan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sofia Lemberg
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark Altawil
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Anderson
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Bryant
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Cappeta
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brandon Chin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabella Hamdan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Annelise Hamer
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Hyzny
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Karp
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Lee
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandria Lim
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Medha Nayak
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vishnu Palaniappan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soomin Park
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarika Satishkumar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anika Seth
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uva Sri Dasari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emili Toppari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ayush Vyas
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julianne Walker
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan Weston
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Atif Zafar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cecelia Zielke
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ganapati H Mahabeleshwar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan M Tartakoff
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses 2022; 14:v14071444. [PMID: 35891423 PMCID: PMC9319082 DOI: 10.3390/v14071444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
Ascoviruses are large DNA viruses that primarily infect lepidopteran larvae. They differ markedly from other plant or animal viruses by initiating replication in the nucleus, then inducing nuclear lysis followed by extensive cellular hypertrophy and subsequent cleavage of the entire enlarged cell into numerous viral vesicles. Most progeny virions are assembled in these vesicles as they circulate in the hemolymph. Here, we report transcriptome studies of host cytoskeletal genes in larvae infected with ascoviruses from 6 h to 21 days post-infection (dpi). We focused on the cabbage looper, Trichoplusia ni, infected with the Trichoplusia ni ascovirus (TnAV), along with supporting studies on the fall armyworm, Spodoptera frugiperda, infected with the Spodoptera frugiperda ascovirus (SfAV). In T. ni, many cytoskeleton genes were upregulated at 48 hours post-infection (hpi), including 29 tubulins, 21 actins, 21 dyneins, and 13 kinesins. Mitochondrial genes were upregulated as much as two-fold at 48 hpi and were expressed at levels comparable to controls in both T. ni and S. frugiperda, even after 21 dpi, when several cytoskeleton genes remained upregulated. Our studies suggest a temporal correlation between increases in the expression of certain host cytoskeletal genes and viral vesicle formation. However, these results need confirmation through functional genetic studies of proteins encoded by these genes.
Collapse
|
31
|
A Single Amino Acid Switch in the Adenoviral DNA Binding Protein Abrogates Replication Center Formation and Productive Viral Infection. mBio 2022; 13:e0014422. [PMID: 35254132 PMCID: PMC9040859 DOI: 10.1128/mbio.00144-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adenoviruses are very efficient high-capacity vaccine vectors and are common gene delivery systems. Despite their extensive use in preclinical models and clinical trials over the past decades, adenoviral vectors still require optimization. To achieve that, more thorough characterizations of adenoviral genes and gene products, as well as pathogen-host interactions, are indispensable. The adenoviral DNA binding protein (DBP) is a key regulatory protein involved in various cellular and viral processes. Here, we show that single amino acid exchange mutations in human adenovirus C5 (HAdV-C5) DBP strongly influence adenoviral replication by altering interaction with the cellular ubiquitination machinery. Specifically, phenotypic analyses of DBP mutants demonstrate that single amino acid substitutions can regulate interactions with the cellular USP7 deubiquitinase, impede viral DNA synthesis, and completely abolish viral late protein expression and progeny production. Importantly, cells infected with the DBP mutant UBM5 consistently lack DBP-positive replication centers (RCs), which are usually formed during the transition from the early to the late phase of infection. Our findings demonstrate that DBP regulates a key step at the onset of the late phase of infection and that this activity is unambiguously linked to the formation and integrity of viral RCs. These data provide the experimental basis for future work that targets DBP and its interference with the formation of viral RCs during productive infection. Consequently, this work will have immediate impact on DNA virus and adenovirus research in general and, potentially, also on safety optimization of existing and development of novel adenoviral vectors and anti-adenoviral compounds.
Collapse
|
32
|
Manska S, Rossetto CC. Identification of cellular proteins associated with human cytomegalovirus (HCMV) DNA replication suggests novel cellular and viral interactions. Virology 2022; 566:26-41. [PMID: 34861458 PMCID: PMC8720285 DOI: 10.1016/j.virol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
Collapse
Affiliation(s)
- Salomé Manska
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA
| | - Cyprian C. Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA,Correspondence to: Cyprian C. Rossetto, Ph.D.
| |
Collapse
|
33
|
Abualfaraj T, Hagkarim NC, Hollingworth R, Grange L, Jhujh S, Stewart GS, Grand RJ. The Promotion of Genomic Instability in Human Fibroblasts by Adenovirus 12 Early Region 1B 55K Protein in the Absence of Viral Infection. Viruses 2021; 13:2444. [PMID: 34960712 PMCID: PMC8708088 DOI: 10.3390/v13122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein-protein interactions, causing genomic instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK; (T.A.); (N.C.H.); (R.H.); (L.G.); (S.J.); (G.S.S.)
| |
Collapse
|
34
|
Abstract
Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid–liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.
Collapse
|
35
|
Boftsi M, Whittle FB, Wang J, Shepherd P, Burger LR, Kaifer KA, Lorson CL, Joshi T, Pintel DJ, Majumder K. The adeno-associated virus 2 (AAV2) genome and rep 68/78 proteins interact with cellular sites of DNA damage. Hum Mol Genet 2021; 31:985-998. [PMID: 34652429 DOI: 10.1093/hmg/ddab300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear DNA viruses simultaneously access cellular factors that aid their life cycle while evading inhibitory factors by localizing to distinct nuclear sites. Adeno-Associated Viruses (AAVs), which are Dependoviruses in the family Parvovirinae, are non-enveloped icosahedral viruses, that have been developed as recombinant AAV vectors (rAAV) to express transgenes. AAV2 expression and replication occur in nuclear viral replication centers (VRCs), which relies on cellular replication machinery as well as coinfection by helper viruses such as adenoviruses or herpesviruses, or exogenous DNA damage to host cells. AAV2 infection induces a complex cellular DNA damage response (DDR), either in response to viral DNA or viral proteins expressed in the host nucleus during infection, where VRCs colocalize with DDR proteins. We have previously developed a modified iteration of a viral chromosome conformation capture (V3C-seq) assay to show that the autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular sites of DNA damage to establish and amplify its replication. Similar V3C-seq assays to map AAV2 show that the AAV2 genome colocalized with cellular sites of DNA damage under both non-replicating and replicating conditions. The AAV2 non-structural protein Rep 68/78, also localized to cellular DDR sites during both non-replicating and replicating infections, and also when ectopically expressed. Ectopically expressed Rep could be efficiently re-localized to DDR sites induced by micro-irradiation. Recombinant AAV2 gene therapy vector genomes derived from AAV2 localized to sites of cellular DNA damage to a lesser degree, suggesting that the Inverted Terminal Repeat (ITR) origins of replication were insufficient for targeting.
Collapse
Affiliation(s)
- Maria Boftsi
- Pathobiology Area Graduate Program.,Christopher S. Bond Life Sciences Center
| | | | - Juexin Wang
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science
| | | | | | - Kevin A Kaifer
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Christian L Lorson
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science.,MU Informatics Institute.,Department of Health Management and Informatics
| | - David J Pintel
- Christopher S. Bond Life Sciences Center.,Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Columbia, MO USA 65211
| | - Kinjal Majumder
- Institute for Molecular Virology.,McArdle Laboratory for Cancer Research.,University of Wisconsin-Carbone Cancer Center
| |
Collapse
|
36
|
Dybas JM, Lum KK, Kulej K, Reyes ED, Lauman R, Charman M, Purman CE, Steinbock RT, Grams N, Price AM, Mendoza L, Garcia BA, Weitzman MD. Adenovirus Remodeling of the Host Proteome and Host Factors Associated with Viral Genomes. mSystems 2021; 6:e0046821. [PMID: 34463575 DOI: 10.1128/msystems.00468-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Viral infections are associated with extensive remodeling of the cellular proteome. Viruses encode gene products that manipulate host proteins to redirect cellular processes or subvert antiviral immune responses. Adenovirus (AdV) encodes proteins from the early E4 region which are necessary for productive infection. Some cellular antiviral proteins are known to be targeted by AdV E4 gene products, resulting in their degradation or mislocalization. However, the full repertoire of host proteome changes induced by viral E4 proteins has not been defined. To identify cellular proteins and processes manipulated by viral products, we developed a global, unbiased proteomics approach to analyze changes to the host proteome during infection with adenovirus serotype 5 (Ad5) virus. We used whole-cell proteomics to measure total protein abundances in the proteome during Ad5 infection. Since host antiviral proteins can antagonize viral infection by associating with viral genomes and inhibiting essential viral processes, we used Isolation of Proteins on Nascent DNA (iPOND) proteomics to identify proteins associated with viral genomes during infection with wild-type Ad5 or an E4 mutant virus. By integrating these proteomics data sets, we identified cellular factors that are degraded in an E4-dependent manner or are associated with the viral genome in the absence of E4 proteins. We further show that some identified proteins exert inhibitory effects on Ad5 infection. Our systems-level analysis reveals cellular processes that are manipulated during Ad5 infection and points to host factors counteracted by early viral proteins as they remodel the host proteome to promote efficient infection. IMPORTANCE Viral infections induce myriad changes to the host cell proteome. As viruses harness cellular processes and counteract host defenses, they impact abundance, post-translational modifications, interactions, or localization of cellular proteins. Elucidating the dynamic changes to the cellular proteome during viral replication is integral to understanding how virus-host interactions influence the outcome of infection. Adenovirus encodes early gene products from the E4 genomic region that are known to alter host response pathways and promote replication, but the full extent of proteome modifications they mediate is not known. We used an integrated proteomics approach to quantitate protein abundance and protein associations with viral DNA during virus infection. Systems-level analysis identifies cellular proteins and processes impacted in an E4-dependent manner, suggesting ways that adenovirus counteracts potentially inhibitory host defenses. This study provides a global view of adenovirus-mediated proteome remodeling, which can serve as a model to investigate virus-host interactions of DNA viruses.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krystal K Lum
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard Lauman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caitlin E Purman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert T Steinbock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lydia Mendoza
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Zaghloul HAH, Hice RH, Arensburger P, Bideshi DK, Federici BA. Extended in vivo transcriptomes of two ascoviruses with different tissue tropisms reveal alternative mechanisms for enhancing virus reproduction in hemolymph. Sci Rep 2021; 11:16402. [PMID: 34385487 PMCID: PMC8361023 DOI: 10.1038/s41598-021-95553-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ascoviruses are large dsDNA viruses characterized by the extraordinary changes they induce in cellular pathogenesis and architecture whereby after nuclear lysis and extensive hypertrophy, each cell is cleaved into numerous vesicles for virion reproduction. However, the level of viral replication and transcription in vesicles compared to other host tissues remains uncertain. Therefore, we applied RNA-Sequencing to compare the temporal transcriptome of Spodoptera frugiperda ascovirus (SfAV) and Trichoplusia ni ascovirus (TnAV) at 7, 14, and 21 days post-infection (dpi). We found most transcription occurred in viral vesicles, not in initial tissues infected, a remarkably novel reproduction mechanism compared to all other viruses and most other intracellular pathogens. Specifically, the highest level of viral gene expression occurred in hemolymph, for TnAV at 7 dpi, and SfAV at 14 dpi. Moreover, we found that host immune genes were partially down-regulated in hemolymph, where most viral replication occurred in highly dense accumulations of vesicles.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA.,Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Robert H Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Dennis K Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA. .,Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
38
|
Abstract
Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome. Interactions with host DNA, transcription factors or nuclear bodies mediate their replication. Often interfering with nuclear functions, viruses use nuclear architecture to ensure persistent infections. Discovering these multiple modes of replication and persistence served in unraveling many important nuclear processes, such as nuclear trafficking, transcription, and splicing. Here, by using examples of DNA and RNA viral families, we portray the nucleus with the virus inside.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
The HSV-1 Transcription Factor ICP4 Confers Liquid-Like Properties to Viral Replication Compartments. Int J Mol Sci 2021; 22:ijms22094447. [PMID: 33923223 PMCID: PMC8123221 DOI: 10.3390/ijms22094447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Herpes Simplex Virus Type-1 (HSV-1) forms progeny in the nucleus within distinct membrane-less inclusions, the viral replication compartments (VRCs), where viral gene expression, DNA replication, and packaging occur. The way in which the VRCs maintain spatial integrity remains unresolved. Here, we demonstrate that the essential viral transcription factor ICP4 is an intrinsically disordered protein (IDP) capable of driving protein condensation and liquid–liquid phase separation (LLPS) in transfected cells. Particularly, ICP4 forms nuclear liquid-like condensates in a dose- and time-dependent manner. Fluorescence recovery after photobleaching (FRAP) assays revealed rapid exchange rates of EYFP-ICP4 between phase-separated condensates and the surroundings, akin to other viral IDPs that drive LLPS. Likewise, HSV-1 VRCs revealed by EYFP-tagged ICP4 retained their liquid-like nature, suggesting that they are phase-separated condensates. Individual VRCs homotypically fused when reaching close proximity and grew over the course of infection. Together, the results of this study demonstrate that the HSV-1 transcription factor ICP4 has characteristics of a viral IDP, forms condensates in the cell nucleus by LLPS, and can be used as a proxy for HSV-1 VRCs with characteristics of liquid–liquid phase-separated condensates.
Collapse
|
40
|
Vladimirova O, De Leo A, Deng Z, Wiedmer A, Hayden J, Lieberman PM. Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation. PLoS Pathog 2021; 17:e1009231. [PMID: 33471863 PMCID: PMC7943007 DOI: 10.1371/journal.ppat.1009231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) can drive formation of diverse and essential macromolecular structures, including those specified by viruses. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) genomes associate with the viral encoded Latency-Associated Nuclear Antigen (LANA) to form stable nuclear bodies (NBs) during latent infection. Here, we show that LANA-NB formation and KSHV genome conformation involves LLPS. Using LLPS disrupting solvents, we show that LANA-NBs are partially disrupted, while DAXX and PML foci are highly resistant. LLPS disruption altered the LANA-dependent KSHV chromosome conformation but did not stimulate lytic reactivation. We found that LANA-NBs undergo major morphological transformation during KSHV lytic reactivation to form LANA-associated replication compartments encompassing KSHV DNA. DAXX colocalizes with the LANA-NBs during latency but is evicted from the LANA-associated lytic replication compartments. These findings indicate the LANA-NBs are dynamic super-molecular nuclear structures that partly depend on LLPS and undergo morphological transitions corresponding to the different modes of viral replication. During latent infection, gamma-herpesvirus genomes are maintained as extrachromosomal circular DNA, referred to as episomes, by dedicated viral-encoded episome maintenance proteins. KSHV-encoded LANA maintains viral episomes through binding as an oligomeric protein to repetitive DNA elements in the viral terminal repeats (TRs). Viral episomes can be visualized as LANA-associated nuclear bodies (LANA-NBs). Here, we show that LANA-NBs utilize mechanisms of self-assembly through liquid-liquid phase separation (LLPS) to build dynamic structures that change during cell cycle and viral life cycle. We find that DAXX is a component of the latent phase LANA-NBs, but is evicted during the transition to lytic replication where LANA remains associated with KSHV DNA to form a ring-like replication compartment.
Collapse
Affiliation(s)
| | - Alessandra De Leo
- Department of Immunology, H. Lee Moffit Cancer and Research Center, Tampa Florida, United States of America
| | - Zhong Deng
- The Wistar Institute, Philadelphia, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, United States of America
| | - James Hayden
- The Wistar Institute, Philadelphia, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
42
|
Peters DK, Erickson KD, Garcea RL. Live Cell Microscopy of Murine Polyomavirus Subnuclear Replication Centers. Viruses 2020; 12:v12101123. [PMID: 33023278 PMCID: PMC7650712 DOI: 10.3390/v12101123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023] Open
Abstract
During polyomavirus (PyV) infection, host proteins localize to subnuclear domains, termed viral replication centers (VRCs), to mediate viral genome replication. Although the protein composition and spatial organization of VRCs have been described using high-resolution immunofluorescence microscopy, little is known about the temporal dynamics of VRC formation over the course of infection. We used live cell fluorescence microscopy to analyze VRC formation during murine PyV (MuPyV) infection of a mouse fibroblast cell line that constitutively expresses a GFP-tagged replication protein A complex subunit (GFP-RPA32). The RPA complex forms a heterotrimer (RPA70/32/14) that regulates cellular DNA replication and repair and is a known VRC component. We validated previous observations that GFP-RPA32 relocalized to sites of cellular DNA damage in uninfected cells and to VRCs in MuPyV-infected cells. We then used GFP-RPA32 as a marker of VRC formation and expansion during live cell microscopy of infected cells. VRC formation occurred at variable times post-infection, but the rate of VRC expansion was similar between cells. Additionally, we found that the early viral protein, small TAg (ST), was required for VRC expansion but not VRC formation, consistent with the role of ST in promoting efficient vDNA replication. These results demonstrate the dynamic nature of VRCs over the course of infection and establish an approach for analyzing viral replication in live cells.
Collapse
Affiliation(s)
- Douglas K. Peters
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Kimberly D. Erickson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Robert L. Garcea
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
43
|
Maurer AC, Weitzman MD. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum Gene Ther 2020; 31:499-511. [PMID: 32303138 PMCID: PMC7232694 DOI: 10.1089/hum.2020.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus has emerged as one of the most promising gene therapy delivery vectors. Development of these vectors took advantage of key features of the wild-type adeno-associated virus (AAV), enabled by basic studies of the underlying biology and requirements for transcription, replication, and packaging of the viral genome. Each step in generating and utilizing viral vectors involves numerous molecular interactions that together determine the efficiency of vector production and gene delivery. Once delivered into the cell, interactions with host proteins will determine the fate of the viral genome, and these will impact the intended goal of gene delivery. Here, we provide an overview of known interactions of the AAV genome with viral and cellular proteins involved in its amplification, packaging, and expression. Further appreciation of how the AAV genome interacts with host factors will enhance how this simple virus can be harnessed for an array of vector purposes that benefit human health.
Collapse
Affiliation(s)
- Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|