1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Herrero F, Heeb C, Meier M, Lin HY, Mueller FS, Schalbetter SM, Gruchot J, Weber-Stadlbauer U, Notter T, Perron H, Küry P, Meyer U. Recapitulation and reversal of neuropsychiatric phenotypes in a mouse model of human endogenous retrovirus type W expression. Mol Psychiatry 2025:10.1038/s41380-025-02955-9. [PMID: 40102613 DOI: 10.1038/s41380-025-02955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Human endogenous retroviruses (HERVs) are inherited genetic elements derived from exogenous retroviral infections occurring throughout evolution. Accumulating evidence implicates increased expression of HERV type W envelope (HERV-W ENV) in psychiatric and neurodevelopmental disorders. To gain more mechanistic insights into the neurobiological disease pathways affected by HERV-W ENV expression, we took advantage of a mouse model that recapitulates the expression of the human-specific HERV-W ENV protein. Behavioral and cognitive phenotyping of transgenic (TG) mice expressing HERV-W ENV and wild-type (WT) controls showed that expression of this retroviral envelope caused deficits in numerous functional domains, including repetitive behavior, social and object recognition memory, and sensorimotor gating. Genome-wide RNA sequencing of hippocampal tissue demonstrated that transgenic expression of HERV-W ENV led to transcriptomic alterations that are highly relevant for psychiatric and neurodevelopmental disorders, cognitive functions, and synaptic development. Differential gene expression in TG mice encompassed a downregulation of several genes associated with schizophrenia and autism spectrum disorder, including Setd1a, Cacna1g, Ank3, and Shank3, as well as a downregulation of histone methyltransferase genes that belong to the Set1-like histone H3 lysine 4 (H3K4) methyltransferase family (Kmt2a, Kmt2b and Kmt2d). Concomitant to the latter, HERV-W ENV mice displayed increased enzymatic activity of lysine-specific demethylase-1 (LSD1), increased H3K4 mono-methylation, and decreased H3K4 di- and tri-methylation in the hippocampus. Importantly, pharmacological inhibition of LSD1 through oral ORY-1001 treatment normalized abnormal H3K4 methylation and rescued the behavioral and cognitive deficits in HERV-W ENV mice. In conclusion, our study suggests that the expression of HERV-W ENV has the capacity to disrupt various behavioral and cognitive functions and to alter the brain transcriptome in a manner that is highly relevant to neurodevelopmental and psychiatric disorders. Moreover, our study identified epigenetic pathways that may offer avenues for pharmacological interventions against behavioral and cognitive deficits induced by increased HERW-W expression.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Celine Heeb
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michelle Meier
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hervé Perron
- GeNeuro, 18, chemin des Aulx, Plan-les-Ouates, 1228, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Alvarado Medina A, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Mendez Valdez MJ, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Alshiekh Nasany R, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models. J Clin Invest 2025; 135:e183745. [PMID: 40091830 PMCID: PMC11910234 DOI: 10.1172/jci183745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
Affiliation(s)
- Deepa Seetharam
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jay Chandar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Christian K. Ramsoomair
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jelisah F. Desgraves
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandra Alvarado Medina
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anna Jane Hudson
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ava Amidei
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jesus R. Castro
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Vaidya Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah Wang
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery and
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mynor J. Mendez Valdez
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Vasundara Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Victor M. Lu
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ritika Tiwari
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Emmanuel Thomas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marcus Alexander
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Macarena I. De La Fuente
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ruham Alshiekh Nasany
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E. Ivan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - John Heiss
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ashish H. Shah
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Jasemi S, Simula ER, Pantaleo A, Sechi LA. Transcriptional Upregulation of HERV- env Genes Under Simulated Microgravity. Viruses 2025; 17:306. [PMID: 40143237 PMCID: PMC11945878 DOI: 10.3390/v17030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Human endogenous retroviruses (HERVs) constitute about 8% of the human genome. The overexpression of HERVs has been detected in various inflammatory disorders like neuro-inflammation disorders and cancer. Interestingly, it has been reported that stress conditions facilitate HERV expression. Space travel exposes astronauts to microgravity environments (a stress condition), which may result in the activation of HERVs and might influence pathogenic outcomes during and after space flight. This study aimed to elucidate the transcriptional activity of three HERV families (W, K, and H) and cytokine genes (IL-1, IL-6, and TNF-α) in different cell lines under microgravity (μg) conditions and compare them with the results obtained under normal gravity (ng; 1g). We evaluated the expression of HERVs (HERV-K env, HERV-K gag, HERV-W env, and HERV-H env) and cytokine gene expression (IL-1, IL-6, and TNF-α) in neuroblastoma (SH-SY5Y), HEp-2, and Caco-2 cell lines under simulated μg and 1g conditions. In SH-SY5Y cells, the expression level of the IL-1, IL-6, HERV-H env, HERV-K env, HERV-K gag, and HERV-W env genes was significantly increased when exposed to short-term μg (3 and 6 h). The expression of TNF-α remained unchanged throughout all time points. Additionally, in Caco-2 cells, the expression of the HERV-K env, HERV-K gag, and IL-1 genes was significantly higher after 6 h of incubation in μg conditions compared to 1g. There was no statistically significant difference in the expression levels of the HERV-W env, HERV-H env, IL6, and TNF-α genes between the μg and 1g conditions. Moreover, in HEp-2 cells, the expression of the IL-1, IL6, TNF-α, HERV-H env, HERV-K env, HERV-K gag, and HERV-W env genes significantly increased following short-term incubation in μg (3 h, 6 h) and then decreased to levels comparable to those observed in the 1g condition. Taken together, the dysregulation of cytokine and HERV gene expression was observed under the simulated μg condition. The patterns of these dysregulations varied throughout cell lines, which demands further investigation for human health protection in space.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (S.J.); (E.R.S.); (A.P.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (S.J.); (E.R.S.); (A.P.)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (S.J.); (E.R.S.); (A.P.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (S.J.); (E.R.S.); (A.P.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Meyer U, Penner IK. Endogenous retroviruses in neurodevelopmental, psychotic and cognitive disorders. Microbes Infect 2025:105479. [PMID: 39914656 DOI: 10.1016/j.micinf.2025.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Endogenous retroviruses (ERVs) are inherited retroviral genomic elements that integrated into the mammalian genome through germline infections and insertions during evolution. Human ERVs (HERVs) comprise approximately 8 % of the human genome and are increasingly recognized to be involved in the etiology and pathophysiology of numerous brain disorders. In this narrative review, we summarize the existing evidence linking abnormal HERV expression to neurodevelopmental and psychosis-related disorders and discuss how these retroviral elements may contribute to the heterogeneity in clinical outcomes. We also review the findings suggesting that aberrant HERV expression contribute to late-onset cognitive disorders with neurodegenerative components, such as Alzheimer's disease (AD) and other forms of dementia. The evidence implicating abnormal HERV expression in neurodevelopmental, psychotic, and cognitive disorders is manifold and stems from diverse research fields, including human post-mortem brain studies, serological investigations, gene expression analyses, and clinical trials with HERV-specific pharmacological compounds. The recent establishment and use of animal models offer a complementary experimental platform that will help establish causal relationships and identify specific disease pathways affected by abnormal HERV expression. Yet, significant gaps persist in understanding the role of HERVs in neurodevelopmental, psychotic, and cognitive disorders, particularly concerning the specificity and stability of abnormal HERV expression in these conditions. Addressing these questions appears crucial for optimizing the potential benefits of therapeutic interventions aimed at targeting abnormal HERV expression across the broad spectrum of HERV-associated disorders of the central nervous system.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Iris Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
7
|
Lamba V, Herlekar I, Chatterjee D, Patel K, Garg KM, Chattopadhyay B. Signature of viral fossils: a comparative genomics approach to understand the diversity of endogenous retroviruses in bats. Virus Res 2024; 350:199484. [PMID: 39419354 PMCID: PMC11546543 DOI: 10.1016/j.virusres.2024.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Endogenous retroviruses (ERVs) are traces of past viral infections commonly found in vertebrate genomes. Many ERVs are tightly regulated by the host genomes and co-opted for various functions within the hosts. Bats are the only true volant mammals, with the smallest mammalian genomes and a high fraction of ERVs within the genomes. They are important hosts for various zoonotic viral pathogens and can effectively modulate their immune response to tolerate viral infections. Integrations of retroviruses have been implicated as one of the mechanisms by which bats have co-evolved strategies to combat viral infections. In this study, we investigated the diversity of ERVs in over 40 publicly available bat genomes to understand the distribution and the evolution of ERVs within bats. We observed all classes of ERVs within bat genomes including even the complex lenti retroviruses. Alpha and spuma retroviruses which are generally considered rare in mammals, were common within bats. We observed a positive correlation between bat genome size and length of ERV elements. Interestingly, nearly 30 % of the ERVs within bats are intact suggesting a recent origin or co-option by the host genome. Future studies focusing on comparative genomic and experimental data will be critical to understand the role of these ERVs in host genome evolution.
Collapse
Affiliation(s)
- Vinita Lamba
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India; J. William Fulbright College of Arts and Sciences, Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ipsita Herlekar
- Centre for Creative writing and communication, Ashoka University, Sonipat, Haryana, 131029, India
| | | | - Kirnalee Patel
- Department of Biology, Ashoka University, Sonipat, Haryana, 131029, India
| | - Kritika M Garg
- Department of Biology, Ashoka University, Sonipat, Haryana, 131029, India; Centre for Interdisciplinary Archaeological Research, Ashoka University, Sonipat, Haryana, 131029, India
| | - Balaji Chattopadhyay
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India.
| |
Collapse
|
8
|
Mao J, Zhang Q, Zhuang Y, Zhang Y, Li L, Pan J, Xu L, Ding Y, Wang M, Cong YS. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging. NATURE AGING 2024; 4:1794-1812. [PMID: 39543280 DOI: 10.1038/s43587-024-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Reactivation of endogenous retroviruses (ERVs) has been proposed to be involved in aging. However, the mechanism of reactivation and contribution to aging and age-associated diseases is largely unexplored. In this study, we identified a subclass of ERVs reactivated in senescent cells (termed senescence-associated ERVs (SA-ERVs)). These SA-ERVs can be bidirectional transcriptionally activated by activating transcription factor 3 (ATF3) to generate double-stranded RNAs (dsRNAs), which activate the RIG-I/MDA5-MAVS signaling pathway and trigger a type I interferon (IFN-I) response in senescent fibroblasts. Consistently, we found a concerted increased expression of ATF3 and SA-ERVs and enhanced IFN-I response in several tissues of healthy aged individuals and patients with Hutchinson-Gilford progeria syndrome. Moreover, we observed an accumulation of dsRNAs derived from SA-ERVs and higher levels of IFNβ in blood of aged individuals. Together, these results reveal a previously unknown mechanism for reactivation of SA-ERVs by ATF3 and illustrate SA-ERVs as an important component and hallmark of aging.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yinyu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Juan Pan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Yuxuan Ding
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| |
Collapse
|
9
|
Zhang E, He P. The function of histone methyltransferase SETDB1 and its roles in liver cancer. Front Cell Dev Biol 2024; 12:1500263. [PMID: 39583200 PMCID: PMC11582049 DOI: 10.3389/fcell.2024.1500263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Epigenetic alterations in gene expression have been implicated in cancer development and tumor immune escape, with posttranslational histone or non-histone modifications representing attractive targets for disease surveillance and therapy. SET domain bifurcated 1 (SETDB1) is a histone lysine methyltransferase that reversibly catalyzes the di- and tri-methylation of histone 3 lysine 9 (H3K9) on euchromatin, inhibiting gene transcription within these regions and facilitating the switch from euchromatic to heterochromatic states. Emerging evidence suggests that SETDB1 amplification and aberrant activation are significantly associated with poor prognosis in hepatocellular carcinoma (HCC), and contribute to HCC development, immune escape, and immune checkpoint blockade (ICB) resistance. Here, we provide an updated overview of the cellular and molecular effects of SETDB1 activity in hepatocarcinogenesis and progression and focus on studies linking its function to immunotherapy for HCC, and present current challenges and future perspectives for targeting SETDB1 in HCC treatment.
Collapse
Affiliation(s)
- Enxiang Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| | - Pingping He
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Evans EF, Saraph A, Tokuyama M. Transactivation of Human Endogenous Retroviruses by Viruses. Viruses 2024; 16:1649. [PMID: 39599764 PMCID: PMC11599155 DOI: 10.3390/v16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that are part the human genome and are normally silenced through epigenetic mechanisms. However, HERVs can be induced by various host and environmental factors, including viral infection, and transcriptionally active HERVs have been implicated in various physiological processes. In this review, we summarize mounting evidence of transactivation of HERVs by a wide range of DNA and RNA viruses. Though a mechanistic understanding of this phenomenon and the biological implications are still largely missing, the link between exogenous and endogenous viruses is intriguing. Considering the increasing recognition of the role of viral infections in disease, understanding these interactions provides novel insights into human health.
Collapse
Affiliation(s)
| | | | - Maria Tokuyama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Medina AA, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Valdez MJM, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Nasany RA, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Targeting ZNF638 activates antiviral immune responses and potentiates immune checkpoint inhibition in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618076. [PMID: 39464150 PMCID: PMC11507686 DOI: 10.1101/2024.10.13.618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
|
13
|
Kitsou K, Katzourakis A, Magiorkinis G. Limitations of current high-throughput sequencing technologies lead to biased expression estimates of endogenous retroviral elements. NAR Genom Bioinform 2024; 6:lqae081. [PMID: 38984066 PMCID: PMC11231582 DOI: 10.1093/nargab/lqae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Human endogenous retroviruses (HERVs), the remnants of ancient germline retroviral integrations, comprise almost 8% of the human genome. The elucidation of their biological roles is hampered by our inability to link HERV mRNA and protein production with specific HERV loci. To solve the riddle of the integration-specific RNA expression of HERVs, several bioinformatics approaches have been proposed; however, no single process seems to yield optimal results due to the repetitiveness of HERV integrations. The performance of existing data-bioinformatics pipelines has been evaluated against real world datasets whose true expression profile is unknown, thus the accuracy of widely-used approaches remains unclear. Here, we simulated mRNA production from specific HERV integrations to evaluate second and third generation sequencing technologies along with widely used bioinformatic approaches to estimate the accuracy in describing integration-specific expression. We demonstrate that, while a HERV-family approach offers accurate results, per-integration analyses of HERV expression suffer from substantial expression bias, which is only partially mitigated by algorithms developed for calculating the per-integration HERV expression, and is more pronounced in recent integrations. Hence, this bias could erroneously result into biologically meaningful inferences. Finally, we demonstrate the merits of accurate long-read high-throughput sequencing technologies in the resolution of per-locus HERV expression.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
14
|
Schuff M, Strong AD, Welborn LK, Ziermann-Canabarro JM. Imprinting as Basis for Complex Evolutionary Novelties in Eutherians. BIOLOGY 2024; 13:682. [PMID: 39336109 PMCID: PMC11428813 DOI: 10.3390/biology13090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression. It represents functional haploidy of certain alleles while bearing the evolutionary cost of diploidization, which is the need of a complex cellular architecture and the danger of producing aneuploid cells by mitotic and meiotic errors. The parent-of-origin gene expression has stressed many theories. Most prominent theories, such as the kinship (parental conflict) hypothesis for maternally versus paternally derived alleles, explain only partial aspects of imprinting. The implementation of single-cell transcriptome analyses and epigenetic research allowed detailed study of monoallelic expression in a spatial and temporal manner and demonstrated a broader but much more complex and differentiated picture of imprinting. In this review, we summarize all these aspects but argue that imprinting is a functional haploidy that not only allows a better gene dosage control of critical genes but also increased cellular diversity and plasticity. Furthermore, we propose that only the occurrence of allele-specific gene regulation mechanisms allows the appearance of evolutionary novelties such as the placenta and the evolutionary expansion of the eutherian brain.
Collapse
Affiliation(s)
- Maximillian Schuff
- Next Fertility St. Gallen, Kürsteinerstrasse 2, 9015 St. Gallen, Switzerland
| | - Amanda D Strong
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Lyvia K Welborn
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | |
Collapse
|
15
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
16
|
Yu VZ, So SS, Lung BCC, Hou GZ, Wong CWY, Chow LKY, Chung MKY, Wong IYH, Wong CLY, Chan DKK, Chan FSY, Law BTT, Xu K, Tan ZZ, Lam KO, Lo AWI, Lam AKY, Kwong DLW, Ko JMY, Dai W, Law S, Lung ML. ΔNp63-restricted viral mimicry response impedes cancer cell viability and remodels tumor microenvironment in esophageal squamous cell carcinoma. Cancer Lett 2024; 595:216999. [PMID: 38823762 DOI: 10.1016/j.canlet.2024.216999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tumor protein p63 isoform ΔNp63 plays roles in the squamous epithelium and squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of ΔNp63 in ESCC. We showed that ΔNp63 maintains the repression of cancer cell endogenous retrotransposon expression and cellular double-stranded RNA sensing. These subsequently lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The cancer cell ΔNp63/IFN-I signaling axis affects both the cancer cell and tumor-infiltrating immune cell (TIIC) compartments. In cancer cells, depletion of ΔNp63 resulted in reduced cell viability. ΔNp63 expression is negatively associated with the anticancer responses to viral mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples. ΔNp63 depletion leads to increased cancer cell antigen presentation molecule expression and enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I signaling and TIIC signature association with ΔNp63 were also observed in lung SCC. These results support the potential application of ΔNp63 as a therapeutic target and a biomarker to guide candidate anticancer treatments exploring viral mimicry responses.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bryan Chee-Chad Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - George Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael King-Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyan Xu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zack Zhen Tan
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka-On Lam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alfred King-Yin Lam
- Divsion of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
17
|
Xue D, Zuo Q, Chang J, Wu X. The correlation between TRIM28 expression and immune checkpoints in CRPC. FASEB J 2024; 38:e23663. [PMID: 38958986 DOI: 10.1096/fj.202400061rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the unexplored realm of castration-resistant prostate cancer (CRPC) by investigating the role of TRIM28 and its intricate molecular mechanisms using high-throughput single-cell transcriptome sequencing and advanced bioinformatics analysis. Our comprehensive examination unveiled dynamic TRIM28 expression changes, particularly in immune cells such as macrophages and CD8+ T cells within CRPC. Correlation analyses with TCGA data highlighted the connection between TRIM28 and immune checkpoint expression and emphasized its pivotal influence on the quantity and functionality of immune cells. Using TRIM28 knockout mouse models, we identified differentially expressed genes and enriched pathways, unraveling the potential regulatory involvement of TRIM28 in the cGAS-STING pathway. In vitro, experiments further illuminated that TRIM28 knockout in prostate cancer cells induced a notable anti-tumor immune effect by inhibiting M2 macrophage polarization and enhancing CD8+ T cell activity. This impactful discovery was validated in an in situ transplant tumor model, where TRIM28 knockout exhibited a deceleration in tumor growth, reduced proportions of M2 macrophages, and enhanced infiltration of CD8+ T cells. In summary, this study elucidates the hitherto unknown anti-tumor immune role of TRIM28 in CRPC and unravels its potential regulatory mechanism via the cGAS-STING signaling pathway. These findings provide novel insights into the immune landscape of CRPC, offering promising directions for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dun Xue
- Department of Medical, the First Hospital of Changsha, Changsha, P. R. China
| | - Qian Zuo
- Department of Radiology, the First Hospital of Changsha, Changsha, P. R. China
| | - Jie Chang
- Department of Outpatient, the First Hospital of Changsha, Changsha, P. R. China
| | - Xinghui Wu
- Department of Urology, the First Hospital of Changsha, Changsha, P. R. China
| |
Collapse
|
18
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
19
|
Blanco-Melo D, Campbell MA, Zhu H, Dennis TPW, Modha S, Lytras S, Hughes J, Gatseva A, Gifford RJ. A novel approach to exploring the dark genome and its application to mapping of the vertebrate virus fossil record. Genome Biol 2024; 25:120. [PMID: 38741126 PMCID: PMC11089739 DOI: 10.1186/s13059-024-03258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Tristan P W Dennis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Gatseva
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK.
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
20
|
Arriagada G, Quezada J, Merino-Veliz N, Avilés F, Tapia-Cammas D, Gomez J, Curotto D, Valdes JA, Oyarzún PA, Gallardo-Escárate C, Metzger MJ, Alvarez M. Identification and expression analysis of two steamer-like retrotransposons in the Chilean blue mussel (Mytilus chilensis). Biol Res 2024; 57:17. [PMID: 38664786 PMCID: PMC11046912 DOI: 10.1186/s40659-024-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.
Collapse
Affiliation(s)
- Gloria Arriagada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Johan Quezada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Merino-Veliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando Avilés
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Diana Tapia-Cammas
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gomez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Curotto
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Valdes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Pablo A Oyarzún
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay, Chile
| | | | | | - Marco Alvarez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
21
|
Sampaio LR, Dias RDB, Goes JVC, de Melo RPM, de Paula Borges D, de Lima Melo MM, de Oliveira RTG, Ribeiro-Júnior HL, Magalhães SMM, Pinheiro RF. Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice. Med Oncol 2024; 41:128. [PMID: 38656461 DOI: 10.1007/s12032-024-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.
Collapse
Affiliation(s)
- Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ricardo Dyllan Barbosa Dias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Renata Pinheiro Martins de Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mayara Magna de Lima Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
22
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
24
|
Fernández-García L, Ahumada-Marchant C, Lobos-Ávila P, Brauer B, Bustos FJ, Arriagada G. The Mytilus chilensis Steamer-like Element-1 Retrotransposon Antisense mRNA Harbors an Internal Ribosome Entry Site That Is Modulated by hnRNPK. Viruses 2024; 16:403. [PMID: 38543768 PMCID: PMC10974842 DOI: 10.3390/v16030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 05/23/2024] Open
Abstract
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 83700071, Chile; (L.F.-G.); (C.A.-M.); (P.L.-Á.); (B.B.); (F.J.B.)
| |
Collapse
|
25
|
Di Giorgio E, Ranzino L, Tolotto V, Dalla E, Burelli M, Gualandi N, Brancolini C. Transcription of endogenous retroviruses in senescent cells contributes to the accumulation of double-stranded RNAs that trigger an anti-viral response that reinforces senescence. Cell Death Dis 2024; 15:157. [PMID: 38383514 PMCID: PMC10882003 DOI: 10.1038/s41419-024-06548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
An important epigenetic switch marks the onset and maintenance of senescence. This allows transcription of the genetic programs that arrest the cell cycle and alter the microenvironment. Transcription of endogenous retroviruses (ERVs) is also a consequence of this epigenetic switch. In this manuscript, we have identified a group of ERVs that are epigenetically silenced in proliferating cells but are upregulated during replicative senescence or during various forms of oncogene-induced senescence, by RAS and Akt, or after HDAC4 depletion. In a HDAC4 model of senescence, removal of the repressive histone mark H3K27me3 is the plausible mechanism that allows the transcription of intergenic ERVs during senescence. We have shown that ERVs contribute to the accumulation of dsRNAs in senescence, which can initiate the antiviral response via the IFIH1-MAVS signaling pathway and thus contribute to the maintenance of senescence. This pathway, and MAVS in particular, plays an active role in shaping the microenvironment and maintaining growth arrest, two essential features of the senescence program.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Matteo Burelli
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Nicolò Gualandi
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
26
|
Rauch E, Amendt T, Lopez Krol A, Lang FB, Linse V, Hohmann M, Keim AC, Kreutzer S, Kawengian K, Buchholz M, Duschner P, Grauer S, Schnierle B, Ruhl A, Burtscher I, Dehnert S, Kuria C, Kupke A, Paul S, Liehr T, Lechner M, Schnare M, Kaufmann A, Huber M, Winkler TH, Bauer S, Yu P. T-bet + B cells are activated by and control endogenous retroviruses through TLR-dependent mechanisms. Nat Commun 2024; 15:1229. [PMID: 38336876 PMCID: PMC10858178 DOI: 10.1038/s41467-024-45201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.
Collapse
Affiliation(s)
- Eileen Rauch
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Timm Amendt
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- The Francis Crick Institute, NW1 1AT, London, UK
| | | | - Fabian B Lang
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Vincent Linse
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Michelle Hohmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Apollo Ventures Holding GmbH, 20457, Hamburg, Germany
| | - Ann-Christin Keim
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Susanne Kreutzer
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Kevin Kawengian
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, and Core Facility Small Animal Multispectral and Ultrasound Imaging, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Duschner
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Saskia Grauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Barbara Schnierle
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Andreas Ruhl
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Department of Infection Biology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sonja Dehnert
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Chege Kuria
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Stephanie Paul
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Markus Schnare
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Magdalena Huber
- Institute of Sytems Immunology, Center for Tumor and Immunobiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
27
|
Mottaghinia S, Stenzel S, Tsangaras K, Nikolaidis N, Laue M, Müller K, Hölscher H, Löber U, McEwen GK, Donnellan SC, Rowe KC, Aplin KP, Goffinet C, Greenwood AD. A recent gibbon ape leukemia virus germline integration in a rodent from New Guinea. Proc Natl Acad Sci U S A 2024; 121:e2220392121. [PMID: 38305758 PMCID: PMC10861895 DOI: 10.1073/pnas.2220392121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/30/2023] [Indexed: 02/03/2024] Open
Abstract
Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered. The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion. West of the Wallace Line, gibbon ape leukemia viruses (GALVs) have been isolated from captive gibbons. Two microbat species from China appear to have been infected naturally. East of Wallace's Line, the woolly monkey virus (a GALV) and the closely related koala retrovirus (KoRV) have been detected in eutherians and marsupials in the Australo-Papuan region, often vertically transmitted. The detected vertically transmitted GALV-like viruses in Australo-Papuan fauna compared to sporadic horizontal transmission in Southeast Asia and China suggest the GALV-KoRV clade originates in the former region and further models of early-stage genome colonization may be found. We screened 278 samples, seven bat and one rodent family endemic to the Australo-Papuan region and bat and rodent species found on both sides of the Wallace Line. We identified two rodents (Melomys) from Australia and Papua New Guinea and no bat species harboring GALV-like retroviruses. Melomys leucogaster from New Guinea harbored a genomically complete replication-competent retrovirus with a shared integration site among individuals. The integration was only present in some individuals of the species indicating this retrovirus is at the earliest stages of germline colonization of the Melomys genome, providing a new small wild mammal model of early-stage genome colonization.
Collapse
Affiliation(s)
- Saba Mottaghinia
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
- Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, LyonF-69007, France
| | - Saskia Stenzel
- Institute of Virology Charité–Universitätsmedizin Berlin, BerlinD-10117, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Kyriakos Tsangaras
- Department of Life and Health Sciences, University of Nicosia, NicosiaCY-2417, Cyprus
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA92834-6850
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, BerlinD-13353, Germany
| | - Karin Müller
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
| | - Henriette Hölscher
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
| | - Ulrike Löber
- Max-Delbrük Center for Molecular Medicine Helmholtz Association, Berlin13125, Germany
| | - Gayle K. McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
| | | | - Kevin C. Rowe
- Sciences Department, Museums Victoria, Melbourne, VIC3001, Australia
| | - Ken P. Aplin
- South Australian Museum, North Terrace, Adelaide SA5000, Australia
| | - Christine Goffinet
- Institute of Virology Charité–Universitätsmedizin Berlin, BerlinD-10117, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Alex D. Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
- School of Veterinary Medicine, Freie Universität Berlin, Berlin14163, Germany
| |
Collapse
|
28
|
Cherkasova EA, Chen L, Childs RW. Mechanistic regulation of HERV activation in tumors and implications for translational research in oncology. Front Cell Infect Microbiol 2024; 14:1358470. [PMID: 38379771 PMCID: PMC10877039 DOI: 10.3389/fcimb.2024.1358470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Transcription of distinct loci of human endogenous retroviruses (HERVs) and in some cases, translation of these transcripts have been consistently observed in many types of cancer. It is still debated whether HERV activation serves as a trigger for carcinogenesis or rather occurs as a consequence of epigenetic alterations and other molecular sequelae that characterize cellular transformation. Here we review the known molecular and epigenetic mechanisms of HERV activation in cancer cells as well as its potential contribution to carcinogenesis. Further, we describe the use of HERV expression in cancer diagnostic and characterize the potential of HERV-derived antigens to serve as novel targets for cancer immunotherapy. We believe this review, which summarizes both what is known as well as unknown in this rapidly developing field, will boost interest in research on the therapeutic potential of targeting HERV elements in tumors and the impact of HERV activation in oncogenesis.
Collapse
Affiliation(s)
| | | | - Richard W. Childs
- Laboratory of Transplantation Immunotherapy, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
30
|
Zhang D, Wu X, Xue X, Li W, Zhou P, Lv Z, Zhao K, Zhu F. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin 2024; 39:31-43. [PMID: 37690733 PMCID: PMC10877354 DOI: 10.1016/j.virs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral infections in human germline cells from millions of years ago. Among these, ERVW-1 (also known as HERV-W-ENV, ERVWE1, or ENVW) encodes the envelope protein of the HERV-W family, which contributes to the pathophysiology of schizophrenia. Additionally, neuropathological studies have revealed cell death and disruption of iron homeostasis in the brains of individuals with schizophrenia. Here, our bioinformatics analysis showed that differentially expressed genes in the human prefrontal cortex RNA microarray dataset (GSE53987) were mainly related to ferroptosis and its associated pathways. Clinical data demonstrated significantly lower expression levels of ferroptosis-related genes, particularly Glutathione peroxidase 4 (GPX4) and solute carrier family 3 member 2 (SLC3A2), in schizophrenia patients compared to normal controls. Further in-depth analyses revealed a significant negative correlation between ERVW-1 expression and the levels of GPX4/SLC3A2 in schizophrenia. Studies indicated that ERVW-1 increased iron levels, malondialdehyde (MDA), and transferrin receptor protein 1 (TFR1) expression while decreasing glutathione (GSH) levels and triggering the loss of mitochondrial membrane potential, suggesting that ERVW-1 can induce ferroptosis. Ongoing research has shown that ERVW-1 reduced the expression of GPX4 and SLC3A2 by inhibiting their promoter activities. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the iron accumulation and mitochondrial membrane potential loss, as well as restored the expressions of ferroptosis markers GSH, MDA, and TFR1 induced by ERVW-1. In conclusion, ERVW-1 could promote ferroptosis by downregulating the expression of GPX4 and SLC3A2, revealing a novel mechanism by which ERVW-1 contributes to neuronal cell death in schizophrenia.
Collapse
Affiliation(s)
- Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
Mantovani F, Kitsou K, Magiorkinis G. HERVs: Expression Control Mechanisms and Interactions in Diseases and Human Immunodeficiency Virus Infection. Genes (Basel) 2024; 15:192. [PMID: 38397182 PMCID: PMC10888493 DOI: 10.3390/genes15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.
Collapse
Affiliation(s)
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (F.M.); (K.K.)
| |
Collapse
|
32
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
33
|
Zhang XJ, Han BB, Shao ZY, Yan R, Gao J, Liu T, Jin ZY, Lai W, Xu ZM, Wang CH, Zhang F, Gu C, Wang Y, Wang H, Walsh CP, Guo F, Xu GL, Du YR. Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation. Nat Struct Mol Biol 2024; 31:42-53. [PMID: 38177668 DOI: 10.1038/s41594-023-01125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/14/2023] [Indexed: 01/06/2024]
Abstract
DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-Bin Han
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Yu Shao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Juan Gao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Liu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zi-Yang Jin
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Mei Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Han Wang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengjuan Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chan Gu
- Changping Laboratory, Beijing, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guo-Liang Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China.
| | - Ya-Rui Du
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Mantovani F, Kitsou K, Paraskevis D, Lagiou P, Magiorkinis G. The interaction of human immunodeficiency virus-1 and human endogenous retroviruses in patients (primary cell cultures) and cell line models. Microbiol Spectr 2023; 11:e0137923. [PMID: 37811936 PMCID: PMC10715072 DOI: 10.1128/spectrum.01379-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE In this work, we demonstrated that human immunodeficiency virus (HIV) infection leads to the modification of the human endogenous retrovirus (HERV) expression. Differential expression of multiple HERVs was found in peripheral blood mononuclear cells derived from HIV-infected patients compared to healthy donors and HIV-infected T cell cultures compared to non-infected. The effect of HIV presence on HERV expression appears to be more restricted in cells of monocytic origin, as only deregulation of HERV-W and HERV-K (HML-6) was found in these cell cultures after their infection with HIV. Multiple factors contribute to this aberrant HERV expression, and its levels appear to be modified in a time-dependent manner. Further studies and the development of optimized in vitro protocols are warranted to elucidate the interactions between HIV and HERVs in detail.
Collapse
Affiliation(s)
- Federica Mantovani
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Torre D, Fstkchyan YS, Ho JSY, Cheon Y, Patel RS, Degrace EJ, Mzoughi S, Schwarz M, Mohammed K, Seo JS, Romero-Bueno R, Demircioglu D, Hasson D, Tang W, Mahajani SU, Campisi L, Zheng S, Song WS, Wang YC, Shah H, Francoeur N, Soto J, Salfati Z, Weirauch MT, Warburton P, Beaumont K, Smith ML, Mulder L, Villalta SA, Kessenbrock K, Jang C, Lee D, De Rubeis S, Cobos I, Tam O, Hammell MG, Seldin M, Shi Y, Basu U, Sebastiano V, Byun M, Sebra R, Rosenberg BR, Benner C, Guccione E, Marazzi I. Nuclear RNA catabolism controls endogenous retroviruses, gene expression asymmetry, and dedifferentiation. Mol Cell 2023; 83:4255-4271.e9. [PMID: 37995687 PMCID: PMC10842741 DOI: 10.1016/j.molcel.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.
Collapse
Affiliation(s)
- Denis Torre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Youngseo Cheon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma J Degrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Slim Mzoughi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Schwarz
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Raquel Romero-Bueno
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zelda Salfati
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lubbertus Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Mindich Child Health and Development Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Marcus Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine and the Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Cheng J, Li T, Zheng Z, Zhang X, Cao M, Tang W, Hong K, Zheng R, Shao J, Zhao X, Jiang H, Xu W, Lin H. Loss of histone reader Phf7 leads to immune pathways activation via endogenous retroviruses during spermiogenesis. iScience 2023; 26:108030. [PMID: 37920670 PMCID: PMC10618686 DOI: 10.1016/j.isci.2023.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Genetic studies have elucidated the critical roles of Phf7 in germline development in animals; however, the exact etiology of Phf7 mutations leading to male infertility and the possibility of mechanism-based therapy are still unclear and warrant further investigation. Using the Phf7 knockout mouse model, we verified that genetic defects were responsible for male infertility by preventing histone-to-protamine exchange, as previously reported. The deficiency of spermatogenesis caused by Phf7 deletion through the endogenous retrovirus-mediated activation of the immune pathway is a common mechanism of infertility. Furthermore, we identified PPARα as a promising target of immunity and inflammation in the testis, where endogenous retroviruses are suppressed, and Phf7 as a crucial regulator of endogenous retrovirus-mediated immune regulation and revealed its role as an epigenetic reader. The loss of Phf7 activates immune pathways, which can be rescued by the PPARα agonist astaxanthin. These results showed that astaxanthin is a potential therapeutic agent for treating male infertility. The findings in our study provide insights into the molecular mechanisms underlying male infertility and suggest potential targets for future research and therapeutic development.
Collapse
Affiliation(s)
- Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Tongtong Li
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongjie Zheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyang Cao
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Human Sperm Bank, Peking University Third Hospital, Peking University, Beijing, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Rui Zheng
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
| |
Collapse
|
37
|
Cai L, Liu B, Cao Y, Sun T, Li Y. Unveiling the molecular structure and role of RBBP4/7: implications for epigenetic regulation and cancer research. Front Mol Biosci 2023; 10:1276612. [PMID: 38028543 PMCID: PMC10679446 DOI: 10.3389/fmolb.2023.1276612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
Collapse
Affiliation(s)
- Lize Cai
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China
| | - Yufei Cao
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Ting Sun
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Yanyan Li
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| |
Collapse
|
38
|
Nevalainen T, Autio A, Hurme M. Human endogenous retroviruses of the HERV-K (HML-2) family are expressed in the brain of healthy individuals and modify the composition of the brain-infiltrating immune cells. Heliyon 2023; 9:e21283. [PMID: 37920490 PMCID: PMC10618496 DOI: 10.1016/j.heliyon.2023.e21283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the human genome. RNA expression of individual HERVs has frequently been observed in various pathologic conditions, but some activity can also be seen in healthy individuals, e.g. in the blood. To quantitate the basal expression levels of HERVs in the brain, we now used high-throughput sequencing-based metagenomic analysis to characterize the expression profiles of the HERV-K (HML-2) family proviruses in different brain regions of healthy brain tissue. To this end, RNA-seq data from the Genotype-Tissue Expression (GTEx) project was used. The GTEx project is a public resource to study tissue-specific gene expression and regulation, consisting of a large selection of sequenced samples from different tissues. The GTEx data used in this study consisted of 378 samples taken from 13 brain regions from 55 individuals. The data demonstrated that out of 99 intact proviruses in the family 58 were expressed, but the expression profiles were highly divergent and there were no significant differences in the expression profiles between the various anatomic regions of the brain. It is known that the brain contains a variety of infiltrating immune cells, which are probably of great importance both in the normal defense mechanisms as well as in the various pathogenic processes. Digital cytometry (CIBERSORTx) was used to quantify the proportions of the infiltrating immune cells in the same brain samples. Six most abundant (>5 % of the total population) cell types were observed to be CD4 memory resting T cells, M0 macrophages, plasma cells, CD8 T cells, CD4 memory activated T cells, and monocytes. Analysis of the correlations between the individual HERVs and infiltrating cell types indicated that a cluster of 6 HERVs had a notable correlation signature between T cell type infiltrating cell proportions and HERV RNA expression intensity. The correlations between inflammatory type infiltrating cells were negative or weak. Taken together, these data indicate that the expression of HERVs is associated with a T cell type immunity.
Collapse
Affiliation(s)
- Tapio Nevalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
- Tampere University Hospital, Finland
| | - Arttu Autio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
- Tampere University Hospital, Finland
| |
Collapse
|
39
|
Zhao S, Lu J, Pan B, Fan H, Byrum SD, Xu C, Kim A, Guo Y, Kanchi KL, Gong W, Sun T, Storey AJ, Burkholder NT, Mackintosh SG, Kuhlers PC, Edmondson RD, Strahl BD, Diao Y, Tackett AJ, Raab JR, Cai L, Song J, Wang GG. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Nature 2023; 623:633-642. [PMID: 37938770 PMCID: PMC11000523 DOI: 10.1038/s41586-023-06688-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chenxi Xu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna L Kanchi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peyton C Kuhlers
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yarui Diao
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jesse R Raab
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Cui X, Shang X, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, Wang L, Huang L, Wan B, Roeder RG, Han ZG. Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett 2023; 575:216404. [PMID: 37739210 DOI: 10.1016/j.canlet.2023.216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.
Collapse
Affiliation(s)
- Xiaofang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenyi Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongchao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
41
|
Wen X, Shen J, De Miglio MR, Zeng D, Sechi LA. Endogenous retrovirus group FRD member 1 is a potential biomarker for prognosis and immunotherapy for kidney renal clear cell carcinoma. Front Cell Infect Microbiol 2023; 13:1252905. [PMID: 37780849 PMCID: PMC10534008 DOI: 10.3389/fcimb.2023.1252905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The activation of endogenous retroviral (ERV) genes in kidney renal clear cell carcinoma (KIRC) suggests the necessity for further research on their functions. Methods In this study, KIRC and healthy cohorts were obtained from TGGA and GEO datasets. Subsequently, differential analysis and functional annotation were conducted using GO, KEGG, and GSEA. Clinical outcomes were then observed and utilized in the development of a nomogram. Results We observed the general low expression of ERVFRD-1 in KIRC tumors compared to normal tissue (P < 0.001) across multiple cohorts. Differential analysis and functional annotation using GO, KEGG, GSEA analysis revealed significant involvement of ERVFRD-1 in tumor immunoregulation: a close relation to the infiltration levels of mast cells and Treg cell (P < 0.001) and occurrence with a variety of immune markers. Methylation status was then applied to uncover potential mechanisms of ERVFRD-1 in KIRC. Notably, higher expression levels of ERVFRD-1 were associated with extended overall survival, disease-specific survival, and progression-free survival. Finally, based on Cox regression analysis, we constructed a nomogram incorporating ERVFRD-1, pathologic T, and age, which exhibited promising predictive power in assessing the survival outcomes of KIRC patients. Discussion To sum up, our study suggests that ERVFRD-1 plays a role in regulating immunological activity within the tumor microenvironment and is associated with overall survival in KIRC patients. ERVFRD-1 may therefore be a sensitive biomarker for diagnosis, immunotherapy, and prognosis assessment of KIRC.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiaxin Shen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Struttura Complessa (SC) Microbiologia e Virologia, Azienda Ospedaliera Universitaria, Sassari, Italy
| |
Collapse
|
42
|
Gimenez J, Spalloni A, Cappelli S, Ciaiola F, Orlando V, Buratti E, Longone P. TDP-43 Epigenetic Facets and Their Neurodegenerative Implications. Int J Mol Sci 2023; 24:13807. [PMID: 37762112 PMCID: PMC10530927 DOI: 10.3390/ijms241813807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein.
Collapse
Affiliation(s)
- Juliette Gimenez
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Alida Spalloni
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Sara Cappelli
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Francesca Ciaiola
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Rome, Italy
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Sciences and Engineering Division BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Emanuele Buratti
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Patrizia Longone
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| |
Collapse
|
43
|
Du J, Kageyama SI, Yamashita R, Tanaka K, Okumura M, Motegi A, Hojo H, Nakamura M, Hirata H, Sunakawa H, Kotani D, Yano T, Kojima T, Hamaya Y, Kojima M, Nakamura Y, Suzuki A, Suzuki Y, Tsuchihara K, Akimoto T. Transposable elements potentiate radiotherapy-induced cellular immune reactions via RIG-I-mediated virus-sensing pathways. Commun Biol 2023; 6:818. [PMID: 37543704 PMCID: PMC10404237 DOI: 10.1038/s42003-023-05080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/28/2023] [Indexed: 08/07/2023] Open
Abstract
Radiotherapy (RT) plus immunotherapy is a promising modality; however, the therapeutic effects are insufficient, and the molecular mechanism requires clarification to further develop combination therapies. Here, we found that the RNA virus sensor pathway dominantly regulates the cellular immune response in NSCLC and ESCC cell lines. Notably, transposable elements (TEs), especially long terminal repeats (LTRs), functioned as key ligands for the RNA virus sensor RIG-I, and the mTOR-LTR-RIG-I axis induced the cellular immune response and dendritic cell and macrophage infiltration after irradiation. Moreover, RIG-I-dependent immune activation was observed in ESCC patient tissue. scRNA sequencing and spatial transcriptome analysis revealed that radiotherapy induced the expression of LTRs, and the RNA virus sensor pathway in immune and cancer cells; this pathway was also found to mediate tumour conversion to an immunological hot state. Here, we report the upstream and ligand of the RNA virus sensor pathway functions in irradiated cancer tissues.
Collapse
Affiliation(s)
- Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan.
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan.
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kosuke Tanaka
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masayuki Okumura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
| | - Hidenari Hirata
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
| | - Hironori Sunakawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yamato Hamaya
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yuka Nakamura
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
44
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Chang YS, Hsu MH, Chung CC, Chen HD, Tu SJ, Lee YT, Yen JC, Liu TC, Chang JG. Comprehensive Analysis and Drug Modulation of Human Endogenous Retrovirus in Hepatocellular Carcinomas. Cancers (Basel) 2023; 15:3664. [PMID: 37509325 PMCID: PMC10377948 DOI: 10.3390/cancers15143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) play an important role in the development of cancer and many diseases. Here, we comprehensively explored the impact of HERVs on hepatocellular carcinomas (HCCs). METHODS We employed Telescope to identify HERVs and quantify their expression in the total RNA sequencing data obtained from 254 HCC samples, comprising 254 tumor tissues and 34 matched normal tissues. RESULTS In total, 3357 locus-specific activations of HERVs were differentially expressed, and 180 were correlated with patient survival. Using these 180 HERVs for classification, we found four subgroups with survival correlation. Higher expression levels of the 180 HERVs were correlated with poorer survival, while age, AFP, some mutations, and copy and structural variants differed among subgroups. The differential expression of host genes in high expression of these 180 HERVs primarily involved the activation of pathways related to immunity and infection, lipid and atherosclerosis, MAPK and NF-kB signaling, and cytokine-cytokine receptor interactions. Conversely, there was a suppression of pathways associated with RNA processing, including nucleocytoplasmic transport, surveillance and ribosome biogenesis, and transcriptional misregulation in cancer pathways. Almost all genes involved in HERV activation restriction, KRAB zinc finger proteins, RNA nucleocytoplasmic transport, stemness, HLA and antigen processing and presentation, and immune checkpoints were overexpressed in cancerous tissues, and many over-expressed HERV-related nearby genes were correlated with high HERV activation and poor survival. Twenty-three immune and stromal cells showed higher expression in non-cancerous than cancerous tissues, and seven were correlated with HERV activation. Small-molecule modulation of alternative splicing (AS) altered the expression of survival-related HERVs and their activation-related genes, as well as nearby genes. CONCLUSION Comprehensive and integrated approaches for evaluating HERV expression and their correlation with specific pathways have the potential to provide new companion diagnostics and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Hon Hsu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
47
|
Wolf MM, Rathmell WK, de Cubas AA. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 2023; 19:440-450. [PMID: 36973495 PMCID: PMC10801831 DOI: 10.1038/s41581-023-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Melissa M Wolf
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
48
|
Zezulin AU, Yen D, Ye D, Howell ED, Bresciani E, Diemer J, Ren JG, Ahmad MH, Castilla LH, Touw IP, Minn AJ, Tong W, Liu PP, Tan K, Yu W, Speck NA. RUNX1 is required in granulocyte-monocyte progenitors to attenuate inflammatory cytokine production by neutrophils. Genes Dev 2023; 37:605-620. [PMID: 37536952 PMCID: PMC10499021 DOI: 10.1101/gad.350418.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancy (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 was shown to regulate inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to epigenetically repress two inflammatory signaling pathways in neutrophils: Toll-like receptor 4 (TLR4) and type I interferon (IFN) signaling. RUNX1 loss in GMPs augments neutrophils' inflammatory response to the TLR4 ligand lipopolysaccharide through increased expression of the TLR4 coreceptor CD14. RUNX1 binds Cd14 and other genes encoding proteins in the TLR4 and type I IFN signaling pathways whose chromatin accessibility increases when RUNX1 is deleted. Transcription factor footprints for the effectors of type I IFN signaling-the signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRFs)-were enriched in chromatin that gained accessibility in both GMPs and neutrophils when RUNX1 was lost. STAT1::STAT2 and IRF motifs were also enriched in the chromatin of retrotransposons that were derepressed in RUNX1-deficient GMPs and neutrophils. We conclude that a major direct effect of RUNX1 loss in GMPs is the derepression of type I IFN and TLR4 signaling, resulting in a state of fixed maladaptive innate immunity.
Collapse
Affiliation(s)
- Alexandra U Zezulin
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Yen
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Darwin Ye
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jamie Diemer
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jian-Gang Ren
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohd Hafiz Ahmad
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Lucio H Castilla
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus Medical College, Rotterdam 3015CN, the Netherlands
| | - Andy J Minn
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei Tong
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - P Paul Liu
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kai Tan
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Oncology and Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Wenbao Yu
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Division of Oncology and Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
49
|
Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, Li Q, Guo R, Zhang J, Liu A, Pan G, Yao H. RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res 2023; 51:5414-5431. [PMID: 37021556 PMCID: PMC10287929 DOI: 10.1093/nar/gkad219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Collapse
Affiliation(s)
- Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - YanJiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Felley-Bosco E. Exploring the Expression of the «Dark Matter» of the Genome in Mesothelioma for Potentially Predictive Biomarkers for Prognosis and Immunotherapy. Cancers (Basel) 2023; 15:cancers15112969. [PMID: 37296931 DOI: 10.3390/cancers15112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Recent high-throughput RNA sequencing technologies have confirmed that a large part of the non-coding genome is transcribed. The priority for further investigations is nevertheless generally given in cancer to coding sequences, due to the obvious interest of finding therapeutic targets. In addition, several RNA-sequencing pipelines eliminate repetitive sequences, which are difficult to analyze. In this review, we shall focus on endogenous retroviruses. These sequences are remnants of ancestral germline infections by exogenous retroviruses. These sequences represent 8% of human genome, meaning four-fold the fraction of the genome encoding for proteins. These sequences are generally mostly repressed in normal adult tissues, but pathological conditions lead to their de-repression. Specific mesothelioma-associated endogenous retrovirus expression and their association to clinical outcome is discussed.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Zürich University Hospital, 8091 Zurich, Switzerland
| |
Collapse
|