1
|
Penrice-Randal R, Bentley EG, Sharma P, Kirby A, Donovan-Banfield I, Kipar A, Mega DF, Bramwell C, Sharp J, Owen A, Hiscox JA, Stewart JP. The effect of molnupiravir and nirmatrelvir on SARS-CoV-2 genome diversity in severe models of COVID-19. Microbiol Spectr 2025; 13:e0182924. [PMID: 40130852 PMCID: PMC12053996 DOI: 10.1128/spectrum.01829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Immunocompromised individuals are susceptible to severe coronavirus disease 2019 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice and the effectiveness of antiviral treatments in this context during the first 7 days of infection. Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered, and viral load and viral sequence diversity were assessed. Treatment of infected but immunocompromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion ratio, representative of G > A and C > U mutations, and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir. Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristics of variants of concern (VOCs). Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development, especially by taking persistence into consideration, and to inform optimized public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model. IMPORTANCE The central aim of this study was to risk-assess the impact of administering a mutagenic antiviral compound, molnupiravir, to patients believed to already be at risk of generating increased viral diversity, which could have severe implications for antiviral resistance development. Combination therapy has a long history of mitigating antiviral resistance risk and was used in this study to demonstrate its potential usefulness in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) context. Animals treated with molnupiravir showed an increase in transition/transversion ratios over time, consistent with the drug's mechanism of action and a recent UK-wide phase II clinical trial assessing the efficacy of molnupiravir in humans. The addition of nirmatrelvir increased viral clearance, which in turn reduces the probability of viral persistence and rapid intra-host evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
| | - I'ah Donovan-Banfield
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, England, United Kingdom
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Daniele F. Mega
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
| | - Chloe Bramwell
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, England, United Kingdom
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, England, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, England, United Kingdom
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, England, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, England, United Kingdom
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, England, United Kingdom
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), , Singapore
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, England, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, England, United Kingdom
| |
Collapse
|
2
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2025; 69:e0123824. [PMID: 39699245 PMCID: PMC11823660 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
3
|
Dong X, Matthews D, Gallo G, Darby A, Donovan-Banfield I, Goldswain H, MacGill T, Myers T, Orr R, Bailey D, Carroll M, Hiscox J. Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time. Nucleic Acids Res 2025; 53:gkaf077. [PMID: 39970290 PMCID: PMC11838042 DOI: 10.1093/nar/gkaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
In infected individuals, viruses are present as a population consisting of dominant and minor variant genomes. Most databases contain information on the dominant genome sequence. Since the emergence of SARS-CoV-2 in late 2019, variants have been selected that are more transmissible and capable of partial immune escape. Currently, models for projecting the evolution of SARS-CoV-2 are based on using dominant genome sequences to forecast whether a known mutation will be prevalent in the future. However, novel variants of SARS-CoV-2 (and other viruses) are driven by evolutionary pressure acting on minor variant genomes, which then become dominant and form a potential next wave of infection. In this study, sequencing data from 96 209 patients, sampled over a 3-year period, were used to analyse patterns of minor variant genomes. These data were used to develop unsupervised machine learning clusters to identify amino acids that had a greater potential for mutation than others in the Spike protein. Being able to identify amino acids that may be present in future variants would better inform the design of longer-lived medical countermeasures and allow a risk-based evaluation of viral properties, including assessment of transmissibility and immune escape, thus providing candidates with early warning signals for when a new variant of SARS-CoV-2 emerges.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Giulia Gallo
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Alistair Darby
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - I’ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
- Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- A*STAR Infectious Diseases Labs (ID Labs), A*STAR, Singapore, 138648, Singapore
| |
Collapse
|
4
|
Penrice-Randal R, Bentley EG, Sharma P, Kirby A, Donovan-Banfield I, Kipar A, Mega DF, Bramwell C, Sharp J, Owen A, Hiscox JA, Stewart JP. The effect of molnupiravir and nirmatrelvir on SARS-CoV-2 genome diversity in severe models of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582110. [PMID: 38464327 PMCID: PMC10925244 DOI: 10.1101/2024.02.27.582110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Objectives Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context during the first 7 days of infection. Methods Mice were immunosuppressed using cyclophosphamide and infected with a B daughter lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of G>A and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development, especially by taking persistence into consideration, and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.
Collapse
Affiliation(s)
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - I’ah Donovan-Banfield
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Daniele F. Mega
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| |
Collapse
|
5
|
Bosilj M, Suljič A, Zakotnik S, Slunečko J, Kogoj R, Korva M. MetaAll: integrative bioinformatics workflow for analysing clinical metagenomic data. Brief Bioinform 2024; 25:bbae597. [PMID: 39550223 PMCID: PMC11568877 DOI: 10.1093/bib/bbae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets-MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Collapse
Affiliation(s)
- Martin Bosilj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Jan Slunečko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Misa Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Cao C, Mehmood A, Li D. Molecular dynamic simulation reveals spider antimicrobial peptide Latarcin-1 and human eosinophil cationic protein as peptide inhibitors of SARS-CoV-2 variants. J Biomol Struct Dyn 2024; 42:5858-5868. [PMID: 37938133 DOI: 10.1080/07391102.2023.2274514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/17/2023] [Indexed: 11/09/2023]
Abstract
COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cheng Cao
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, P.R. China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Daixi Li
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
7
|
Jackson HK, Long HM, Yam‐Puc JC, Palmulli R, Haigh TA, Gerber PP, Lee JS, Matheson NJ, Young L, Trowsdale J, Lo M, Taylor GS, Thaventhiran JE, Edgar JR. Bioengineered small extracellular vesicles deliver multiple SARS-CoV-2 antigenic fragments and drive a broad immunological response. J Extracell Vesicles 2024; 13:e12412. [PMID: 38339765 PMCID: PMC10858312 DOI: 10.1002/jev2.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.
Collapse
Affiliation(s)
- Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc. Palm BeachPalm BeachFloridaUSA
| | - Heather M. Long
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | | | - Tracey A. Haigh
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID)University of CambridgeCambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Jin S. Lee
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID)University of CambridgeCambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | | | | | - Mathew Lo
- Exosis, Inc. Palm BeachPalm BeachFloridaUSA
| | - Graham S. Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | - James R. Edgar
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Nafea AM, Wang Y, Wang D, Salama AM, Aziz MA, Xu S, Tong Y. Application of next-generation sequencing to identify different pathogens. Front Microbiol 2024; 14:1329330. [PMID: 38348304 PMCID: PMC10859930 DOI: 10.3389/fmicb.2023.1329330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens. NGS is a cutting-edge sequencing method with high throughput that can create massive volumes of sequences with a broad application prospects in the field of pathogen identification and diagnosis. In this review, we introduce NGS technology in detail, summarizes the application of NGS in that identification of different pathogens, including bacteria, fungi, and viruses, and analyze the challenges and outlook for using NGS to identify clinical pathogens. Thus, this work provides a theoretical basis for NGS studies and provides evidence to support the application of NGS in distinguishing various clinical pathogens.
Collapse
Affiliation(s)
- Aljuboori M. Nafea
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Duanyang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ahmed M. Salama
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
- Medical Laboratory at Sharkia Health Directorate, Ministry of Health, Sharkia, Egypt
| | - Manal A. Aziz
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
10
|
Yam-Puc JC, Hosseini Z, Horner EC, Gerber PP, Beristain-Covarrubias N, Hughes R, Lulla A, Rust M, Boston R, Ali M, Fischer K, Simmons-Rosello E, O'Reilly M, Robson H, Booth LH, Kahanawita L, Correa-Noguera A, Favara D, Ceron-Gutierrez L, Keller B, Craxton A, Anderson GSF, Sun XM, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Mulroney TE, Piñon LPG, Chapman MA, Grigoriadou S, MacFarlane M, Willis AE, Patil KR, Spencer S, Staples E, Warnatz K, Buckland MS, Hollfelder F, Hyvönen M, Döffinger R, Parkinson C, Lear S, Matheson NJ, Thaventhiran JED. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat Commun 2023; 14:3292. [PMID: 37369658 PMCID: PMC10299999 DOI: 10.1038/s41467-023-38810-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Zhaleh Hosseini
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert Hughes
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria Rust
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Rebecca Boston
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Magda Ali
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Edward Simmons-Rosello
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Martin O'Reilly
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Harry Robson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lakmini Kahanawita
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - David Favara
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew Craxton
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Georgina S F Anderson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas E Mulroney
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucia P G Piñon
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Michael A Chapman
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | | | - Marion MacFarlane
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Sarah Spencer
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily Staples
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | | | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rainer Döffinger
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Christine Parkinson
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - James E D Thaventhiran
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK.
| |
Collapse
|
11
|
Zafar H, Saier MH. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells 2023; 12:cells12091213. [PMID: 37174613 PMCID: PMC10177376 DOI: 10.3390/cells12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) first emerged in 2019 in China and has resulted in millions of human morbidities and mortalities across the globe. Evidence has been provided that this novel virus originated in animals, mutated, and made the cross-species jump to humans. At the time of this communication, the Coronavirus disease (COVID-19) may be on its way to an endemic form; however, the threat of the virus is more for susceptible (older and immunocompromised) people. The human body has millions of bacterial cells that influence health and disease. As a consequence, the bacteriomes in the human body substantially influence human health and disease. The bacteriomes in the body and the immune system seem to be in constant association during bacterial and viral infections. In this review, we identify various bacterial spp. In major bacteriomes (oral, nasal, lung, and gut) of the body in healthy humans and compare them with dysbiotic bacteriomes of COVID-19 patients. We try to identify key bacterial spp. That have a positive effect on the functionality of the immune system and human health. These select bacterial spp. Could be used as potential probiotics to counter or prevent COVID-19 infections. In addition, we try to identify key metabolites produced by probiotic bacterial spp. That could have potential anti-viral effects against SARS-CoV-2. These metabolites could be subject to future therapeutic trials to determine their anti-viral efficacies.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
| |
Collapse
|
12
|
Akhter N, Sana S, Adnan Ahsan M, Siddique Z, Huraira A, Sana S. Advances in Diagnosis and Treatment for SARS-CoV-2 Variants. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic’s epidemiological and clinical characteristics have been affected in recent months by the introduction of SARS-CoV-2 variants with unique spikes of protein alterations. These variations can lessen the protection provided by suppressing monoclonal antibodies and vaccines, as well as enhance the frequencies of transmission of the virus and/or the risk of contracting the disease. Due to these mutations, SARS-CoV-2 may be able to proliferate despite increasing levels of vaccination coverage while preserving and enhancing its reproduction efficiency. This is one of the main strategies in tackling the COVID-19 epidemics, the accessibility of precise and trustworthy biomarkers for the SARS-CoV-2 genetic material and also its nucleic acids is important to investigate the disease in suspect communities, start making diagnoses and management in symptomatic or asymptomatic persons, and evaluate authorization of the pathogen after infection. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for virus nucleic acid identification is still the most effective method for such uses due to its sensitivity, quickness, high-throughput sequencing capacity, and trustworthiness. It is essential to update the primer and probe sequences to maintain the recognition of recently emerging variations. Concerning viral variations could develop that are dangerously resistant to the immunization induced by the present vaccinations in coronavirus disease 2019. Additionally, the significance of effective public health interventions and vaccination programs will grow if some variations of concern exhibit an increased risk of transmission or toxicity. The international reaction must’ve been immediate and established in science. These results supported ongoing efforts to prevent and identify infection, as well as to describe mutations in vaccine recipients, and they suggest a potential risk of illness following effective immunization and transmission of pathogens with a mutant viral.
Collapse
|
13
|
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection. Genome Biol 2023. [PMID: 36915185 PMCID: PMC10009825 DOI: 10.1186/s13059-023-02881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.
Collapse
|
14
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
15
|
Shilts J, Crozier TWM, Teixeira-Silva A, Gabaev I, Gerber PP, Greenwood EJD, Watson SJ, Ortmann BM, Gawden-Bone CM, Pauzaite T, Hoffmann M, Nathan JA, Pöhlmann S, Matheson NJ, Lehner PJ, Wright GJ. LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biol 2023; 21:e3001959. [PMID: 36735681 PMCID: PMC9897555 DOI: 10.1371/journal.pbio.3001959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Thomas W. M. Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teixeira-Silva
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ildar Gabaev
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Pehuén Pereyra Gerber
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Edward J. D. Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Samuel James Watson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Brian M. Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Christian M. Gawden-Bone
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Tekle Pauzaite
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - James A. Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - Nicholas J. Matheson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
16
|
Panzera Y, Cortinas MN, Marandino A, Calleros L, Bormida V, Goñi N, Techera C, Grecco S, Williman J, Ramas V, Coppola L, Mogdasy C, Chiparelli H, Pérez R. Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. GENE REPORTS 2022; 29:101703. [PMID: 36338321 PMCID: PMC9617655 DOI: 10.1016/j.genrep.2022.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The genetic variability of SARS-CoV-2 (genus Betacoronavirus, family Coronaviridae) has been scrutinized since its first detection in December 2019. Although the role of structural variants, particularly deletions, in virus evolution is little explored, these genome changes are extremely frequent. They are associated with relevant processes, including immune escape and attenuation. Deletions commonly occur in accessory ORFs and might even lead to the complete loss of one or more ORFs. This scenario poses an interesting question about the origin and spreading of extreme structural rearrangements that persist without compromising virus viability. Here, we analyze the genome of SARS-CoV-2 in late 2021 in Uruguay and identify a Delta lineage (AY.20) that experienced a large deletion (872 nucleotides according to the reference Wuhan strain) that removes the 7a, 7b, and 8 ORFs. Deleted viruses coexist with wild-type (without deletion) AY.20 and AY.43 strains. The Uruguayan deletion is like those identified in Delta strains from Poland and Japan but occurs in a different Delta clade. Besides providing proof of the circulation of this large deletion in America, we infer that the 872-deletion arises by the consecutive occurrence of a 6-nucleotide deletion, characteristic of delta strains, and an 866-nucleotide deletion that arose independently in the AY.20 Uruguayan lineage. The largest deletion occurs adjacent to transcription regulatory sequences needed to synthesize the nested set of subgenomic mRNAs that serve as templates for transcription. Our findings support the role of transcription sequences as a hotspot for copy-choice recombination and highlight the remarkable dynamic of SARS-CoV-2 genomes.
Collapse
Affiliation(s)
- Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Noel Cortinas
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Lucía Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Victoria Bormida
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Natalia Goñi
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Claudia Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Joaquín Williman
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Viviana Ramas
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Leticia Coppola
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Cristina Mogdasy
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Héctor Chiparelli
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
17
|
Gerber PP, Donde MJ, Matheson NJ, Taylor AI. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nat Commun 2022; 13:6716. [PMID: 36385143 PMCID: PMC9668987 DOI: 10.1038/s41467-022-34339-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes - artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid) - may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Berry N, Ferguson D, Kempster S, Hall J, Ham C, Jenkins A, Rannow V, Giles E, Leahy R, Goulding S, Fernandez A, Adedeji Y, Vessillier S, Rajagopal D, Prior S, Le Duff Y, Hurley M, Gilbert S, Fritzsche M, Mate R, Rose N, Francis RJ, MacLellan-Gibson K, Suarez-Bonnet A, Priestnall S, Almond N. Intrinsic host susceptibility among multiple species to intranasal SARS-CoV-2 identifies diverse virological, biodistribution and pathological outcomes. Sci Rep 2022; 12:18694. [PMID: 36333445 PMCID: PMC9636276 DOI: 10.1038/s41598-022-23339-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 exhibits a diverse host species range with variable outcomes, enabling differential host susceptibility studies to assess suitability for pre-clinical countermeasure and pathogenesis studies. Baseline virological, molecular and pathological outcomes were determined among multiple species-one Old World non-human primate (NHP) species (cynomolgus macaques), two New World NHP species (red-bellied tamarins; common marmosets) and Syrian hamsters-following single-dose, atraumatic intranasal administration of SARS-CoV-2/Victoria-01. After serial sacrifice 2, 10 and 28-days post-infection (dpi), hamsters and cynomolgus macaques displayed differential virus biodistribution across respiratory, gastrointestinal and cardiovascular systems. Uniquely, New World tamarins, unlike marmosets, exhibited high levels of acute upper airway infection, infectious virus recovery associated with mild lung pathology representing a host previously unrecognized as susceptible to SARS-CoV-2. Across all species, lung pathology was identified post-clearance of virus shedding (antigen/RNA), with an association of virus particles within replication organelles in lung sections analysed by electron microscopy. Disrupted cell ultrastructure and lung architecture, including abnormal morphology of mitochondria 10-28 dpi, represented on-going pathophysiological consequences of SARS-CoV-2 in predominantly asymptomatic hosts. Infection kinetics and host pathology comparators using standardized methodologies enables model selection to bridge differential outcomes within upper and lower respiratory tracts and elucidate longer-term consequences of asymptomatic SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK.
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Adrian Jenkins
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Vicky Rannow
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Rose Leahy
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Sara Goulding
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Arturo Fernandez
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | | | | | | | - Sandra Prior
- Division of Biotherapeutics, NIBSC, Hertfordshire, UK
| | - Yann Le Duff
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Matthew Hurley
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Sarah Gilbert
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK
| | - Martin Fritzsche
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Ryan Mate
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | - Nicola Rose
- Division of Virology, NIBSC, Hertfordshire, UK
| | - Robert J Francis
- Division of Analytical and Biological Sciences, NIBSC, Hertfordshire, UK
| | | | - Alejandro Suarez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, UK
| | - Simon Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, NIBSC, Hertfordshire, UK.
| |
Collapse
|
19
|
Maestri S, Grosso V, Alfano M, Lavezzari D, Piubelli C, Bisoffi Z, Rossato M, Delledonne M. STArS (STrain-Amplicon-Seq), a targeted nanopore sequencing workflow for SARS-CoV-2 diagnostics and genotyping. Biol Methods Protoc 2022; 7:bpac020. [PMID: 36046362 PMCID: PMC9422081 DOI: 10.1093/biomethods/bpac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Diagnostic tests based on reverse transcription-quantitative polymerase chain reaction (RT-qPCR) are the gold standard approach to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from clinical specimens. However, unless specifically optimized, this method is usually unable to recognize the specific viral strain responsible of coronavirus disease 2019, a crucial information that is proving increasingly important in relation to virus spread and treatment effectiveness. Even if some RT-qPCR commercial assays are currently being developed for the detection of viral strains, they focus only on single/few genetic variants that may not be sufficient to uniquely identify a specific strain. Therefore, genome sequencing approaches remain the most comprehensive solution for virus genotyping and to recognize viral strains, but their application is much less widespread due to higher costs. Starting from the well-established ARTIC protocol coupled to nanopore sequencing, in this work, we developed STArS (STrain-Amplicon-Seq), a cost/time-effective sequencing-based workflow for both SARS-CoV-2 diagnostics and genotyping. A set of 10 amplicons was initially selected from the ARTIC tiling panel, to cover: (i) all the main biologically relevant genetic variants located on the Spike gene; (ii) a minimal set of variants to uniquely identify the currently circulating strains; (iii) genomic sites usually amplified by RT-qPCR method to identify SARS-CoV-2 presence. PCR-amplified clinical samples (both positive and negative for SARS-CoV-2 presence) were pooled together with a serially diluted exogenous amplicon at known concentration and sequenced on a MinION device. Thanks to a scoring rule, STArS had the capability to accurately classify positive samples in agreement with RT-qPCR results, both at the qualitative and quantitative level. Moreover, the method allowed to effectively genotype strain-specific variants and thus also return the phylogenetic classification of SARS-CoV-2-postive samples. Thanks to the reduced turnaround time and costs, the proposed approach represents a step towards simplifying the clinical application of sequencing for viral genotyping, hopefully aiding in combatting the global pandemic.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- Genartis srl, 37126 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- Genartis srl, 37126 Verona, Italy
| |
Collapse
|
20
|
Histopathological and Immunological Findings in the Common Marmoset Following Exposure to Aerosolized SARS-CoV-2. Viruses 2022; 14:v14071580. [PMID: 35891560 PMCID: PMC9322862 DOI: 10.3390/v14071580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1–3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.
Collapse
|
21
|
Evaluation of False Negative Among SARS-COV-2 Patients with Negative Real-time PCR Result Using Nested-RT PCR. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Fast and precise detection of SARS-CoV-2 RNA in clinical samples and subsequent quarantine are two critical factors in preventing virus transmission and distribution through the community. The false-negative result is a major problem in the SARS-CoV-2 detection because of the kind of sample (swab sample), sampling error, and sensitivity of PCR test, which can be reduced by a much more sensitive test such as nested PCR. Objectives: This study aimed to evaluate the false-negative rate among samples that were negative by a real-time PCR test using RT-nested PCR. Methods: One hundred eighty-four negative samples were included in the study, and nucleic acid was extracted using a commercial kit based on a silica filter column and then subjected to RT-nested PCR using three sets of primers targeting Orf1ab, N, and RdRp regions. Results: Among 184 negative swab samples for SARS-CoV-2, 27 (14.6%) cases were positive for the Orf1ab gene using RT-nested PCR. The samples were tested using N and RdRp primer sets. Also, seven (3.8%) cases were positive for the N gene, and four (2.1%) cases were positive for the RdRp gene. Conclusions: The results indicated that RT-nested PCR could be more sensitive than real-time PCR and reduce the false-negative rate.
Collapse
|
22
|
Wang X, Stelzer-Braid S, Scotch M, Rawlinson WD. Detection of respiratory viruses directly from clinical samples using next-generation sequencing: A literature review of recent advances and potential for routine clinical use. Rev Med Virol 2022; 32:e2375. [PMID: 35775736 PMCID: PMC9539958 DOI: 10.1002/rmv.2375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Acute respiratory infection is the third most frequent cause of mortality worldwide, causing over 4.25 million deaths annually. Although most diagnosed acute respiratory infections are thought to be of viral origin, the aetiology often remains unclear. The advent of next‐generation sequencing (NGS) has revolutionised the field of virus discovery and identification, particularly in the detection of unknown respiratory viruses. We systematically reviewed the application of NGS technologies for detecting respiratory viruses from clinical samples and outline potential barriers to the routine clinical introduction of NGS. The five databases searched for studies published in English from 01 January 2010 to 01 February 2021, which led to the inclusion of 52 studies. A total of 14 different models of NGS platforms were summarised from included studies. Among these models, second‐generation sequencing platforms (e.g., Illumina sequencers) were used in the majority of studies (41/52, 79%). Moreover, NGS platforms have proven successful in detecting a variety of respiratory viruses, including influenza A/B viruses (9/52, 17%), SARS‐CoV‐2 (21/52, 40%), parainfluenza virus (3/52, 6%), respiratory syncytial virus (1/52, 2%), human metapneumovirus (2/52, 4%), or a viral panel including other respiratory viruses (16/52, 31%). The review of NGS technologies used in previous studies indicates the advantages of NGS technologies in novel virus detection, virus typing, mutation identification, and infection cluster assessment. Although there remain some technical and ethical challenges associated with NGS use in clinical laboratories, NGS is a promising future tool to improve understanding of respiratory viruses and provide a more accurate diagnosis with simultaneous virus characterisation.
Collapse
Affiliation(s)
- Xinye Wang
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sacha Stelzer-Braid
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Scotch
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.,Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Prince T, Dong X, Penrice-Randal R, Randle N, Hartley C, Goldswain H, Jones B, Semple MG, Baillie JK, Openshaw PJM, Turtle L, Hughes GL, Anderson ER, Patterson EI, Druce J, Screaton G, Carroll MW, Stewart JP, Hiscox JA. Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context with Other Lineages. mSphere 2022; 7:e0091321. [PMID: 35491827 PMCID: PMC9241508 DOI: 10.1128/msphere.00913-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/18/2022] [Indexed: 01/02/2023] Open
Abstract
New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.
Collapse
Affiliation(s)
- Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nadine Randle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Catherine Hartley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Benjamin Jones
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm G. Semple
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Department of Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - J. Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Center for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Center for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Center for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julian Druce
- Virus Identification Laboratory, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Gavin Screaton
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Miles W. Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Public Health England, Salisbury, United Kingdom
| | - James P. Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Infectious Disease, University of Georgia, Georgia, USA
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
24
|
Havasi A, Visan S, Cainap C, Cainap SS, Mihaila AA, Pop LA. Influenza A, Influenza B, and SARS-CoV-2 Similarities and Differences – A Focus on Diagnosis. Front Microbiol 2022; 13:908525. [PMID: 35794916 PMCID: PMC9251468 DOI: 10.3389/fmicb.2022.908525] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
In late December 2019, the first cases of viral pneumonia caused by an unidentified pathogen were reported in China. Two years later, SARS-CoV-2 was responsible for almost 450 million cases, claiming more than 6 million lives. The COVID-19 pandemic strained the limits of healthcare systems all across the world. Identifying viral RNA through real-time reverse transcription-polymerase chain reaction remains the gold standard in diagnosing SARS-CoV-2 infection. However, equipment cost, availability, and the need for trained personnel limited testing capacity. Through an unprecedented research effort, new diagnostic techniques such as rapid diagnostic testing, isothermal amplification techniques, and next-generation sequencing were developed, enabling accurate and accessible diagnosis. Influenza viruses are responsible for seasonal outbreaks infecting up to a quarter of the human population worldwide. Influenza and SARS-CoV-2 present with flu-like symptoms, making the differential diagnosis challenging solely on clinical presentation. Healthcare systems are likely to be faced with overlapping SARS-CoV-2 and Influenza outbreaks. This review aims to present the similarities and differences of both infections while focusing on the diagnosis. We discuss the clinical presentation of Influenza and SARS-CoV-2 and techniques available for diagnosis. Furthermore, we summarize available data regarding the multiplex diagnostic assay of both viral infections.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Calin Cainap
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Sorana Cainap
- Pediatric Clinic No. 2, Department of Pediatric Cardiology, Emergency County Hospital for Children, Cluj-Napoca, Romania
- Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- *Correspondence: Simona Sorana Cainap, ;
| | - Alin Adrian Mihaila
- Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Dong X, Penrice-Randal R, Goldswain H, Prince T, Randle N, Donovan-Banfield I, Salguero FJ, Tree J, Vamos E, Nelson C, Clark J, Ryan Y, Stewart JP, Semple MG, Baillie JK, Openshaw PJM, Turtle L, Matthews DA, Carroll MW, Darby AC, Hiscox JA. Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. Gigascience 2022; 11:giac045. [PMID: 35639883 PMCID: PMC9154083 DOI: 10.1093/gigascience/giac045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Julia Tree
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Ecaterina Vamos
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Charlotte Nelson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Jordan Clark
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - James P Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Malcolm G Semple
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, 138632, Singapore
| |
Collapse
|
26
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
27
|
Garland GD, Harvey RF, Mulroney TE, Monti M, Fuller S, Haigh R, Gerber PP, Barer MR, Matheson NJ, Willis AE. Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Biochem J 2022; 479:901-920. [PMID: 35380004 PMCID: PMC9162461 DOI: 10.1042/bcj20220105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.
Collapse
Affiliation(s)
- Gavin D. Garland
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
- Correspondence: Gavin D. Garland () or Anne E. Willis ()
| | - Robert F. Harvey
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | | | - Mie Monti
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | - Stewart Fuller
- Department of Medicine, University of Cambridge, Cambridge, U.K
| | - Richard Haigh
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University Road, Leicester, U.K
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Cambridge, U.K
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, U.K
| | - Michael R. Barer
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University Road, Leicester, U.K
| | - Nicholas J. Matheson
- Department of Medicine, University of Cambridge, Cambridge, U.K
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, U.K
- NHS Blood and Transplant, Cambridge, U.K
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
- Correspondence: Gavin D. Garland () or Anne E. Willis ()
| |
Collapse
|
28
|
Prasetyoputri A, Dharmayanthi AB, Iryanto SB, Andriani A, Nuryana I, Wardiana A, Ridwanuloh AM, Swasthikawati S, Hariyatun H, Nugroho HA, Idris I, Indriawati I, Noviana Z, Oktavia L, Yuliawati Y, Masrukhin M, Hasrianda EF, Sukmarini L, Fahrurrozi F, Yanthi ND, Fathurahman AT, Wulandari AS, Setiawan R, Rizal S, Fathoni A, Kusharyoto W, Lisdiyanti P, Ningrum RA, Saputra S. The dynamics of circulating SARS-CoV-2 lineages in Bogor and surrounding areas reflect variant shifting during the first and second waves of COVID-19 in Indonesia. PeerJ 2022; 10:e13132. [PMID: 35341058 PMCID: PMC8953504 DOI: 10.7717/peerj.13132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/26/2022] [Indexed: 01/12/2023] Open
Abstract
Background Indonesia is one of the Southeast Asian countries with high case numbers of COVID-19 with up to 4.2 million confirmed cases by 29 October 2021. Understanding the genome of SARS-CoV-2 is crucial for delivering public health intervention as certain variants may have different attributes that can potentially affect their transmissibility, as well as the performance of diagnostics, vaccines, and therapeutics. Objectives We aimed to investigate the dynamics of circulating SARS-CoV-2 variants over a 15-month period in Bogor and its surrounding areas in correlation with the first and second wave of COVID-19 in Indonesia. Methods Nasopharyngeal and oropharyngeal swab samples collected from suspected patients from Bogor, Jakarta and Tangerang were confirmed for SARS-CoV-2 infection with RT-PCR. RNA samples of those confirmed patients were subjected to whole genome sequencing using the ARTIC Network protocol and sequencer platform from Oxford Nanopore Technologies (ONT). Results We successfully identified 16 lineages and six clades out of 202 samples (male n = 116, female n = 86). Genome analysis revealed that Indonesian lineage B.1.466.2 dominated during the first wave (n = 48, 23.8%) while Delta variants (AY.23, AY.24, AY.39, AY.42, AY.43 dan AY.79) were dominant during the second wave (n = 53, 26.2%) following the highest number of confirmed cases in Indonesia. In the spike protein gene, S_D614G and S_P681R changes were dominant in both B.1.466.2 and Delta variants, while N439K was only observed in B.1.466.2 (n = 44) and B.1.470 (n = 1). Additionally, the S_T19R, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, S_D950N and S_V1264L changes were only detected in Delta variants, consistent with those changes being characteristic of Delta variants in general. Conclusions We demonstrated a shift in SARS-CoV-2 variants from the first wave of COVID-19 to Delta variants in the second wave, during which the number of confirmed cases surpassed those in the first wave of COVID-19 pandemic. Higher proportion of unique mutations detected in Delta variants compared to the first wave variants indicated potential mutational effects on viral transmissibility that correlated with a higher incidence of confirmed cases. Genomic surveillance of circulating variants, especially those with higher transmissibility, should be continuously conducted to rapidly inform decision making and support outbreak preparedness, prevention, and public health response.
Collapse
Affiliation(s)
- Anggia Prasetyoputri
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Anik B. Dharmayanthi
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Syam B. Iryanto
- Research Center for Informatics, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ade Andriani
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Isa Nuryana
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Andri Wardiana
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Asep M. Ridwanuloh
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Sri Swasthikawati
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Hariyatun Hariyatun
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Herjuno A. Nugroho
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Idris Idris
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Indriawati Indriawati
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Zahra Noviana
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Listiana Oktavia
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Yuliawati Yuliawati
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Masrukhin Masrukhin
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Erwin F. Hasrianda
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Linda Sukmarini
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Fahrurrozi Fahrurrozi
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Nova Dilla Yanthi
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Alfi T. Fathurahman
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ari S. Wulandari
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ruby Setiawan
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Syaiful Rizal
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ahmad Fathoni
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Wien Kusharyoto
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ratih A. Ningrum
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Sugiyono Saputra
- Research Center for Biology, National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| |
Collapse
|
29
|
Vierstraete AR, Braeckman BP. Amplicon_sorter: A tool for reference‐free amplicon sorting based on sequence similarity and for building consensus sequences. Ecol Evol 2022; 12:e8603. [PMID: 35261737 PMCID: PMC8888255 DOI: 10.1002/ece3.8603] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Oxford Nanopore Technologies (ONT) is a third‐generation sequencing technology that is gaining popularity in ecological research for its portable and low‐cost sequencing possibilities. Although the technology excels at long‐read sequencing, it can also be applied to sequence amplicons. The downside of ONT is the low quality of the raw reads. Hence, generating a high‐quality consensus sequence is still a challenge. We present Amplicon_sorter, a tool for reference‐free sorting of ONT sequenced amplicons based on their similarity in sequence and length and for building solid consensus sequences.
Collapse
Affiliation(s)
- Andy R. Vierstraete
- Laboratory of aging physiology and Molecular Evolution University of Gent Gent Belgium
| | - Bart P. Braeckman
- Laboratory of aging physiology and Molecular Evolution University of Gent Gent Belgium
| |
Collapse
|
30
|
Gerber PP, Duncan LM, Greenwood EJD, Marelli S, Naamati A, Teixeira-Silva A, Crozier TWM, Gabaev I, Zhan JR, Mulroney TE, Horner EC, Doffinger R, Willis AE, Thaventhiran JED, Protasio AV, Matheson NJ. A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. PLoS Pathog 2022; 18:e1010265. [PMID: 35143592 PMCID: PMC8865646 DOI: 10.1371/journal.ppat.1010265] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/23/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lidia M. Duncan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Edward JD Greenwood
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sara Marelli
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Adi Naamati
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas WM Crozier
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ildar Gabaev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jun R. Zhan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Emily C. Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anne E. Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - James ED Thaventhiran
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J. Matheson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| |
Collapse
|
31
|
Zhou Y, Zhang L, Xie YH, Wu J. Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics. J Transl Med 2022; 102:4-13. [PMID: 34497366 PMCID: PMC8424153 DOI: 10.1038/s41374-021-00663-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023] Open
Abstract
As one of the major approaches in combating the COVID-19 pandemics, the availability of specific and reliable assays for the SARS-CoV-2 viral genome and its proteins is essential to identify the infection in suspected populations, make diagnoses in symptomatic or asymptomatic individuals, and determine clearance of the virus after the infection. For these purposes, use of the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for detection of the viral nucleic acid remains the most valuable in terms of its specificity, fast turn-around, high-throughput capacity, and reliability. It is critical to update the sequences of primers and probes to ensure the detection of newly emerged variants. Various assays for increased levels of IgG or IgM antibodies are available for detecting ongoing or past infection, vaccination responses, and persistence and for identifying high titers of neutralizing antibodies in recovered individuals. Viral genome sequencing is increasingly used for tracing infectious sources, monitoring mutations, and subtype classification and is less valuable in diagnosis because of its capacity and high cost. Nanopore target sequencing with portable options is available for a quick process for sequencing data. Emerging CRISPR-Cas-based assays, such as SHERLOCK and AIOD-CRISPR, for viral genome detection may offer options for prompt and point-of-care detection. Moreover, aptamer-based probes may be multifaceted for developing portable and high-throughput assays with fluorescent or chemiluminescent probes for viral proteins. In conclusion, assays are available for viral genome and protein detection, and the selection of specific assays depends on the purposes of prevention, diagnosis and pandemic control, or monitoring of vaccination efficacy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - You-Hua Xie
- Department of Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institutes of Infectious Disease and Biosecurity, Fudan University Shanghai Medical College, Shanghai, China.
| | - Jian Wu
- Department of Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
32
|
Liu H, Li J, Lin Y, Bo X, Song H, Li K, Li P, Ni M. Assessment of two-pool multiplex long-amplicon nanopore sequencing of SARS-CoV-2. J Med Virol 2021; 94:327-334. [PMID: 34524690 PMCID: PMC8662006 DOI: 10.1002/jmv.27336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/12/2021] [Indexed: 01/28/2023]
Abstract
Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) plays an important role in COVID‐19 pandemic control and elimination efforts, especially by elucidating its global transmission network and illustrating its viral evolution. The deployment of multiplex PCR assays that target SARS‐CoV‐2 followed by either massively parallel or nanopore sequencing is a widely‐used strategy to obtain genome sequences from primary samples. However, multiplex PCR‐based sequencing carries an inherent bias of sequencing depth among different amplicons, which may cause uneven coverage. Here we developed a two‐pool, long‐amplicon 36‐plex PCR primer panel with ~1000‐bp amplicon lengths for full‐genome sequencing of SARS‐CoV‐2. We validated the panel by assessing nasopharyngeal swab samples with a <30 quantitative reverse transcription PCR cycle threshold value and found that ≥90% of viral genomes could be covered with high sequencing depths (≥20% mean depth). In comparison, the widely‐used ARTIC panel yielded 79%–88% high‐depth genome regions. We estimated that ~5 Mbp nanopore sequencing data may ensure a >95% viral genome coverage with a ≥10‐fold depth and may generate reliable genomes at consensus sequence levels. Nanopore sequencing yielded false‐positive variations with frequencies of supporting reads <0.8, and the sequencing errors mostly occurred on the 5′ or 3′ ends of reads. Thus, nanopore sequencing could not elucidate intra‐host viral diversity.
Collapse
Affiliation(s)
- Hongjie Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jinhui Li
- Department of Bio-security, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yanfeng Lin
- Department of Bio-security, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Graduate School, Academy of Military Medical Sciences, Beijing, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongbin Song
- Department of Bio-security, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kuibiao Li
- Laboratory of Clinical Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Peng Li
- Department of Bio-security, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
33
|
Hiscox JA, Khoo SH, Stewart JP, Owen A. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance? J Antimicrob Chemother 2021; 76:2230-2233. [PMID: 34142123 PMCID: PMC8361339 DOI: 10.1093/jac/dkab189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article provides a brief overview of drug resistance to antiviral therapy as well as known and emergent variability in key SARS-CoV-2 viral sequences. The purpose is to stimulate deliberation about the need to consider drug resistance prior to widespread roll-out of antivirals for SARS-CoV-2. Many existing candidate agents have mechanisms of action involving drug targets likely to be critical for future drug development. Resistance emerged quickly with monotherapies deployed for other pulmonary viruses such as influenza virus, and in HIV mutations in key drug targets compromised efficacy of multiple drugs within a class. The potential for drug resistance in SARS-CoV-2 has not yet been rigorously debated or assessed, and we call for more academic and industry research on this potentially important future threat prior to widespread roll-out of monotherapies for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore
| | - Saye H. Khoo
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long acting Therapeutics (CELT), University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
34
|
Amplicon and Metagenomic Analysis of Middle East Respiratory Syndrome (MERS) Coronavirus and the Microbiome in Patients with Severe MERS. mSphere 2021; 6:e0021921. [PMID: 34287009 PMCID: PMC8386452 DOI: 10.1128/msphere.00219-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection that emerged in the Middle East in 2012. Symptoms range from mild to severe and include both respiratory and gastrointestinal illnesses. The virus is mainly present in camel populations with occasional zoonotic spill over into humans. The severity of infection in humans is influenced by numerous factors, and similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlying health complications can play a major role. Currently, MERS-CoV and SARS-CoV-2 are coincident in the Middle East and thus a rapid way of sequencing MERS-CoV to derive genotype information for molecular epidemiology is needed. Additionally, complicating factors in MERS-CoV infections are coinfections that require clinical management. The ability to rapidly characterize these infections would be advantageous. To rapidly sequence MERS-CoV, an amplicon-based approach was developed and coupled to Oxford Nanopore long read length sequencing. This and a metagenomic approach were evaluated with clinical samples from patients with MERS. The data illustrated that whole-genome or near-whole-genome information on MERS-CoV could be rapidly obtained. This approach provided data on both consensus genomes and the presence of minor variants, including deletion mutants. The metagenomic analysis provided information of the background microbiome. The advantage of this approach is that insertions and deletions can be identified, which are the major drivers of genotype change in coronaviruses. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. The virus is a serious threat to people not only in the Middle East but also in the world and has been detected in over 27 countries. MERS-CoV is spreading in the Middle East and neighboring countries, and approximately 35% of reported patients with this virus have died. This is the most severe coronavirus infection so far described. Saudi Arabia is a destination for many millions of people in the world who visit for religious purposes (Umrah and Hajj), and so it is a very vulnerable area, which imposes unique challenges for effective control of this epidemic. The significance of our study is that clinical samples from patients with MERS were used for rapid in-depth sequencing and metagenomic analysis using long read length sequencing.
Collapse
|
35
|
Massaiu I, Songia P, Chiesa M, Valerio V, Moschetta D, Alfieri V, Myasoedova VA, Schmid M, Cassetta L, Colombo GI, D’Alessandra Y, Poggio P. Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. Int J Mol Sci 2021; 22:ijms22126317. [PMID: 34204756 PMCID: PMC8231517 DOI: 10.3390/ijms22126317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.
Collapse
Affiliation(s)
- Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Valentina Alfieri
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Michael Schmid
- Genexa AG, Dienerstrasse 7, CH-8004 Zürich, Switzerland;
| | - Luca Cassetta
- The Queen’s Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Yuri D’Alessandra
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Correspondence:
| |
Collapse
|
36
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021; 47:100. [PMID: 33846767 PMCID: PMC8043662 DOI: 10.3892/ijmm.2021.4933] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
- Research Center for the Prevention, Diagnosis and Treatment of Tumors, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
37
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021. [PMID: 33846767 DOI: 10.3892/ijmm.2021.4933/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
38
|
González-Recio O, Gutiérrez-Rivas M, Peiró-Pastor R, Aguilera-Sepúlveda P, Cano-Gómez C, Jiménez-Clavero MÁ, Fernández-Pinero J. Sequencing of SARS-CoV-2 genome using different nanopore chemistries. Appl Microbiol Biotechnol 2021; 105:3225-3234. [PMID: 33792750 PMCID: PMC8014908 DOI: 10.1007/s00253-021-11250-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 11/27/2022]
Abstract
Abstract Nanopore sequencing has emerged as a rapid and cost-efficient tool for diagnostic and epidemiological surveillance of SARS-CoV-2 during the COVID-19 pandemic. This study compared the results from sequencing the SARS-CoV-2 genome using R9 vs R10 flow cells and a Rapid Barcoding Kit (RBK) vs a Ligation Sequencing Kit (LSK). The R9 chemistry provided a lower error rate (3.5%) than R10 chemistry (7%). The SARS-CoV-2 genome includes few homopolymeric regions. Longest homopolymers were composed of 7 (TTTTTTT) and 6 (AAAAAA) nucleotides. The R10 chemistry resulted in a lower rate of deletions in thymine and adenine homopolymeric regions than the R9, at the expenses of a larger rate (~10%) of mismatches in these regions. The LSK had a larger yield than the RBK, and provided longer reads than the RBK. It also resulted in a larger percentage of aligned reads (99 vs 93%) and also in a complete consensus genome. The results from this study suggest that the LSK preparation library provided longer DNA fragments which contributed to a better assembly of the SARS-CoV-2, despite an impaired detection of variants in a R10 flow cell. Nanopore sequencing could be used in epidemiological surveillance of SARS-CoV-2. Key points • Sequencing SARS-CoV-2 genome is of great importance for the pandemic surveillance. • Nanopore offers a low cost and accurate method to sequence SARS-CoV-2 genome. • Ligation sequencing is preferred rather than the rapid kit using transposases.
Collapse
Affiliation(s)
- Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040, Madrid, Spain. .,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Mónica Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040, Madrid, Spain
| | - Ramón Peiró-Pastor
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040, Madrid, Spain
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, s.n, 28130 Valdeolmos, Madrid, Spain
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, s.n, 28130 Valdeolmos, Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, s.n, 28130 Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, s.n, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
39
|
Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021; 102:001584. [PMID: 33855951 PMCID: PMC8290271 DOI: 10.1099/jgv.0.001584] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral 'genetic drift' or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
Collapse
Affiliation(s)
- Thomas P. Peacock
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wendy S. Barclay
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| |
Collapse
|
40
|
Affiliation(s)
- Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The COVID-19 Genomics UK (COG-UK) Consortium, University of Cambridge, Cambridge, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore
- Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| |
Collapse
|
41
|
Kemenesi G, Tóth GE, Bajusz D, Keserű GM, Terhes G, Burián K, Zeghbib S, Somogyi BA, Jakab F. Effect of An 84-bp Deletion of the Receptor-Binding Domain on the ACE2 Binding Affinity of the SARS-CoV-2 Spike Protein: An In Silico Analysis. Genes (Basel) 2021; 12:genes12020194. [PMID: 33572725 PMCID: PMC7911659 DOI: 10.3390/genes12020194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coronaviruses, which may frequently result in significant genetic alterations, such as deletions throughout the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2 viruses within a single patient sample via amplicon-based next generation sequencing in Hungary. The recessive strain contained an 84 base pair deletion in the receptor binding domain of the spike protein gene and was found to be gradually displaced by a dominant non-deleterious variant over-time. We have identified the region of the receptor-binding domain (RBD) that is affected by the mutation, created homology models of the RBDΔ84 mutant, and based on the available experimental data and calculations, we propose that the mutation has a deteriorating effect on the binding of RBD to the angiotensin-converting enzyme 2 (ACE2) receptor, which results in the negative selection of this variant. Extending the sequencing capacity toward the discovery of emerging recombinant or deleterious strains may facilitate the early recognition of novel strains with altered phenotypic attributes and understanding of key elements of spike protein evolution. Such studies may greatly contribute to future therapeutic research and general understanding of genomic processes of the virus.
Collapse
Affiliation(s)
- Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (G.E.T.); (S.Z.); (B.A.S.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (G.E.T.); (S.Z.); (B.A.S.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Gabriella Terhes
- Department of Medical Microbiology and Immunobiology, University of Szeged, H6720 Szeged, Hungary; (G.T.); (K.B.)
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, H6720 Szeged, Hungary; (G.T.); (K.B.)
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (G.E.T.); (S.Z.); (B.A.S.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Balázs A. Somogyi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (G.E.T.); (S.Z.); (B.A.S.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (G.E.T.); (S.Z.); (B.A.S.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|