1
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. PLoS Negl Trop Dis 2025; 19:e0012534. [PMID: 40063631 PMCID: PMC11918386 DOI: 10.1371/journal.pntd.0012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism implicated in cardiac infection in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612809. [PMID: 39314478 PMCID: PMC11419142 DOI: 10.1101/2024.09.13.612809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism and mechanisms implicated in cardiac damage in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was completely restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
3
|
Reyes Ballista JM, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine. J Virol 2024; 98:e0077524. [PMID: 39007616 PMCID: PMC11334481 DOI: 10.1128/jvi.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
5
|
Ballista JMR, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya Virus Release is Reduced by TIM-1 Receptors Through Binding of Envelope Phosphatidylserine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577233. [PMID: 38328121 PMCID: PMC10849729 DOI: 10.1101/2024.01.25.577233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of Chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce Chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process that appears to be mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
7
|
Shi Y, Simpson S, Chen Y, Aull H, Benjamin J, Serra-Moreno R. Mutations accumulated in the Spike of SARS-CoV-2 Omicron allow for more efficient counteraction of the restriction factor BST2/Tetherin. PLoS Pathog 2024; 20:e1011912. [PMID: 38190411 PMCID: PMC10798645 DOI: 10.1371/journal.ppat.1011912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/19/2024] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
BST2/Tetherin is a restriction factor with broad antiviral activity against enveloped viruses, including coronaviruses. Specifically, BST2 traps nascent particles to membrane compartments, preventing their release and spread. In turn, viruses have evolved multiple mechanisms to counteract BST2. Here, we examined the interactions between BST2 and SARS-CoV-2. Our study shows that BST2 reduces SARS-CoV-2 virion release. However, the virus uses the Spike (S) protein to downregulate BST2. This requires a physical interaction between S and BST2, which routes BST2 for lysosomal degradation in a Clathtin- and ubiquitination-dependent manner. By surveying different SARS-CoV-2 variants of concern (Alpha-Omicron), we found that Omicron is more efficient at counteracting BST2, and that mutations in S account for its enhanced anti-BST2 activity. Mapping analyses revealed that several surfaces in the extracellular region of BST2 are required for an interaction with the Spike, and that the Omicron variant has changed its patterns of association with BST2 to improve its counteraction. Therefore, our study suggests that, besides enhancing receptor binding and evasion of neutralizing antibodies, mutations accumulated in the Spike afford more efficient counteraction of BST2, which highlights that BST2 antagonism is important for SARS-CoV-2 infectivity and spread.
Collapse
Affiliation(s)
- Yuhang Shi
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sydney Simpson
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Haley Aull
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jared Benjamin
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
8
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
9
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. EMBO Rep 2023; 24:e56901. [PMID: 37497756 PMCID: PMC10481653 DOI: 10.15252/embr.202356901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
Affiliation(s)
- Matthew B McDougal
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Anthony M De Maria
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Maikke B Ohlson
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ashwani Kumar
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chao Xing
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - John W Schoggins
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
10
|
Yin P, Davenport BJ, Wan JJ, Kim AS, Diamond MS, Ware BC, Tong K, Couderc T, Lecuit M, Lai JR, Morrison TE, Kielian M. Chikungunya virus cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo. Nat Microbiol 2023; 8:1653-1667. [PMID: 37591996 PMCID: PMC10956380 DOI: 10.1038/s41564-023-01449-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Chikungunya virus (CHIKV) has recently emerged to cause millions of human infections worldwide. Infection can induce the formation of long intercellular extensions that project from infected cells and form stable non-continuous membrane bridges with neighbouring cells. The mechanistic role of these intercellular extensions in CHIKV infection was unclear. Here we developed a co-culture system and flow cytometry methods to quantitatively evaluate transmission of CHIKV from infected to uninfected cells in the presence of neutralizing antibody. Endocytosis and endosomal acidification were critical for virus cell-to-cell transmission, while the CHIKV receptor MXRA8 was not. By using distinct antibodies to block formation of extensions and by evaluation of transmission in HeLa cells that did not form extensions, we showed that intercellular extensions mediate CHIKV cell-to-cell transmission. In vivo, pre-treatment of mice with a neutralizing antibody blocked infection by direct virus inoculation, while adoptive transfer of infected cells produced antibody-resistant host infection. Together our data suggest a model in which the contact sites of intercellular extensions on target cells shield CHIKV from neutralizing antibodies and promote efficient intercellular virus transmission both in vitro and in vivo.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Judy J Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian C Ware
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thérèse Couderc
- Institut Pasteur, Inserm U1117, Biology of Infection Unit, Université de Paris, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Inserm U1117, Biology of Infection Unit, Université de Paris, Paris, France
- Department of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Pradeep P, Sivakumar KC, Sreekumar E. Host Factor Nucleophosmin 1 (NPM1/B23) Exerts Antiviral Effects against Chikungunya Virus by Its Interaction with Viral Nonstructural Protein 3. Microbiol Spectr 2023; 11:e0537122. [PMID: 37409962 PMCID: PMC10433958 DOI: 10.1128/spectrum.05371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | | | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, India
| |
Collapse
|
12
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529297. [PMID: 36865157 PMCID: PMC9980057 DOI: 10.1101/2023.02.21.529297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors - ZAP, IFIT3, and IFIT1 - together constitute the majority of interferon-mediated restriction of VEEV, while accounting for less than 0.5% of the interferon-induced transcriptome. Together, our data suggests a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
|
13
|
Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res 2023; 210:105487. [PMID: 36657882 DOI: 10.1016/j.antiviral.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
14
|
TMEΜ45B Interacts with Sindbis Virus Nsp1 and Nsp4 and Inhibits Viral Replication. J Virol 2022; 96:e0091922. [PMID: 35938871 PMCID: PMC9472651 DOI: 10.1128/jvi.00919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus infection induces the expression of type I interferons, which inhibit the viral replication by upregulating the expression of interferon-stimulated genes (ISGs). Identification and mechanistic studies of the antiviral ISGs help to better understand how the host controls viral infection and help to better understand the viral replication process. Here, we report that the ISG product TMEM45B inhibits the replication of Sindbis virus (SINV). TMEM45B is a transmembrane protein that was detected mainly in the trans-Golgi network, endosomes, and lysosomes but not obviously at the plasma membrane or endoplasmic reticulum. TMEM45B interacted with the viral nonstructural proteins Nsp1 and Nsp4 and inhibited the translation and promoted the degradation of SINV RNA. TMEM45B overexpression rendered the intracellular membrane-associated viral RNA sensitive to RNase treatment. In line with these results, the formation of cytopathic vacuoles (CPVs) was dramatically diminished in TMEM45B-expressing cells. TMEM45B also interacted with Nsp1 and Nsp4 of chikungunya virus (CHIKV), suggesting that it may also inhibit the replication of other alphaviruses. These findings identified TMEM45B as an antiviral factor against alphaviruses and help to better understand the process of the viral genome replication. IMPORTANCE Alphaviruses are positive-stranded RNA viruses with more than 30 members. Infection with Old World alphaviruses, which comprise some important human pathogens such as chikungunya virus and Ross River virus, rarely results in fatal diseases but can lead to high morbidity in humans. Infection with New World alphaviruses usually causes serious encephalitis but low morbidity in humans. Alphavirus infection induces the expression of type I interferons, which subsequently upregulate hundreds of interferon-stimulated genes. Identification and characterization of host antiviral factors help to better understand how the viruses can establish effective infection. Here, we identified TMEM45B as a novel interferon-stimulated antiviral factor against Sindbis virus, a prototype alphavirus. TMEM45B interacted with viral proteins Nsp1 and Nsp4, interfered with the interaction between Nsp1 and Nsp4, and inhibited the viral replication. These findings provide insights into the detailed process of the viral replication and help to better understand the virus-host interactions.
Collapse
|
15
|
Andreolla AP, Borges AA, Bordignon J, Duarte dos Santos CN. Mayaro Virus: The State-of-the-Art for Antiviral Drug Development. Viruses 2022; 14:1787. [PMID: 36016409 PMCID: PMC9415492 DOI: 10.3390/v14081787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
| | | |
Collapse
|
16
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
18
|
Mamidi P, Nayak TK, Kumar A, Kumar S, Chatterjee S, De S, Datey A, Ghosh S, Keshry SS, Singh S, Laha E, Ray A, Chattopadhyay S, Chattopadhyay S. MK2a inhibitor CMPD1 abrogates chikungunya virus infection by modulating actin remodeling pathway. PLoS Pathog 2021; 17:e1009667. [PMID: 34780576 PMCID: PMC8592423 DOI: 10.1371/journal.ppat.1009667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) epidemics around the world have created public health concern with the unavailability of effective drugs and vaccines. This emphasizes the need for molecular understanding of host-virus interactions for developing effective targeted antivirals. Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK activated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of both enzymes is indistinguishable and covers proteins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling and transcriptional regulation. Gene silencing and drug treatment were performed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was observed that the inhibition in viral infection is primarily due to the abrogation of lamellipodium formation through modulation of factors involved in the actin cytoskeleton remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy number, lessened disease score and better survivability after CMPD1 treatment. In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2 and MK3 are crucial host factors for CHIKV infection and can be considered as important target for developing effective anti-CHIKV strategies. Chikungunya virus has been a dreaded disease from the first time it occurred in 1952 Tanzania. Since then it has been affecting the different parts of the world at different time periods in large scale. It is typically transmitted to humans by bites of Aedes aegypti and Aedes albopictus mosquitoes. Although, studies have been undertaken to combat its prevalence still there are no effective strategies like vaccines or antivirals against it. Therefore it is essential to understand the virus and host interaction to overcome this hurdle. In this study two host factors MK2 and MK3 have been taken into consideration to see how they affect the multiplication of the virus. The in vitro and in vivo experiments conducted demonstrated that inhibition of MK2 and MK3 not only restricted viral release but also decreased the disease score and allowed better survivability. Therefore, MK2 and MK3 could be considered as the key targets in the anti CHIKV approach.
Collapse
Affiliation(s)
| | - Tapas Kumar Nayak
- National Institute of Science Education and Research, Bhubaneswar, India
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Abhishek Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Sameer Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Sharad Singh
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Eshna Laha
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrita Ray
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | |
Collapse
|
19
|
Miller KD, Matullo C, Williams R, Jones CB, Rall GF. Murine BST2/tetherin promotes measles virus infection of neurons. Virology 2021; 563:38-43. [PMID: 34416448 DOI: 10.1016/j.virol.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
BST2/tetherin is a transmembrane protein with antiviral activity; it is synthesized following exposure to interferons, and restricts the release of budding virus particles by tethering them to the host cell membrane. We previously showed that BST2 is induced in primary neurons following measles virus (MV) infection or type I interferon; however, BST2 was dispensable for protection against challenge with neuron-restricted MV. Here, we define the contribution of BST-2 in neuronal MV infection. Surprisingly, and in contrast to its antiviral role in non-neuronal cells, murine BST2 promotes MV infection in brains of permissive mice and in primary neuron cultures. Moreover, BST2 expression was predominantly observed in the non-synaptic fraction of purified neurons. These studies highlight a cell-type dependent role of a well-characterized antiviral protein in enhancing neuronal infection.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Christine Matullo
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Riley Williams
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Carli B Jones
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Glenn F Rall
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
21
|
Schnierle BS. Cellular Attachment and Entry Factors for Chikungunya Virus. Viruses 2019; 11:v11111078. [PMID: 31752346 PMCID: PMC6893641 DOI: 10.3390/v11111078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is clinically the most relevant member of the Alphavirus genus. Like alphaviruses in general, CHIKV has the capacity to infect a large variety of cells, tissues, and species. This broad host tropism of CHIKV indicates that the virus uses a ubiquitously expressed receptor to infect cells. This review summarizes the current knowledge available on cellular CHIKV receptors and the attachment factors used by CHIKV.
Collapse
|
22
|
Mostafavi H, Abeyratne E, Zaid A, Taylor A. Arthritogenic Alphavirus-Induced Immunopathology and Targeting Host Inflammation as A Therapeutic Strategy for Alphaviral Disease. Viruses 2019; 11:v11030290. [PMID: 30909385 PMCID: PMC6466158 DOI: 10.3390/v11030290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
Arthritogenic alphaviruses are a group of medically important arboviruses that cause inflammatory musculoskeletal disease in humans with debilitating symptoms, such as arthralgia, arthritis, and myalgia. The arthritogenic, or Old World, alphaviruses are capable of causing explosive outbreaks, with some viruses of major global concern. At present, there are no specific therapeutics or commercially available vaccines available to prevent alphaviral disease. Infected patients are typically treated with analgesics and non-steroidal anti-inflammatory drugs to provide often inadequate symptomatic relief. Studies to determine the mechanisms of arthritogenic alphaviral disease have highlighted the role of the host immune system in disease pathogenesis. This review discusses the current knowledge of the innate immune response to acute alphavirus infection and alphavirus-induced immunopathology. Therapeutic strategies to treat arthritogenic alphavirus disease by targeting the host immune response are also examined.
Collapse
Affiliation(s)
- Helen Mostafavi
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Eranga Abeyratne
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Ali Zaid
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
23
|
Mechanism of Tetherin Inhibition of Alphavirus Release. J Virol 2019; 93:JVI.02165-18. [PMID: 30674629 DOI: 10.1128/jvi.02165-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Tetherin is an interferon-inducible, antiviral host factor that broadly restricts enveloped virus release by tethering budded viral particles to the plasma membrane. In response, many viruses have evolved tetherin antagonists. The human tetherin gene can express two isoforms, long and short, due to alternative translation initiation sites in the N-terminal cytoplasmic tail. The long isoform (L-tetherin) contains 12 extra amino acids in its N terminus, including a dual tyrosine motif (YDYCRV) that is an internalization signal for clathrin-mediated endocytosis and a determinant of NF-κB activation. Tetherin restricts alphaviruses, which are highly organized enveloped RNA viruses that bud from the plasma membrane. L-tetherin is more efficient than S-tetherin in inhibiting alphavirus release in 293 cells. Here, we demonstrated that alphaviruses do not encode an antagonist for either of the tetherin isoforms. Instead, the isoform specificity reflected a requirement for tetherin endocytosis. The YXY motif in L-tetherin was necessary for alphavirus restriction in 293 cells but was not required for rhabdovirus restriction. L-tetherin's inhibition of alphavirus release correlated with its internalization but did not involve NF-κB activation. In contrast, in U-2 OS cells, the YXY motif and the L-tetherin N-terminal domain were not required for either robust tetherin internalization or alphavirus inhibition. Tetherin forms that were negative for restriction accumulated at the surface of infected cells, while the levels of tetherin forms that restrict were decreased. Together, our results suggest that tetherin-mediated virus internalization plays an important role in the restriction of alphavirus release and that cell-type-specific cofactors may promote tetherin endocytosis.IMPORTANCE The mechanisms of tetherin's antiviral activities and viral tetherin antagonism have been studied in detail for a number of different viruses. Although viral countermeasures against tetherin can differ significantly, overall, tetherin's antiviral activity correlates with physical tethering of virus particles to prevent their release. While tetherin can mediate virus endocytic uptake and clearance, this has not been observed to be required for restriction. Here we show that efficient tetherin inhibition of alphavirus release requires efficient tetherin endocytosis. Our data suggest that this endocytic uptake can be mediated by tetherin itself or by a tetherin cofactor that promotes uptake of an endocytosis-deficient variant of tetherin.
Collapse
|
24
|
Sharma A, Lal SK. Is tetherin a true antiviral: The influenza a virus controversy. Rev Med Virol 2019; 29:e2036. [DOI: 10.1002/rmv.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Anshika Sharma
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| | - Sunil K. Lal
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| |
Collapse
|
25
|
The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018; 3:3/5/e00209-18. [PMID: 30232164 PMCID: PMC6147134 DOI: 10.1128/msphere.00209-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs. Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle. IMPORTANCE The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.
Collapse
|
26
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
27
|
Brown RS, Wan JJ, Kielian M. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew. Viruses 2018; 10:E89. [PMID: 29470397 PMCID: PMC5850396 DOI: 10.3390/v10020089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research.
Collapse
Affiliation(s)
- Rebecca S Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Judy J Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
28
|
Valadkhan S, Fortes P. Regulation of the Interferon Response by lncRNAs in HCV Infection. Front Microbiol 2018; 9:181. [PMID: 29503633 PMCID: PMC5820368 DOI: 10.3389/fmicb.2018.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Saba Valadkhan, Puri Fortes,
| | - Puri Fortes
- Center for Applied Medical Research, Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Saba Valadkhan, Puri Fortes,
| |
Collapse
|
29
|
Carpentier KS, Morrison TE. Innate immune control of alphavirus infection. Curr Opin Virol 2017; 28:53-60. [PMID: 29175515 DOI: 10.1016/j.coviro.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Alphaviruses are important human pathogens that cause diseases ranging from acute and chronic polyarthralgia to encephalitis. Transmitted by mosquito vectors, alphaviruses have high potential for emergence and have initiated several recent epidemics. The innate immune response is critical for controlling the acute phase of alphavirus disease, and the induction of type I interferon (IFN) is essential in this response. In this review, we discuss our current understanding of innate host sensors that initiate antiviral responses following alphavirus infection, and the IFN-induced effector proteins that limit alphavirus replication and dissemination.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
30
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
31
|
Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, Kohl A, Rudd PA, Taylor A, Herrero LJ, Zaid A, Ng LFP, Mahalingam S. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. THE LANCET. INFECTIOUS DISEASES 2017; 17:e107-e117. [PMID: 28159534 DOI: 10.1016/s1473-3099(16)30385-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/26/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Felicity J Burt
- National Health Laboratory Services, Universitas and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Weiqiang Chen
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jonathan J Miner
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
32
|
Carnero E, Barriocanal M, Prior C, Pablo Unfried J, Segura V, Guruceaga E, Enguita M, Smerdou C, Gastaminza P, Fortes P. Long noncoding RNA EGOT negatively affects the antiviral response and favors HCV replication. EMBO Rep 2016; 17:1013-28. [PMID: 27283940 DOI: 10.15252/embr.201541763] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
The role of long noncoding RNAs (lncRNAs) in viral infection is poorly studied. We have identified hepatitis C virus (HCV)-Stimulated lncRNAs (CSRs) by transcriptome analysis. Interestingly, two of these CSRs (PVT1 and UCA1) play relevant roles in tumorigenesis, providing a novel link between HCV infection and development of liver tumors. Expression of some CSRs seems induced directly by HCV, while others are upregulated by the antiviral response against the virus. In fact, activation of pathogen sensors induces the expression of CSR32/EGOT RIG-I and the RNA-activated kinase PKR sense HCV RNA, activate NF-κB and upregulate EGOT EGOT is increased in the liver of patients infected with HCV and after infection with influenza or Semliki Forest virus (SFV). Genome-wide guilt-by-association studies predict that EGOT may function as a negative regulator of the antiviral pathway. Accordingly, EGOT depletion increases the expression of several interferon-stimulated genes and leads to decreased replication of HCV and SFV Our results suggest that EGOT is a lncRNA induced after infection that increases viral replication by antagonizing the antiviral response.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Marina Barriocanal
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Celia Prior
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Juan Pablo Unfried
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Victor Segura
- Bioinformatics Unit, CIMA and IdisNA University of Navarra, Pamplona, Spain
| | | | - Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Cristian Smerdou
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | | | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| |
Collapse
|
33
|
Mahauad-Fernandez WD, Okeoma CM. BST-2: at the crossroads of viral pathogenesis and oncogenesis. Future Virol 2016. [DOI: 10.2217/fvl.15.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BST-2 is a moonlight protein with several protective and deleterious functions. Regulation of virus restriction and tumor aggressiveness are the most studied aspects of BST-2 function and thus, the main focus of this perspective. Virus inhibition roles of BST-2 have therapeutic potential that, if properly harnessed, could result in near broad spectrum antiviral. However, the involvement of BST-2 in cancer calls for additional studies on BST-2 biology and re-evaluation of the overall role of BST-2 in host protection, as it appears that BST-2 has pleiotropic effects in the host. Here, we analyze the antiviral and protumor roles of BST-2. We also discuss potential therapeutic options for BST-2 against viral infection and cancer.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
34
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
35
|
Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. J Virol 2015; 90:1507-21. [PMID: 26582000 DOI: 10.1128/jvi.01880-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction.
Collapse
|
36
|
Mota MTDO, Ribeiro MR, Vedovello D, Nogueira ML. Mayaro virus: a neglected arbovirus of the Americas. Future Virol 2015. [DOI: 10.2217/fvl.15.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mayaro virus is a neglected tropical arbovirus that causes a mild, self-limited febrile syndrome, sometimes accompanied by a highly incapacitating arthralgia. First isolated in Trinidad and Tobago in 1954, it was reported in several countries within the tropical regions of South and Central America. Human infections are accidental spillover of the enzootic cycle. Little epidemiological data are available due to inadequate surveillance and the generic nature of clinical manifestations resulting in the misdiagnosis with other viral fevers. Despite its restricted distribution, Mayaro fever may become a public health issue due to their urbanization potential. Accurate epidemiological data are urgently needed to access the real distribution of this virus guiding public health policies better.
Collapse
Affiliation(s)
- Mânlio Tasso de Oliveira Mota
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Milene Rocha Ribeiro
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Danila Vedovello
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Maurício Lacerda Nogueira
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| |
Collapse
|