1
|
Yahyaei S, Abdoli A, Jamali A, Teimoori A, Arefian E, Eftekhari Z, Jamur P. Targeting Respiratory Viruses: The Efficacy of Intranasal mRNA Vaccination in Generating Protective Mucosal and Systemic Immunity Against Influenza A (H1N1). Influenza Other Respir Viruses 2025; 19:e70093. [PMID: 40127967 PMCID: PMC11932742 DOI: 10.1111/irv.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Four significant influenza outbreaks have occurred over the past 100 years, and the 1918 influenza pandemic is the most severe. Since influenza viruses undergo antigenic evolution, they are the pathogens most likely to trigger a new pandemic shortly. Intranasal vaccination offers a promising strategy for preventing diseases triggered by respiratory viruses by eliciting an immunoglobulin A (IgA) response, limiting virus replication and transmission from the respiratory tract more efficiently than intramuscular vaccines. Combining intranasal administration and mRNA-lipid nanoparticles can be an ideal strategy for limiting the extent of the next flu pandemic. This study explored the immunogenicity of intranasally delivered mRNA encapsulated in mannose-histidine-conjugated chitosan lipid nanoparticles (MHCS-LNPs) as a vaccine against influenza A (H1N1) in BALB/c mice. Intranasal administration of mRNA-MHCS-LNPs resulted in the generation of influenza A (H1N1) hemagglutinin-specific neutralizing antibodies in vaccinated animals. The enzyme-linked immunosorbent assay (ELISA) results indicated a notable increase in the quantity of immunoglobulin G (IgG) and IgA antibodies in serum and the bronchoalveolar lavage fluid (BALF), respectively, and exhibited influenza A-specific IFN-γ secretion in vaccinated mice, as well as a noticeable alteration in IL-5 production. Overall, this study demonstrated an effective immunogenic response against respiratory viral infections through intranasal delivery of an mRNA-MHCS-LNP vaccine.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Administration, Intranasal
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Female
- Nanoparticles/administration & dosage
- Immunity, Mucosal
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunoglobulin A/analysis
- Chitosan/administration & dosage
- Chitosan/chemistry
- Vaccination/methods
- Immunoglobulin G/blood
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- mRNA Vaccines
- Bronchoalveolar Lavage Fluid/immunology
- Liposomes
Collapse
Affiliation(s)
- Sara Yahyaei
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
- Student Research CommitteePasteur Institute of IranTehranIran
| | - Asghar Abdoli
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory VirusesPasteur Institute of IranTehranIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Parisa Jamur
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| |
Collapse
|
2
|
Chen K, Yang H, Cai R. Microfluidics for Nanomedicine Delivery. ACS Biomater Sci Eng 2025; 11:774-783. [PMID: 39772433 DOI: 10.1021/acsbiomaterials.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines. However, traditional bulk synthesis methods for LNPs often produce larger particle sizes, significant polydispersity, and low encapsulation efficiency, which can reduce the therapeutic effectiveness. These issues primarily result from uneven mixing and limited control over particle formation during the synthesis. Microfluidic technology has emerged as a solution, providing precise control over particle size, uniformity, and encapsulation efficiency. In this mini review, we introduce the state-of-the-art microfluidic systems for lipid-based nanoparticle synthesis and functionalization. We include the working principles of different types of microfluidic systems, the use of microfluidic systems for LNP synthesis, cargo encapsulation, and nanomedicine delivery. In the end, we briefly discuss the clinical use of LNPs enabled by microfluidic devices.
Collapse
Affiliation(s)
- Kangfu Chen
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Kisakov DN, Karpenko LI, Kisakova LA, Sharabrin SV, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Dmitrienko EV, Yakovlev VA, Tigeeva EV, Bauer IA, Krasnikova SI, Rudometova NB, Rudometov AP, Sergeev AA, Ilyichev AA. Jet Injection of Naked mRNA Encoding the RBD of the SARS-CoV-2 Spike Protein Induces a High Level of a Specific Immune Response in Mice. Vaccines (Basel) 2025; 13:65. [PMID: 39852844 PMCID: PMC11769039 DOI: 10.3390/vaccines13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Although mRNA vaccines encapsulated in lipid nanoparticles (LNPs) have demonstrated a safety profile with minimal serious adverse events in clinical trials, there is opportunity to further reduce mRNA reactogenicity. The development of naked mRNA vaccines could improve vaccine tolerability. Naked nucleic acid delivery using the jet injection method may be a solution. Methods: In the first part of the study, the optimal conditions providing low traumatization and high expression of the model mRNA-GFP molecule in the tissues of laboratory animals were determined. Then, we used the selected protocol to immunize BALB/c mice with mRNA-RBD encoding the SARS-CoV-2 receptor-binding domain (RBD). It was demonstrated that mice vaccinated with naked mRNA-RBD developed a high level of specific antibodies with virus-neutralizing activity. The vaccine also induced a strong RBD-specific T-cell response and reduced the viral load in the lungs of the animals after infection with the SARS-CoV-2 virus. The level of immune response in mice immunized with mRNA-RBD using a spring-loaded jet injector was comparable to that in animals immunized with mRNA-RBD encapsulated in LNPs. Results: In this study, the efficacy of an inexpensive, simple, and safe method of mRNA delivery using a spring-loaded jet injector was evaluated and validated. Conclusions: Our findings suggest that the jet injection method may be a possible alternative to LNPs for delivering mRNA vaccines against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Denis N. Kisakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Sergey V. Sharabrin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena K. Ivleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (I.A.B.)
| | - Vladimir A. Yakovlev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena V. Tigeeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Irina Alekseevna Bauer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (I.A.B.)
| | - Svetlana I. Krasnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Artemiy A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| |
Collapse
|
4
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
5
|
Kisakov DN, Kisakova LA, Sharabrin SV, Yakovlev VA, Tigeeva EV, Borgoyakova MB, Starostina EV, Zaikovskaya AV, Rudometov AP, Rudometova NB, Karpenko LI, Ilyichev AA. Delivery of Experimental mRNA Vaccine Encoding the RBD of SARS-CoV-2 by Jet Injection. Bull Exp Biol Med 2024; 176:776-780. [PMID: 38896316 DOI: 10.1007/s10517-024-06107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 06/21/2024]
Abstract
We studied a needle-free jet injection delivery of an experimental mRNA vaccine encoding the receptor-binding domain of the SARS-CoV-2 S protein (mRNA-RBD). Immunization of BALB/c mice with mRNA-RBD by a needle-free jet injector induced high levels of antibodies with virus-neutralizing activity and a virus-specific T-cell response. The immune response was low in the group of mice that received intramuscular injection of mRNA-RBD. The effectiveness of this simple and safe method of mRNA delivering has been demonstrated. Thus, jet injection of mRNA vaccine can be a good alternative to lipid nanoparticles.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Neutralizing/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Injections, Jet
- mRNA Vaccines
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Injections, Intramuscular
- Female
- Humans
- T-Lymphocytes/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- D N Kisakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - L A Kisakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - S V Sharabrin
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - V A Yakovlev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - E V Tigeeva
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - M B Borgoyakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - E V Starostina
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A V Zaikovskaya
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - N B Rudometova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Ilyichev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
6
|
Sharabrin SV, Bondar AA, Starostina EV, Kisakov DN, Kisakova LA, Zadorozhny AM, Rudometov AP, Ilyichev AA, Karpenko LI. Removal of Double-Stranded RNA Contaminants During Template-Directed Synthesis of mRNA. Bull Exp Biol Med 2024; 176:751-755. [PMID: 38896322 DOI: 10.1007/s10517-024-06102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 06/21/2024]
Abstract
The removal of double-stranded RNA (dsRNA) contaminants during in vitro mRNA synthesis is one of the technological problems to be solved. Apparently, these contaminants are the result of the T7 RNA polymerase side activity. In this study, we used a modified method of mRNA purification based on the selective binding of dsRNA to cellulose in ethanol-containing buffer. It was shown both in vivo and in vitro that the cellulose-purified mRNA preparation leads neither to activation of the lymphocyte inflammatory marker CD69 nor to increased release of IFNα in mice, and does not contain impurities detectable by antibodies to dsRNA.
Collapse
MESH Headings
- Animals
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- Mice
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- DNA-Directed RNA Polymerases/metabolism
- DNA-Directed RNA Polymerases/genetics
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferon-alpha/biosynthesis
- Viral Proteins/metabolism
- Viral Proteins/genetics
Collapse
Affiliation(s)
- S V Sharabrin
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - A A Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Starostina
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Kisakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L A Kisakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A M Zadorozhny
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Ilyichev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
7
|
Gu J, Xu Z, Liu Q, Tang S, Zhang W, Xie S, Chen X, Chen J, Yong KT, Yang C, Xu G. Building a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA Vaccines. Adv Healthc Mater 2024; 13:e2302409. [PMID: 37964681 DOI: 10.1002/adhm.202302409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
In recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility. In this review, the recent progress in the development of non-viral mRNA vectors is focused on. Various organic vectors including lipid nanoparticles (LNPs), polymers, peptides, and exosomes for efficient mRNA delivery are presented and summarized. Furthermore, the latest advances in clinical trials of mRNA vaccines are described. Finally, the current challenges and future possibilities for the clinical translation of these promising mRNA vectors are also discussed.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wenguang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
8
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
9
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
10
|
Xue VW, Wong SCC, Li B, Cho WCS. The discovery and development of mRNA vaccines for the prevention of SARS-CoV-2 infection. Expert Opin Drug Discov 2023; 18:769-780. [PMID: 37237360 DOI: 10.1080/17460441.2023.2218083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION COVID-19 pandemic is one of the most serious public health events of this century. There have been more than 670 million confirmed cases and more than 6 million deaths worldwide. From the emergence of the Alpha variant to the later rampant Omicron variant, the high transmissibility and pathogenicity of SARS-CoV-2 accelerate the research and development of effective vaccines. Against this background, mRNA vaccines stepped onto the historical stage and became an important tool for COVID-19 prevention. AREAS COVERED This article introduces the characteristics of different mRNA vaccines in the prevention of COVID-19, including antigen selection, therapeutic mRNA design and modification, and different delivery systems of mRNA molecules. It also summarizes and discusses the mechanisms, safety, effectiveness, side effects, and limitations of current COVID-19 mRNA vaccines. EXPERT OPINION Therapeutic mRNA molecules have plenty of advantages, including flexible design, rapid production, sufficient immune activation, safety without the risk of genome insertion in the host cells, and no viral vectors or particles involved, making them an important tool to fight diseases in the future. However, the application of COVID-19 mRNA vaccines also faces many challenges, such as storage and transportation, mass production, and nonspecific immunity.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, China
| | | |
Collapse
|
11
|
Litvinova VR, Rudometov AP, Karpenko LI, Ilyichev AA. mRNA Vaccine Platform: mRNA Production and Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023; 49:220-235. [PMID: 37252004 PMCID: PMC10197051 DOI: 10.1134/s1068162023020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 05/31/2023]
Abstract
Vaccination is the most efficient way to prevent infectious diseases. mRNA-based vaccines is a new approach to vaccine development, which have several very useful advantages over other types of vaccines. Since mRNA encodes only the target antigen there is no potential risk of infection as in the case with attenuated or inactivated pathogens. The mode of action of mRNA-vaccines implies that their genetic information is expressed only in the cytosol, leaving very little possibility of mRNA integration into the host's genome. mRNA-vaccines can induce specific cellular and humoral immune responses, but do not induce the antivector immune response. The mRNA-vaccine platform allows for easy target gene replacement without the need to change the production technology, which is important to address the time lag between the epidemic onset and vaccine release. The present review discusses the history of mRNA vaccines, mRNA vaccine production technology, ways to increase mRNA stability, modifications of the cap, poly(A)-tail, coding and noncoding parts of mRNA, target mRNA vaccine purification from byproducts, and delivery methods.
Collapse
Affiliation(s)
- V. R. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - A. P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - A. A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| |
Collapse
|
12
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
13
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
14
|
Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Med Chem 2022; 14:1561-1581. [DOI: 10.4155/fmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.
Collapse
|
15
|
Kisakov DN, Kisakova LA, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Shcherbakov DN, Rudometov AP, Rudometova NB, Volkova NV, Gureev VN, Ilyichev AA, Karpenko LI. Optimization of In Vivo Electroporation Conditions and Delivery of DNA Vaccine Encoding SARS-CoV-2 RBD Using the Determined Protocol. Pharmaceutics 2022; 14:pharmaceutics14112259. [PMID: 36365078 PMCID: PMC9693113 DOI: 10.3390/pharmaceutics14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.
Collapse
|
16
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
17
|
mRNA Vaccines: Past, Present, Future. Asian J Pharm Sci 2022; 17:491-522. [PMID: 36105317 PMCID: PMC9459002 DOI: 10.1016/j.ajps.2022.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
mRNA vaccines have emerged as promising alternative platforms to conventional vaccines. Their ease of production, low cost, safety profile and high potency render them ideal candidates for prevention and treatment of infectious diseases, especially in the midst of pandemics. The challenges that face in vitro transcribed RNA were partially amended by addition of tethered adjuvants or co-delivery of naked mRNA with an adjuvant-tethered RNA. However, it wasn't until recently that the progress made in nanotechnology helped enhance mRNA stability and delivery by entrapment in novel delivery systems of which, lipid nanoparticles. The continuous advancement in the fields of nanotechnology and tissue engineering provided novel carriers for mRNA vaccines such as polymeric nanoparticles and scaffolds. Various studies have shown the advantages of adopting mRNA vaccines for viral diseases and cancer in animal and human studies. Self-amplifying mRNA is considered today the next generation of mRNA vaccines and current studies reveal promising outcomes. This review provides a comprehensive overview of mRNA vaccines used in past and present studies, and discusses future directions and challenges in advancing this vaccine platform to widespread clinical use.
Collapse
|
18
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
19
|
Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23094493. [PMID: 35562884 PMCID: PMC9104172 DOI: 10.3390/ijms23094493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.
Collapse
|
20
|
Qin X, Li S, Li X, Pei D, Liu Y, Ding Y, Liu L, Bi H, Shi X, Guo Y, Fang E, Huang F, Yu L, Zhu L, An Y, Valencia CA, Li Y, Dong B, Zhou Y. Development of an Adeno-Associated Virus-Vectored SARS-CoV-2 Vaccine and Its Immunogenicity in Mice. Front Cell Infect Microbiol 2022; 12:802147. [PMID: 35310850 PMCID: PMC8927296 DOI: 10.3389/fcimb.2022.802147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Owing to the outbreak of the novel coronavirus (SARS-CoV-2) worldwide at the end of 2019, the development of a SARS-CoV-2 vaccine became an urgent need. In this study, we developed a type 9 adeno-associated virus vectored vaccine candidate expressing a dimeric receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S protein) and evaluated its immunogenicity in a murine model. The vaccine candidate, named AAV9-RBD virus, was constructed by inserting a signal peptide to the N-terminus of two copies of RBD, spaced by a linker, into the genome of a type 9 adeno-associated virus. In vitro assays showed that HeLa cells infected by the recombinant AAV virus expressed high levels of the recombinant RBD protein, mostly found in the cell culture supernatant. The recombinant AAV9-RBD virus was cultured and purified. The genome titer of the purified recombinant AAV9-RBD virus was determined to be 2.4 × 1013 genome copies/mL (GC/mL) by Q-PCR. Balb/c mice were immunized with the virus by intramuscular injection or nasal drip administration. Eight weeks after immunization, neutralizing antibodies against the new coronavirus pseudovirus were detected in the sera of all mice; the mean neutralizing antibody EC50 values were 517.7 ± 292.1 (n=10) and 682.8 ± 454.0 (n=10) in the intramuscular injection group and nasal drip group, respectively. The results of this study showed that the recombinant AAV9-RBD virus may be used for the development of a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Xi Qin
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Dening Pei
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Liu
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youxue Ding
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Lan Liu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Hua Bi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xinchang Shi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Guo
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Yu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Liuqiang Zhu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yifang An
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - C. Alexander Valencia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Biao Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Yong Zhou
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| |
Collapse
|
21
|
Byun MJ, Lim J, Kim SN, Park DH, Kim TH, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BIOCHIP JOURNAL 2022; 16:128-145. [PMID: 35261724 PMCID: PMC8891745 DOI: 10.1007/s13206-022-00052-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
Abstract
RNA therapeutics, including messenger RNA (mRNA) and small interfering RNA (siRNA), are genetic materials that mediate the translation of genetic direction from genes to induce or inhibit specific protein production. Although the interest in RNA therapeutics is rising globally, the absence of an effective delivery system is an obstacle to the clinical application of RNA therapeutics. Additionally, immunogenicity, short duration of protein expression, unwanted enzymatic degradation, and insufficient cellular uptake could limit the therapeutic efficacy of RNA therapeutics. In this regard, novel platforms based on nanoparticles are crucial for delivering RNAs to the targeted site to increase efficiency without toxicity. In this review, the most recent status of nanoparticles as RNA delivery vectors, with a focus on polymeric nanoparticles, peptide-derived nanoparticles, inorganic nanoparticles, and hybrid nanoparticles, is discussed. These nanoparticular platforms can be utilized for safe and effective RNA delivery to augment therapeutic effects. Ultimately, RNA therapeutics encapsulated in nanoparticle-based carriers will be used to treat many diseases and save lives.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
22
|
Mabrouk MT, Huang W, Martinez‐Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107781. [PMID: 34894000 PMCID: PMC8957524 DOI: 10.1002/adma.202107781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Indexed: 05/09/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Wei‐Chiao Huang
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Luis Martinez‐Sobrido
- Division of Disease Intervention and PreventionTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| |
Collapse
|
23
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Volosnikova EA, Merkuleva IA, Starostina EV, Zadorozhny AM, Isaeva AA, Nesmeyanova VS, Shanshin DV, Baranov KO, Volkova NV, Zaitsev BN, Orlova LA, Zaykovskaya AV, Pyankov OV, Danilenko ED, Bazhan SI, Shcherbakov DN, Taranin AV, Ilyichev AA. Self-Assembled Particles Combining SARS-CoV-2 RBD Protein and RBD DNA Vaccine Induce Synergistic Enhancement of the Humoral Response in Mice. Int J Mol Sci 2022; 23:2188. [PMID: 35216301 PMCID: PMC8876144 DOI: 10.3390/ijms23042188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.
Collapse
Affiliation(s)
- Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexey M. Zadorozhny
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Natalya V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Lyubov A. Orlova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| |
Collapse
|
24
|
Velez-Saboyá CS, Guzmán-Sepúlveda JR, Ruiz-Suárez JC. Phase transitions of liposomes: when light meets heat. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:124002. [PMID: 34936996 DOI: 10.1088/1361-648x/ac45b7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Phase transitions of liposomes are normally studied by differential scanning calorimetry. A suspension of liposomes is subjected to an increase (decrease) of temperature and when heat is absorbed (released), the liposomes transit from a gel (liquid) to a liquid (gel) phase. This endothermic (exothermic) process takes place at a temperature called the melting temperatureTm, which is distinctive of the type of lipids forming the vesicles. The vesicles, though, also modify their size in the transition. Indeed, the thickness of the membranes decreases (increases) because carbon tails misalign (align). Concomitant with the modifications in the membrane thickness, the diameter (D) of the liposomes changes too. Therefore, when they are inspected by light, the scattered signal carries information from such dilatation (contraction) process. We performed careful experiments using dynamic light scattering as a function of temperature to detect the size changes of different liposomes. Gaussian fits of the derivatives of theDvsTcurves coincide within 1% with thermograms, which hints to the possibility of performing thermodynamic studies of lipid systems employing light.
Collapse
Affiliation(s)
| | | | - J C Ruiz-Suárez
- CINVESTAV-Monterrey, PIIT, Apodaca, Nuevo León 66600, Mexico
| |
Collapse
|
25
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Shanshin DV, Isaeva AA, Nesmeyanova VS, Volkova NV, Belenkaya SV, Murashkin DE, Shcherbakov DN, Volosnikova EA, Starostina EV, Orlova LA, Danilchenko NV, Zaikovskaya AV, Pyankov OV, Ilyichev AA. Immunogenic Properties of the DNA Construct Encoding the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Mol Biol 2021; 55:889-898. [PMID: 34955558 PMCID: PMC8682036 DOI: 10.1134/s0026893321050046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42 000, in the pVAX-RBD-PGS group. The pVAX-RBD‒PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-γ in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.
Collapse
Affiliation(s)
- M B Borgoyakova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - L I Karpenko
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A P Rudometov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D V Shanshin
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A A Isaeva
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - V S Nesmeyanova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - N V Volkova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - S V Belenkaya
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D E Murashkin
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D N Shcherbakov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - E A Volosnikova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - E V Starostina
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - L A Orlova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - N V Danilchenko
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A V Zaikovskaya
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - O V Pyankov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A A Ilyichev
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| |
Collapse
|
26
|
Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021; 169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.
Collapse
|
27
|
Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021; 9:452. [PMID: 34063689 PMCID: PMC8147809 DOI: 10.3390/vaccines9050452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid-based influenza vaccines are a promising platform that have recently and rapidly developed. We previously demonstrated the immunogenicity of DNA vaccines encoding artificial immunogens AgH1, AgH3, and AgM2, which contained conserved fragments of the hemagglutinin stem of two subtypes of influenza A-H1N1 and H3N2-and conserved protein M2. Thus, the aim of this study was to design and characterize modified mRNA obtained using the above plasmid DNA vaccines as a template. To select the most promising protocol for creating highly immunogenic mRNA vaccines, we performed a comparative analysis of mRNA modifications aimed at increasing its translational activity and decreasing toxicity. We used mRNA encoding a green fluorescent protein (GFP) as a model. Eight mRNA-GFP variants with different modifications (M0-M7) were obtained using the classic cap(1), its chemical analog ARCA (anti-reverse cap analog), pseudouridine (Ψ), N6-methyladenosine (m6A), and 5-methylcytosine (m5C) in different ratios. Modifications M2, M6, and M7, which provided the most intensive fluorescence of transfected HEK293FT cells were used for template synthesis when mRNA encoded influenza immunogens AgH1, AgH3, and AgM2. Virus specific antibodies were registered in groups of animals immunized with a mix of mRNAs encoding AgH1, AgH3, and AgM2, which contained either ARCA (with inclusions of 100% Ψ and 20% m6A (M6)) or a classic cap(1) (with 100% substitution of U with Ψ (M7)). M6 modification was the least toxic when compared with other mRNA variants. M6 and M7 RNA modifications can therefore be considered as promising protocols for designing mRNA vaccines.
Collapse
Affiliation(s)
- Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Sergei V. Sharabrin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Georgiy Yu. Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Anna E. Lemza
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Vasiliy Yu. Marchenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Natalia V. Danilchenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| |
Collapse
|
28
|
García-Montero C, Fraile-Martínez O, Bravo C, Torres-Carranza D, Sanchez-Trujillo L, Gómez-Lahoz AM, Guijarro LG, García-Honduvilla N, Asúnsolo A, Bujan J, Monserrat J, Serrano E, Álvarez-Mon M, De León-Luis JA, Álvarez-Mon MA, Ortega MA. An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines (Basel) 2021; 9:vaccines9050433. [PMID: 33925526 PMCID: PMC8146241 DOI: 10.3390/vaccines9050433] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Since the worldwide COVID-19 pandemic was declared a year ago, the search for vaccines has become the top priority in order to restore normalcy after 2.5 million deaths worldwide, overloaded sanitary systems, and a huge economic burden. Vaccine development has represented a step towards the desired herd immunity in a short period of time, owing to a high level of investment, the focus of researchers, and the urge for the authorization of the faster administration of vaccines. Nevertheless, this objective may only be achieved by pursuing effective strategies and policies in various countries worldwide. In the present review, some aspects involved in accomplishing a successful vaccination program are addressed, in addition to the importance of vaccination in a pandemic in the face of unwillingness, conspiracy theories, or a lack of information among the public. Moreover, we provide some updated points related to the landscape of the clinical development of vaccine candidates, specifically, the top five vaccines that are already being assessed in Phase IV clinical trials (BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, and CoronaVac).
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | | | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Encarnación Serrano
- Los fresnos of Health Centre, Health Area III, Torrejon de Ardoz, 28850 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Juan A De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain;
- Correspondence:
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|