1
|
Esmaeilpour D, Zare EN, Hassanpur M, Sher F, Sillanpää M. Comparative examination of the chemistry and biology of AI-driven gold NPs in Theranostics: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102821. [PMID: 40306530 DOI: 10.1016/j.nano.2025.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
Integrating artificial intelligence (AI) with nanomedicine is transforming Theranostics, driving advances in biosensing, bioimaging, genomics, diagnostics, and treatment. This review highlights the latest advancements in AI-driven nanomedicine, focusing on its transformative impact on healthcare. AI-integrated biosensors offer ultra-sensitive, real-time biomaterial detection, reducing false positives by 40 %. In bioimaging, AI algorithms improve resolution to 10 nm, particularly in gold nanoparticles (AuNP)-based imaging. AuNPs, leveraging surface plasmon resonance (SPR), act as contrast agents for early disease detection. AI accelerates genomic analysis, increasing sequencing accuracy by 30 %, enhancing biomarker identification for personalized medicine. AI powered diagnostics ensure rapid, non-invasive pathogen detection within 30 min with 95 % accuracy. AI-driven drug delivery systems enable precise, controlled release, reducing side effects by 20 %. This review explores AI-enhanced AuNPs in biosensing, bioimaging, genomics, diagnostics, and therapy while addressing challenges like scalability, biocompatibility. AI's role in Nanomedicine underscores its potential to revolutionize personalized medicine and future healthcare innovations.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz, 71345-1583, Iran.
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Mahnaz Hassanpur
- Center for Theoretical Physics, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45,137-66,731, Iran
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
2
|
Gomaa S, Nassef M, Abu-Shafey A, Elwan M, Adwey A. Impacts of loading thymoquinone to gold or silver nanoparticles on the efficacy of anti-tumor treatments in breast cancer with or without chemotherapeutic cisplatin. BMC Biotechnol 2025; 25:26. [PMID: 40211258 PMCID: PMC11987408 DOI: 10.1186/s12896-025-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Nanotechnology has been greatly examined for tumor medication, as nanoparticles (NPs) serve a crucial role in drug delivery mechanisms for cancer therapy. In contrast to traditional cancer therapies, NPs-based drug delivery offers several benefits, including increased stability and biocompatibility, improved retention capabilities and permeability, as well as precise targeting. AIM The objective of this study was to examine the tumor-targeting efficacy of Thymoquinone (TQ)-loaded gold NPs (AuNPs/TQ conjugate) or TQ-loaded silver NPs (AgNPs/TQ conjugate) in conjunction with the conventional chemotherapy agent cisplatin (CP) in Ehrlich ascites carcinoma (EAC)-bearing mice. METHODS The loading capacity of synthesized conjugates was characterized by UV-Vis spectra and transmission electron microscope (TEM). We used CD-1 mice with a peritoneal EAC tumor xenograft model that received oral administration of TQ, AuNPs, AgNPs, AuNPs/TQ conjugate, and AgNPs/TQ conjugate. METHODS EAC-bearing mice received daily oral administration of one of the following treatments for six consecutive days: TQ, AuNPs, AgNPs, AuNPs/TQ, AgNPs/TQ, AuNPs/TQ + CP, or AgNPs/TQ + CP conjugates. Eleven days after EAC inoculations, assessments were conducted to evaluate the total number of tumor cells, splenocytes, white blood cells (WBCs), C-reactive protein (CRP) levels, flow cytometric analysis of apoptosis in EAC cells, as well as the functionality of the kidney and liver. RESULTS EAC-bearing mice that received treatment with TQ, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ exhibited significantly enhanced anti-tumor activity and improved therapeutic efficacy. Our results further revealed that the combined synergistic approach of TQ's anti-tumor properties, along with the efficient penetration abilities of AuNPs or AgNPs, led to a significant inhibition of the growth of tumor cells in EAC tumor-bearing mice. Moreover, the incorporation of CP into the AuNPs/TQ or AgNPs/TQ conjugates substantially augmented the anti-proliferative effects against EAC tumor cells, effectively overcoming resistance to chemotherapeutic agents. Furthermore, our data revealed that this combination resulted in an elevation of leukocyte counts, along with an increase in the absolute quantities of lymphocytes, neutrophils, and monocytes, thereby activating the immune system and reducing the inflammatory marker CRP. However, the restoration of splenocyte levels, which had been reduced due to EAC cell inoculation, required an extended period to return to baseline. Furthermore, the results indicated moderate alterations in the functionality of both the liver and kidney. CONCLUSION To conclude, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ may hold great promise as potential nanoparticle-based therapies for cancer treatment. Additionally, provides numerous benefits compared to conventional cancer therapies, such as selectivity and minimal side effects. Additionally, AuNPs, AuNPs/TQ, AuNPs/TQ + CP, AgNPs, AgNPs/TQ, or AgNPs/TQ + CP can specifically target tumor tissues, suppress tumor growth, extend the lifespan of tumor-bearing mice, and minimize cytotoxic effects on normal tissues, relative to the administration of free CP alone. More research is needed to understand the mechanisms of these nanoparticle-based therapies in clinical and optimize their use as cancer therapies.
Collapse
Affiliation(s)
- Soha Gomaa
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt.
| | - Mohamed Nassef
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Ahlam Abu-Shafey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Mona Elwan
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Asmaa Adwey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| |
Collapse
|
3
|
Cassani M, Niro F, Fernandes S, Pereira-Sousa D, Faes Morazzo S, Durikova H, Wang T, González-Cabaleiro L, Vrbsky J, Oliver-De La Cruz J, Klimovic S, Pribyl J, Loja T, Skladal P, Caruso F, Forte G. Regulation of Cell-Nanoparticle Interactions through Mechanobiology. NANO LETTERS 2025; 25:2600-2609. [PMID: 39772635 PMCID: PMC11849000 DOI: 10.1021/acs.nanolett.4c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.
Collapse
Affiliation(s)
- Marco Cassani
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesco Niro
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- School of
Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London WC2R 2LS, U.K.
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Soraia Fernandes
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Pereira-Sousa
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Sofia Faes Morazzo
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Helena Durikova
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianzheng Wang
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Lara González-Cabaleiro
- Departamento
de Química Física, Universidade
de Vigo, Campus Universitario As Lagoas
Marcosende, Vigo 36310, Spain
| | - Jan Vrbsky
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
| | - Jorge Oliver-De La Cruz
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), 08028 Barcelona, Spain
| | - Simon Klimovic
- Nanobiotechnology
Core Facility, CEITEC Masaryk University, 62500 Brno, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, 62500 Brno, Czech Republic
| | - Jan Pribyl
- Nanobiotechnology
Core Facility, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Loja
- Molecular
Medicine, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Petr Skladal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, 62500 Brno, Czech Republic
| | - Frank Caruso
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Giancarlo Forte
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- School of
Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London WC2R 2LS, U.K.
| |
Collapse
|
4
|
Fatima H, Singh D, Muhammad H, Acharya S, Aziz MA. Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine. 3 Biotech 2025; 15:17. [PMID: 39711922 PMCID: PMC11656010 DOI: 10.1007/s13205-024-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.
Collapse
Affiliation(s)
- Hina Fatima
- Polymer and Process Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247001 India
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Dimple Singh
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247001 India
| | - Huzaifa Muhammad
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Swati Acharya
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Mohammad Azhar Aziz
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, UP 202002 India
| |
Collapse
|
5
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 PMCID: PMC11397842 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Jantarat T, Lauterbach JD, Doungchawee J, Agrohia DK, Vachet RW. Quantitative imaging of the sub-organ distributions of nanomaterials in biological tissues via laser ablation inductively coupled plasma mass spectrometry. Analyst 2023; 148:4479-4488. [PMID: 37575048 DOI: 10.1039/d3an00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanomaterials have been employed in many biomedical applications, and their distributions in biological systems can provide an understanding of their behavior in vivo. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) can be used to determine the distributions of metal-based NMs in biological systems. However, LA-ICP-MS has not commonly been used to quantitatively measure the cell-specific or sub-organ distributions of nanomaterials in tissues. Here, we describe a new platform that uses spiked gelatin standards with control tissues on top to obtain an almost perfect tissue mimic for quantitative imaging purposes. In our approach, gelatin is spiked with both nanomaterial standards and an internal standard to improve quantitation and image quality. The value of the developed approach is illustrated by determining the sub-organ distributions of different metal-based and metal-tagged polymeric nanomaterials in mice organs. The LA-ICP-MS images reveal that the chemical and physical properties of the nanomaterials cause them to distribute in quantitatively different extents in spleens, kidneys, and tumors, providing new insight into the fate of nanomaterials in vivo. Furthermore, we demonstrate that this approach enables quantitative co-localization of nanomaterials and their cargo. We envision this method being a valuable tool in the development of nanomaterial drug delivery systems.
Collapse
Affiliation(s)
- Teerapong Jantarat
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Joshua D Lauterbach
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| |
Collapse
|
7
|
Groysbeck N, Hanss V, Donzeau M, Strub JM, Cianférani S, Spehner D, Bahri M, Ersen O, Eltsov M, Schultz P, Zuber G. Bioactivated and PEG-Protected Circa 2 nm Gold Nanoparticles for in Cell Labelling and Cryo-Electron Microscopy. SMALL METHODS 2023; 7:e2300098. [PMID: 37035956 DOI: 10.1002/smtd.202300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
Advances in cryo-electron microscopy (EM) enable imaging of protein assemblies within mammalian cells in a near native state when samples are preserved by cryogenic vitrification. To accompany this progress, specialized EM labelling protocols must be developed. Gold nanoparticles (AuNPs) of 2 nm are synthesized and functionalized to bind selected intracellular targets inside living human cells and to be detected in vitreous sections. As a proof of concept, thioaminobenzoate-, thionitrobenzoate-coordinated gold nanoparticles are functionalized on their surface with SV40 Nuclear Localization Signal (NLS)-containing peptides and 2 kDa polyethyleneglycols (PEG) by thiolate exchange to target the importin-mediated nuclear machinery and facilitate cytosolic diffusion by shielding the AuNP surface from non-specific binding to cell components, respectively. After delivery by electroporation into the cytoplasm of living human cells, the PEG-coated AuNPs diffuse freely in the cytoplasm but do not enter the nucleus. Incorporation of NLS within the PEG coverage promotes a quick nuclear import of the nanoparticles in relation to the density of NLS onto the AuNPs. Cryo-EM of vitreous cell sections demonstrate the presence of 2 nm AuNPs as single entities in the nucleus. Biofunctionalized AuNPs combined with live-cell electroporation procedures are thus potent labeling tools for the identification of macromolecules in cellular cryo-EM.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| | - Victor Hanss
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Mariel Donzeau
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Danièle Spehner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Mounib Bahri
- Albert Crewe Centre, University of Liverpool, 4. Waterhouse Building, Block C, 1-3 Brownlow Street, London, L69 3GL, UK
| | - Ovidiu Ersen
- Université de Strasbourg - CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), 23 rue de Loess, Strasbourg, 67034, France
| | - Mikhael Eltsov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Patrick Schultz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Guy Zuber
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| |
Collapse
|
8
|
Ye J, Yi Y, Wang H, Wang G, Sun Y, Liu E, Tao X, He C. A Study of Glutathione-Responsive Dual-Drug-Loaded Nanoparticles in Anti-Osteosarcoma Treatment. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We connected polyglutamic acid and methotrexate (MTX) through disulfide bonds to prepare glutathione-responsive nanoparticles (MTX NPs) and encapsulated doxorubicin (DOX) to obtain dual drug-loaded NPs (DOX/MTX NPs) (Fig. 1). The appearance of the carbonyl stretching vibration peak
at approximately 1640 cm−1 in the results of the infrared spectrum proved the successful synthesis of three kinds of nanoparticles (NPs) with different feeding ratios. The particle sizes of NPs with different feeding ratios were 100–200 nm, and the encapsulation of DOX
slightly increased the size, while the surface charge was always negative. The release of MTX at 10 mM glutathione (GSH) was as high as 91.45%, and that of DOX was 89.44%, suggesting that the breakage of disulfide bonds leads to the disintegration of NPs. The results of the cell experiment
showed that the encapsulation of DOX effectively increased toxicity and side effects in 143B cells and significantly induced cell apoptosis, and the inhibition of the migration rate increased as the feeding ratio increased. In animal experiments, DOX/MTX NPs significantly induced tumor cell
apoptosis and inhibited cell proliferation and tumor growth. The nanoparticles had excellent tumor-targeting properties. Tumor-targeted NPs with the combined action of the two drugs provided a good strategy for the efficient and precise treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jia Ye
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yangfei Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Hongyi Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Guowei Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yuting Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Enze Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| |
Collapse
|
9
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
10
|
Han M, Evans S, Mustafa S, Wiederman S, Ebendorff-Heidepriem H. Controlled delivery of quantum dots using microelectrophoresis technique: Intracellular behavior and preservation of cell viability. Bioelectrochemistry 2022; 144:108035. [PMID: 34906817 DOI: 10.1016/j.bioelechem.2021.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The use of synthetic nanomaterials as contrast agents, sensors, and drug delivery vehicles in biological research primarily requires effective approaches for intracellular delivery. Recently, the well-accepted microelectrophoresis technique has been reported to exhibit the ability to deliver nanomaterials, quantum dots (QDs) as an example, into live cells, but information about cell viability and intracellular fate of delivered nanomaterials is yet to be provided. Here we show that cell viability following microelectrophoresis of QDs is strongly correlated with the amount of delivered QDs, which can be finely controlled by tuning the ejection duration to maintain long-term cell survival. We reveal that microelectrophoretic delivered QDs distribute homogeneously and present pure Brownian diffusion inside the cytoplasm without endosomal entrapment, having great potential for the study of dynamic intracellular events. We validate that microelectrophoresis is a powerful technique for the effective intracellular delivery of QDs and potentially various functional nanomaterials in biological research.
Collapse
Affiliation(s)
- Mengke Han
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Samuel Evans
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sanam Mustafa
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven Wiederman
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
11
|
Elberskirch L, Binder K, Riefler N, Sofranko A, Liebing J, Minella CB, Mädler L, Razum M, van Thriel C, Unfried K, Schins RPF, Kraegeloh A. Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety. Part Fibre Toxicol 2022; 19:1. [PMID: 34983569 PMCID: PMC8728981 DOI: 10.1186/s12989-021-00442-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.
Collapse
Affiliation(s)
- Linda Elberskirch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kunigunde Binder
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Norbert Riefler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Liebing
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Christian Bonatto Minella
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Lutz Mädler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Matthias Razum
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Christoph van Thriel
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
12
|
Patel N, Ghali L, Roitt I, Munoz LP, Bayford R. Exploiting the efficacy of Tyro3 and folate receptors to enhance the delivery of gold nanoparticles into colorectal cancer cells in vitro. NANOSCALE ADVANCES 2021; 3:5373-5386. [PMID: 36132641 PMCID: PMC9419080 DOI: 10.1039/d1na00318f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in the world. Due to its asymptomatic nature, CRC is diagnosed at an advanced stage where the survival rate is <5%. Besides, CRC treatment using chemotherapy, radiotherapy and surgery often causes undesirable side-effects. As such, gold nanoparticles (GNPs) are envisaged in the field for the diagnosis and treatment of CRC. GNPs have unique physical, chemical and electrical properties at the nanoscale which make them suitable for application in biomedicine. However, for GNPs to become clinically effective, their internalisation efficiency in cancer cells must be enhanced. Folate receptor-α (FR) is overexpressed in CRC cells wherein FR helps in the uptake of folic acid within the cells. Tyro3, a novel tyrosine kinase receptor, drives cell proliferation and its overexpression is correlated with poor prognosis in CRC. Their upregulated expression in CRC cells relative to normal cells makes them an ideal target for GNPs using active targeting. Therefore, in this study receptors FR and Tyro3 were simultaneously targeted using specific antibody-coated GNPs in order to enhance the uptake and internalisation of GNPs in CRC cells in vitro. Four different types of coated-GNPs were synthesised GNPs-PEG, GNPs-anti-FR, GNPs-anti-Tyro3 and GNPs-anti-(FR + Tyro3) and incubated (0-50 ng) with three CRC cell lines namely CRL1790, CRL2159 and HCT116. Simultaneous targeting of these receptors by GNPs-anti-(FR + Tyro3) was found to be the most effective in internalisation in CRC cells compared with GNPs targeted singly to FR or Tyro3 (p <0.05). Besides this, results show that Tyro3 mediated similar internalisation efficacy to FR (p <0.05) in CRC cells using ICP-OES.
Collapse
Affiliation(s)
- Nakul Patel
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Lucy Ghali
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Ivan Roitt
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Leonardo Puntoja Munoz
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Richard Bayford
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| |
Collapse
|
13
|
Synthesis of Gold Nanoparticles Using Tannin-Rich Extract and Coating onto Cotton Textiles for Catalytic Degradation of Congo Red. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/6380283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNPs) were synthesized under ambient conditions from chloroauric acid in aqueous solution at pH 4. Tannin-rich extract from Xylocarpus granatum bark was used as both reducing and capping agent, rapidly converting Au (I) salt to AuNPs. Transmission electron microscopy showed the as-prepared AuNPs to be predominantly spherical, with an average diameter of 17 nm. The AuNPs were tested for catalytic reduction of Congo red (CR), a carcinogenic azo dye, in aqueous sodium borohydride solution. Cotton samples were coated with the AuNPs, taking on a reddish-purple color. The samples showed significantly reduced tearing strength after coating, though tensile strength was unaffected. UV-visible spectroscopy was used to determine the dye concentration in the water. CR degradation was observed only when AuNPs were present, and the efficiency of degradation was strongly linked to the AuNP loading. The AuNP-coated fabrics left only a 4.7% CR concentration in the solution after 24 h and therefore promise as a heterogeneous catalyst for degradation of CR in aqueous solution.
Collapse
|
14
|
Stancu V, Galatanu A, Enculescu M, Onea M, Popescu B, Palade P, Aradoaie M, Ciobanu R, Pintilie L. Influences of Dispersions' Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS-Fe 3O 4 Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3696. [PMID: 34279266 PMCID: PMC8269840 DOI: 10.3390/ma14133696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Composites of magnetite (Fe3O4) nanoparticles dispersed in a polydimethylsiloxane (PDMS) matrix were prepared by a molding process. Two types of samples were obtained by free polymerization with randomly dispersed particles and by polymerization in an applied magnetic field. The magnetite nanoparticles were obtained from magnetic micrograins of acicular goethite (α-FeOOH) and spherical hematite (α-Fe2O3), as demonstrated by XRD measurements. The evaluation of morphological and compositional properties of the PDMS:Fe3O4 composites, performed by SEM and EDX, showed that the magnetic particles were uniformly distributed in the polymer matrix. Addition of magnetic dispersions promotes an increase of thermal conductivity compared with pristine PDMS, while further orienting the powders in a magnetic field during the polymerization process induces a decrease of the thermal conductivity compared with the un-oriented samples. The shape of the magnetic dispersions is an important factor, acicular dispersions providing a higher value for thermal conductivity compared with classic commercial powders with almost spherical shapes.
Collapse
Affiliation(s)
- V Stancu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - A Galatanu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Onea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - B Popescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - P Palade
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Aradoaie
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, 70050 Iasi, Romania
| | - R Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, 70050 Iasi, Romania
- All Green SRL, 8 G. Cosbuc Street, 700470 Iasi, Romania
| | - L Pintilie
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
15
|
Nanoparticle-based fluorescence probe for detection of NF-κB transcription factor in single cell via steric hindrance. Mikrochim Acta 2021; 188:226. [PMID: 34106343 DOI: 10.1007/s00604-021-04878-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
A novel nanoparticle-based fluorescence probe was developed for NF-κB transcription factor detection and in situ imaging via steric hindrance. The probe contains gold nanoparticles (AuNPs) to quench fluorescence, and nucleic acids immobilized on the surface of AuNPs to output fluorescence. In the basal state, Cy5 labeled DNA1 folds its long chain into a hairpin structure and quenches fluorescence by forcing the Cy5 fluorophore close to the surface of AuNPs. After the probe enters the cell, the NF-κB transcription factor can bind to the κB site in the DNA duplex of the nucleic acids. The steric hindrance caused by NF-κB leads to the extension of the long chain of DNA1 and the removal of the Cy5 fluorophore from the surface of AuNPs, thereby restoring the fluorescence of the probe. By measuring NF-κB in cell lysis in vitro, the probe obtains a detection limit of 0.38 nM and the linear range from 0.5 to 16 nM. Repeated measurements showed the recovery in the cell nuclear extract was between 93.38 and 109.32%, with relative standard deviation less than 5%. By monitoring the sub-localization of the Cy5 fluorophore in single cell, the probe system can effectively distinguish active NF-κB (nucleus) and inactive NF-κB (cytoplasm) through in situ imaging. The well-designed probe will make up for the shortcomings of the existing technology, and reveal the regulatory role of transcription factors in many disease processes.
Collapse
|
16
|
Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, Qin Z, Xu Z, Sun W, Liang Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front Genet 2021; 12:673286. [PMID: 34054927 PMCID: PMC8149999 DOI: 10.3389/fgene.2021.673286] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.
Collapse
Affiliation(s)
- Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kan Ouyang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao Xu
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Caining Wen
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoying Zhou
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhuan Qin
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiyi Xu
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Sun
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China
| |
Collapse
|
17
|
Fu K, Wang X, Yuan X, Wang D, Mi X, Tan X, Zhang Y. Size-Dependent Penetration of Gold Nanoprobes into Fixed Cells. ACS OMEGA 2021; 6:3791-3799. [PMID: 33585758 PMCID: PMC7876832 DOI: 10.1021/acsomega.0c05458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nanoprobes have been increasingly applied in the biomedical field due to their superior optical, electronic, or magnetic properties. Among the many aspects involved in the interaction between nanoprobes and biospecimens, size plays an essential role. Although the influence of size on their internalization behavior and distribution in live cells has been extensively studied, how does the size affect penetration of nanoprobes into fixed cells remains unknown. We investigate here the influence of size on the penetration behavior of gold nanoprobes into fixed mammalian cells by dark-field microscopy and surface-enhanced Raman scattering (SERS) microspectroscopy. We show that 14, 20, and 29 nm nanoprobes can readily enter into methanol-fixed MCF-7 cells, while 42 and 55 nm nanoprobes cannot cross the cell membrane. For 4% paraformaldehyde-fixed cells, even 14 nm nanoprobes can hardly get into the cells, but after treatment with permeabilization reagents, 14 and 20 nm nanoprobes are permitted to enter the cells. These findings provide important implications in future design of nanoprobes for cellular immunostaining.
Collapse
|
18
|
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 2020; 45:107655. [PMID: 33186607 DOI: 10.1016/j.biotechadv.2020.107655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
Keratinases are unique among proteolytic enzymes for their ability to degrade recalcitrant insoluble proteins, and they are of critical importance in keratin waste management. Over the past few decades, researchers have focused on discovering keratinase producers, as well as producing and characterizing keratinases. The application potential of keratinases has been investigated in the feed, fertilizer, leathering, detergent, cosmetic, and medical industries. However, the commercial availability of keratinases is still limited due to poor productivity and properties, such as thermostability, storage stability and resistance to organic reagents. Advances in molecular biotechnology have provided powerful tools for enhancing the production and functional properties of keratinase. This critical review systematically summarizes the application potential of keratinase, and in particular certain newly discovered catalytic capabilities. Furthermore, we provide comprehensive insight into mechanistic and molecular aspects of keratinases including analysis of gene sequences and protein structures. In addition, development and current advances in protein engineering of keratinases are summarized and discussed, revealing that the engineering of protein domains such as signal peptides and pro-peptides has become an important strategy to increase production of keratinases. Finally, prospects for further development are also proposed, indicating that advanced protein engineering technologies will lead to improved and additional commercial keratinases for various industrial applications.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
19
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
20
|
|
21
|
Arini A, Pierron F, Mornet S, Baudrimont M. Bioaccumulation dynamics and gene regulation in a freshwater bivalve after aqueous and dietary exposures to gold nanoparticles and ionic gold. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3637-3650. [PMID: 30612357 DOI: 10.1007/s11356-018-4009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (AuNPs) are being developed and produced for a wide variety of industrial and biomedical applications, which raises the concern about their release and potential effects in the environment. In this study, we aim to assess the effects of PEGylated AuNPs and ionic gold on the freshwater bivalve Corbicula fluminea. As NP bioavailability is conditioned by many factors of variability, we focused on the determination of biodynamic parameters which control AuNP uptake and elimination in bivalves. Three experiments were conducted: (1) a waterborne exposure (0-24 mg/L for AuNPs and 0-12 mg/L for ionic gold), (2) a dietborne exposure (0-48 mg/L for AuNPs and 0-24 mg/L for ionic gold), and (3) an elimination phase (after waterborne exposure to 12 mg/L for AuNPs and 24 mg/L for ionic gold), to calculate rate constants for uptake from water(kuw), from food (kuf), and for the physiological elimination (ke) for AuNPs and AuCl(OH)3-. Jointly, the relative expression of several genes was investigated in the hemolymph cells to relate AuNPs and gold ion exposures to detoxification, oxidative stress, immune, and apoptosis responses in C. fluminea. Results show that kuw and kuf were around 10 and 30 times higher for AuNPs compared to AuCl(OH)3-, respectively. The ke was also faster in clams exposed to AuNPs meaning that they also had greater excretion capacities in comparison to gold ions. Water seems to be the main exposure pathway for C. fluminea according to kuw and kuf values for AuNPs and AuCl(OH)3- (kuw = 0.28 and 0.03, kuf = 0.009 and 0.001, respectively). The gene analyses pointed out important responses against oxidative stress, strong activations of genes of the immunity, and apoptosis after the waterborne exposure to AuNPs and to a lesser extent after exposure to gold ions. Very few responses were observed after the dietary exposure to both forms of gold, probably due to valve closure in response to contamination. While some studies suggest that the toxicity of nanoparticles may come from the release of metal ions, our results showed that the AuNPs we used were very stable (less than 1% of ion release) and generated more effects at the gene level than ionic gold. Therefore these results highlight the strong potential of toxicity of AuNPs compared to ionic gold and raise new concerns about the toxicity inherent to NPs in the environment.
Collapse
Affiliation(s)
- Adeline Arini
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France.
| | - Fabien Pierron
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France
| | - Stéphane Mornet
- UMR 5026, Institut de Chimie de la Matière Condensée de Bordeaux Université de Bordeaux- CNRS, 33600, Pessac, France
| | - Magalie Baudrimont
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France
| |
Collapse
|
22
|
Graczyk A, Pawlowska R, Jedrzejczyk D, Chworos A. Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules 2020; 25:E204. [PMID: 31947834 PMCID: PMC6982881 DOI: 10.3390/molecules25010204] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
Development of nanotechnology has become prominent in many fields, such as medicine, electronics, production of materials, and modern drugs. Nanomaterials and nanoparticles have gained recognition owing to the unique biochemical and physical properties. Considering cellular application, it is speculated that nanoparticles can transfer through cell membranes following different routes exclusively owing to their size (up to 100 nm) and surface functionalities. Nanoparticles have capacity to enter cells by themselves but also to carry other molecules through the lipid bilayer. This quality has been utilized in cellular delivery of substances like small chemical drugs or nucleic acids. Different nanoparticles including lipids, silica, and metal nanoparticles have been exploited in conjugation with nucleic acids. However, the noble metal nanoparticles create an alternative, out of which gold nanoparticles (AuNP) are the most common. The hybrids of DNA or RNA and metal nanoparticles can be employed for functional assemblies for variety of applications in medicine, diagnostics or nano-electronics by means of biomarkers, specific imaging probes, or gene expression regulatory function. In this review, we focus on the conjugates of gold nanoparticles and nucleic acids in the view of their potential application for cellular delivery and biomedicine. This review covers the current advances in the nanotechnology of DNA and RNA-AuNP conjugates and their potential applications. We emphasize the crucial role of metal nanoparticles in the nanotechnology of nucleic acids and explore the role of such conjugates in the biological systems. Finally, mechanisms guiding the process of cellular intake, essential for delivery of modern therapeutics, will be discussed.
Collapse
Affiliation(s)
| | | | | | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.G.); (R.P.); (D.J.)
| |
Collapse
|
23
|
Shukla D, Bose S, Choudhury SP, K. Sharma V, Das M, Sabbarwal S, Yadav SK, Kumar M, Parmar AS. Understanding the In Situ Mechanistic Control of Plant‐Derived Carbon Quantum Dots on the Synthesis of Gold Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201903634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Devyani Shukla
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Subhaya Bose
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Smarajit P. Choudhury
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Vinay K. Sharma
- Central Institute FacilityIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Megha Das
- Department of ZoologyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Shivesh Sabbarwal
- Department of Chemical EngineeringIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Sanjeev K. Yadav
- Department of ZoologyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Manoj Kumar
- Department of Chemical EngineeringIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Avanish S. Parmar
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
24
|
Leopold LF, Rugină D, Oprea I, Diaconeasa Z, Leopold N, Suciu M, Coman V, Vodnar DC, Pintea A, Coman C. Warfarin-Capped Gold Nanoparticles: Synthesis, Cytotoxicity, and Cellular Uptake. Molecules 2019; 24:molecules24224145. [PMID: 31731755 PMCID: PMC6891392 DOI: 10.3390/molecules24224145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022] Open
Abstract
Currently, research studies on nanoparticle cytotoxicity, uptake or internalization into the body’s cells are of great interest for the improvement of diagnostic and therapeutic applications. We report here the synthesis and characterization of very stable novel warfarin-capped gold nanoparticles with an average diameter of 54 ± 10 nm which were prepared using sodium warfarin as a reducing agent. The nanoparticles were tested in terms of cytotoxicity and cellular internalization in vitro on two cell lines: normal lung fibroblast HFL-1 and human retinal pigment epithelial D407 cells. Our results showed that the normal lung fibroblast HFL-1 cells were more sensitive to the nanoparticle treatment compared to the human retinal pigment epithelial D407 cells. Moreover, any signs of potential cytotoxicity occurred during the first 24 h of treatment, the cellular viability remaining largely unchanged for longer exposure times. Transmission electron microscopy and dark field hyperspectral imaging revealed that the nanoparticles were effectively delivered and released to the HFL-1 and D407 cells’ cytoplasm. Our results provide valuable information to further investigate sodium warfarin-capped gold nanoparticles for possible biological applications.
Collapse
Affiliation(s)
- Loredana Florina Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Dumitriţa Rugină
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (D.R.); (A.P.)
| | - Ioana Oprea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Maria Suciu
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 67-103, 400293 Cluj-Napoca, Romania
| | - Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (D.R.); (A.P.)
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
- Correspondence: ; Tel.: +40-746-959-157
| |
Collapse
|
25
|
Saito ML. NanoTouch: intracellular recording using transmembrane conductive nanoparticles. J Neurophysiol 2019; 122:2016-2026. [PMID: 31483705 PMCID: PMC6879961 DOI: 10.1152/jn.00359.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Observations of the electrophysiological properties of cells are important for understanding cellular functions and their underlying mechanisms. Short action potentials in axons are essential to rapidly deliver signals from the neuronal cell body to the terminals, whereas longer action potentials are required for sufficient calcium influx for transmitter release at the synaptic terminals and for cardiomyocyte and smooth muscle contractions. To accurately observe the shape and timing of depolarizations, it is essential to measure changes in the intracellular membrane potential. The ability to record action potentials and intracellular membrane potentials from mammalian cells and neurons was made possible by Ling and Gerard's discovery in 1949, when they introduced sharp glass electrode with a submicron sized tip. Because of the small tip size, the sharp glass electrode could penetrate the cell membrane with little damage, which was one of the major breakthroughs in cellular electrophysiology and is the basic principle of the intracellular recording technique to date, providing the basis for further innovation of patch-clamp electrophysiology. I report a proof-of-principle demonstration of a novel method for recording intracellular potentials without penetrating the cell membrane using glass electrodes. We discovered that magnetically held transmembrane conductive nanoparticles can function as an intracellular electrode to detect transmembrane membrane potentials similar to those obtained by the conventional patch-clamp recording method.NEW & NOTEWORTHY To accurately observe the shape of action potentials, it is essential to perform intracellular recordings. I present a method to record intracellular potentials using magnetically held magnetic conductive nanoparticles in the membrane as an electrode. These nanoparticles function similarly to a conventional intracellular microelectrode. This is the first report to apply conductive nanoparticles to detect action potentials in the form of electrical signals.
Collapse
|
26
|
Hill SA, Sheikh S, Zhang Q, Sueiro Ballesteros L, Herman A, Davis SA, Morgan DJ, Berry M, Benito-Alifonso D, Galan MC. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. NANOSCALE ADVANCES 2019; 1:2840-2846. [PMID: 36133617 PMCID: PMC9417209 DOI: 10.1039/c9na00293f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/14/2019] [Indexed: 05/06/2023]
Abstract
The development of effective theranostic probes in cancer therapy is hampered due to issues with selectivity and off-target toxicity. We report the selective LED-photothermal ablation of cervical (HeLa) cancer cells over human dermal fibroblasts (HDF) using a new class of green-emissive fluorescent carbon dots (FCDs). The FCDs can be easily prepared in one pot using cheap and commercial starting materials. Physico-chemical characterization revealed that a surface coating of 2,5-deoxyfructosazine on a robust amorphous core gives rise to the nanomaterial's unique properties. We show that intracellular uptake mostly involves passive mechanisms in combination with intracellular DNA interactions to target the nucleus and that cancer cell selective killing is likely due to an increase in intracellular temperature in combination with ATP depletion, which is not observed upon exposure to either the "naked" core FCDs or the surface components individually. The selectivity of these nanoprobes and the lack of apparent production of toxic metabolic byproducts make these new nanomaterials promising agents in cancer therapy.
Collapse
Affiliation(s)
- Stephen A Hill
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Sadiyah Sheikh
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Qiaoyu Zhang
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Lorena Sueiro Ballesteros
- School of Cellular and Molecular Medicine, Faculty of Life Sciences Flow Cytometry Facility University Walk Bristol UK
| | - Andrew Herman
- School of Cellular and Molecular Medicine, Faculty of Life Sciences Flow Cytometry Facility University Walk Bristol UK
| | - Sean A Davis
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Monica Berry
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | | | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| |
Collapse
|
27
|
Zhu S, Zhu L, Yu J, Wang Y, Peng B. Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int J Nanomedicine 2019; 14:5017-5032. [PMID: 31371944 PMCID: PMC6627179 DOI: 10.2147/ijn.s204628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast (OC) differentiation. However, the low aqueous solubility of EGCG always leads to poor bioavailability, adverse effects, and several drawbacks for clinical applications. Purpose: In this study, we synthesized EGCG-capped gold nanoparticles (EGCG-GNPs) to solve the drawbacks for clinical uses of EGCG in bone destruction disorders by direct reduction of HAuCl4 in EGCG aqueous solution. Methods and Results: The obtained EGCG-GNPs were negatively charged and spherical. Theoretical calculation results suggested that EGCG was released from GNPs in an acidic environment. Cellular uptake study showed an obviously large amount of intracellular EGCG-GNPs without cytotoxicity. EGCG-GNPs exhibited better effects in reducing intracellular reactive oxygen species levels than free EGCG. A more dramatic anti-osteoclastogenic effect induced by EGCG-GNPs than free EGCG was observed in lipopolysaccharide (LPS)-stimulated bone marrow macrophages, including decreased formation of TRAP-positive multinuclear cells and actin rings. Meanwhile, EGCG-GNPs not only suppressed the mRNA expression of genetic markers of OC differentiation but also inhibited MAPK signaling pathways. Furthermore, we confirmed that EGCG-GNPs greatly reversed bone resorption in the LPS-induced calvarial bone erosion model in vivo, which was more effective than applying free EGCG, specifically in inhibiting the number of OCs, improving bone density, and preventing bone loss. Conclusion: EGCG-GNPs showed better anti-osteoclastogenic effect than free EGCG in vitro and in vivo, indicating their potential in anti-bone resorption treatment strategy.
Collapse
Affiliation(s)
- Shenting Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanqing Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
28
|
Chen HJ, Hang T, Yang C, Liu D, Su C, Xiao S, Liu C, Lin DA, Zhang T, Jin Q, Tao J, Wu MX, Wang J, Xie X. Functionalized Spiky Particles for Intracellular Biomolecular Delivery. ACS CENTRAL SCIENCE 2019; 5:960-969. [PMID: 31263755 PMCID: PMC6598163 DOI: 10.1021/acscentsci.8b00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Indexed: 05/08/2023]
Abstract
The intracellular delivery of biomolecules is of significant importance yet challenging. In addition to the conventional delivery of nanomaterials that rely on biochemical pathways, vertical nanowires have been recently proposed to physically penetrate the cell membrane, thus enabling the direct release of biomolecules into the cytoplasm circumventing endosomal routes. However, due to the inherent attachment of the nanowires to a planar 2D substrate, nanowire cell penetrations are restricted to in vitro applications, and they are incapable of providing solution-based delivery. To overcome this structural limitation, we created polyethylenimine-functionalized microparticles covered with nanospikes, namely, "spiky particles", to deliver biomolecules by utilizing the nanospikes to penetrate the cell membrane. The nanospikes might penetrate the cell membrane during particle engulfment, and this enables the bound biomolecules to be released directly into the cytosol. TiO2 spiky particles were fabricated through hydrothermal routes, and they were demonstrated to be biocompatible with HeLa cells, macrophage-like RAW cells, and fibroblast-like 3T3-L1 cells. The polyethylenimine-functionalized spiky particles provided direct delivery of fluorescent siRNA into cell cytosol and functional siRNA for gene knockdown as well as successful DNA plasmid transfection which were difficult to achieve by using microparticles without nanospikes. The spiky particles presented a unique direct cell membrane penetrant vehicle to introduce biomolecules into cell cytosol, where the biomolecules might bypass conventional endocytic degradation routes.
Collapse
Affiliation(s)
- Hui-Jiuan Chen
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Tian Hang
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Chengduan Yang
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Di Liu
- Pritzker
School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Chen Su
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Shuai Xiao
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Chenglin Liu
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Di-an Lin
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Tao Zhang
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
- College
of Electrical and Information Engineering, Huaihua University, Huaihua 418000, China
| | - Quanchang Jin
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Jun Tao
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| | - Mei X. Wu
- Department
of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ji Wang
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
- Department
of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xi Xie
- The
First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory
of Optoelectronic Materials and Technologies, School of Electronics
and Information Technology, Sun Yat-Sen
University, Guangzhou 510275, China
| |
Collapse
|
29
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
30
|
Taylor J, Milton J, Willett M, Wingfield J, Mahajan S. What do we actually see in intracellular SERS? Investigating nanosensor-induced variation. Faraday Discuss 2019; 205:409-428. [PMID: 28901362 DOI: 10.1039/c7fd00156h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmonic nanoparticles (NPs), predominantly gold (AuNPs), are easily internalised into cells and commonly employed as nanosensors for reporter-based and reporter-free intracellular SERS applications. While AuNPs are generally considered non-toxic to cells, many biological and toxicity studies report that exposure to NPs induces cell stress through the generation of reactive oxygen species (ROS) and the upregulated transcription of pro-inflammatory genes, which can result in severe genotoxicity and apoptosis. Despite this, the extent to which normal cellular metabolism is affected by AuNP internalisation remains a relative unknown along with the contribution of the uptake itself to the SERS spectra obtained from within so called 'healthy' cells, as indicated by traditional viability tests. This work aims to interrogate the perturbation created by treatment with AuNPs under different conditions and the corresponding effect on the SERS spectra obtained. We characterise the changes induced by varying AuNP concentrations and medium serum compositions using biochemical assays and correlate them to the corresponding intracellular reporter-free SERS spectra. The different serum conditions lead to different extents of nanoparticle internalisation. We observe that changes in SERS spectra are correlated to an increasing amount of internalisation, confirmed qualitatively and quantitatively by confocal imaging and ICP-MS analysis, respectively. We analyse spectra and characterise changes that can be attributed to nanoparticle induced changes. Thus, our study highlights a need for understanding condition-dependent NP-cell interactions and standardisation of nanoparticle treatments in order to establish the validity of intracellular SERS experiments for use in all arising applications.
Collapse
Affiliation(s)
- J Taylor
- Department of Chemistry, Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
31
|
Öztaş DY, Altunbek M, Uzunoglu D, Yılmaz H, Çetin D, Suludere Z, Çulha M. Tracing Size and Surface Chemistry-Dependent Endosomal Uptake of Gold Nanoparticles Using Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4020-4028. [PMID: 30773019 DOI: 10.1021/acs.langmuir.8b03988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based single-cell analysis is an emerging approach to obtain molecular level information from molecular dynamics in a living cell. In this study, endosomal biochemical dynamics was investigated based on size and surface chemistry-dependent uptake of gold nanoparticles (AuNPs) on single cells over time using SERS. MDA-MB-231 breast cancer cells were exposed to 13 and 50 nm AuNPs and their polyadenine oligonucleotide-modified forms by controlling the order and combination of AuNPs. The average spectra obtained from 20 single cells were analyzed to study the nature of the biochemical species or processes taking place on the AuNP surfaces. The spectral changes, especially from proteins and lipids of endosomal vesicles, were observed depending on the size, surface chemistry, and combination as well as the duration of the AuNP treatment. The results demonstrate that SERS spectra are sensitive to trace biochemical changes not only the size, surface chemistry, and aggregation status of AuNPs but also the endosomal maturation steps over time, which can be simple and fast way for understanding the AuNP behavior in single cell and useful for the assisting and controlling of AuNP-based gene or drug delivery applications.
Collapse
Affiliation(s)
- Deniz Yaşar Öztaş
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Deniz Uzunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Hülya Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | | | | | - Mustafa Çulha
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| |
Collapse
|
32
|
Dimitriou NM, Pavlopoulou A, Tremi I, Kouloulias V, Tsigaridas G, Georgakilas AG. Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach. NANOMATERIALS 2019; 9:nano9020167. [PMID: 30699996 PMCID: PMC6410344 DOI: 10.3390/nano9020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/12/2022]
Abstract
Hyperthermia acts as a powerful adjuvant to radiation therapy and chemotherapy. Recent advances show that gold nanoparticles (Au-NPs) can mediate highly localized thermal effects upon interaction with laser radiation. The purpose of the present study was to investigate via in silico simulations the mechanisms of Au-NPs and microwave-induced hyperthermia, in correlation to predictions of tumor control (biological endpoints: tumor shrinkage and cell death) after hyperthermia treatment. We also study in detail the dependence of the size, shape and structure of the gold nanoparticles on their absorption efficiency, and provide general guidelines on how one could modify the absorption spectrum of the nanoparticles in order to meet the needs of specific applications. We calculated the hyperthermia effect using two types of Au-NPs and two types of spherical tumors (prostate and melanoma) with a radius of 3 mm. The plasmon peak for the 30 nm Si-core Au-coated NPs and the 20 nm Au-NPs was found at 590 nm and 540 nm, respectively. Considering the plasmon peaks and the distribution of NPs in the tumor tissue, the induced thermal profile was estimated for different intervals of time. Predictions of hyperthermic cell death were performed by adopting a three-state mathematical model, where “three-state” includes (i) alive, (ii) vulnerable, and (iii) dead states of the cell, and it was coupled with a tumor growth model. Our proposed methodology and preliminary results could be considered as a proof-of-principle for the significance of simulating accurately the hyperthermia-based tumor control involving the immune system. We also propose a method for the optimization of treatment by overcoming thermoresistance by biological means and specifically through the targeting of the heat shock protein 90 (HSP90), which plays a critical role in the thermotolerance of cells and tissues.
Collapse
Affiliation(s)
- Nikolaos M Dimitriou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Turkey.
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece.
| | - Georgios Tsigaridas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
33
|
Mohamed MA, Abd-Elsalam KA. Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:95-108. [DOI: 10.1007/978-3-030-16439-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Prisner L, Witthöft P, Nguyen LVN, Tsangas T, Gefken T, Klaus F, Strelow C, Kipp T, Mews A. Monitoring the death of single BaF3 cells under plasmonic photothermal heating induced by ultrasmall gold nanorods. J Mater Chem B 2019. [DOI: 10.1039/c8tb03135e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morphological changes and trypan-blue staining are temporally tracked in single cells via optical microscopy after plasmonic photothermal heating.
Collapse
Affiliation(s)
- Lisa Prisner
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Phillip Witthöft
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Lan Vi Ngoc Nguyen
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Thomas Tsangas
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Tobias Gefken
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Florentine Klaus
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Christian Strelow
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Tobias Kipp
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| | - Alf Mews
- Institute of Physical Chemistry
- University of Hamburg
- D-20146, Hamburg
- Germany
| |
Collapse
|
35
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
36
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
37
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
38
|
de Alteriis E, Falanga A, Galdiero S, Guida M, Maselli V, Galdiero E. Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae. J Environ Sci (China) 2018; 66:138-145. [PMID: 29628080 DOI: 10.1016/j.jes.2017.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 06/08/2023]
Abstract
The toxic effects of gold nanoparticles surface-functionalized with the antimicrobial peptide indolicidin (AuNPs-indolicidin) towards the yeast Saccharomyces cerevisiae, one of the major eukaryotic model organisms, have been evaluated. Growth and survival, genotoxicity, as measured by comet assay, and expression of the YCA1, an apoptosis indicating gene, following 72hr exposure of yeast to AuNPs-indolicidin, and to AuNPs and indolicidin alone have been examined. The gold nanoparticles exerted toxicity with DNA damage, accompanied by reactive oxygen species production (ROS), but they do not inhibit yeast growth and viability. Genotoxicity was less pronounced for surface-functionalized nanoparticles, showing that S. cerevisiae is quite resistant to the complex AuNPs-indolicidin. A progressive reduction of the genotoxic effect was observed along 72hr exposure, presumably due to the activation of DNA repair mechanisms. These findings suggest the occurrence of a physiological protective response of S. cerevisiae towards nanoparticles, thereby providing useful information to the assessment of the environmental impact of metal nanoparticles.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", 80100 Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", 80100 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples "Federico II", 80100 Naples, Italy.
| |
Collapse
|
39
|
Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, Jang JH, Huang H, Safavi-Sohi R, Haghjoo N, Nejadnik H, Aghaverdi H, Vali H, Kinsella JM, Presley J, Xu K, Yang PCM, Mahmoudi M. Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS NANO 2018. [PMID: 29536733 DOI: 10.1021/acsnano.7b06212] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular uptake of nanoparticles (NPs) depends on the nature of the nanobio system including the solid nanocomponents ( e. g., physicochemical properties of NPs), nanobio interfaces ( e. g., protein corona composition), and the cellular characteristics ( e. g., cell type). In this study, we document the role of sex in cellular uptake of NPs as an "overlooked" factor in nanobio interface investigations. We demonstrate that cell sex leads to differences in NP uptake between male and female human amniotic stem cells (hAMSCs), with greater uptake by female cells. hAMSCs are one of the earliest sources of somatic stem cells. The experiments were replicated with primary fibroblasts isolated from the salivary gland of adult male and female donors of similar ages, and again the extent of NP uptake was altered by cell sex. However, in contrast to hAMSCs, uptake was greater in male cells. We also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs) by the Yamanaka factors. Thus, future studies should consider the effect of sex on the nanobio interactions to optimize clinical translation of NPs and iPSC biology and to help researchers to better design and produce safe and efficient therapeutic sex-specific NPs.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Biomedical Engineering , Georgia Institute of Technology & Emory University School of Medicine , Atlanta , Georgia 30322 , United States
- Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Sara Sheibani
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Pooja Pushparaj
- Department of Bioengineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Michal Wojcik
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Albert Y Jang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Joyce H Jang
- Meakins Christie Laboratories , McGill University Health Centre and McGill University , Montreal , Quebec H4A 3J1 , Canada
| | - Haina Huang
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Reihaneh Safavi-Sohi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute , Shahid Beheshti University , Tehran 1983963113 , Iran
| | - Niloofar Haghjoo
- Institute of Biochemistry and Biophysics , University of Tehran , Tehran 14174 , Iran
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS) , Stanford School of Medicine , Stanford , California 94305 , United States
| | - Haniyeh Aghaverdi
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | | | - John Presley
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Ke Xu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Division of Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Morteza Mahmoudi
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
40
|
Rodríguez-Fajardo V, Sanz V, de Miguel I, Berthelot J, Aćimović SS, Porcar-Guezenec R, Quidant R. Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells. NANOSCALE 2018; 10:4019-4027. [PMID: 29431802 DOI: 10.1039/c7nr09408f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Noble metal nanoparticles (NPs) supporting localized surface plasmon resonances are widely used in the context of biotechnology as optical and absorption contrast agents with great potential applicability to both diagnostics and less invasive therapies. In this framework, it is crucial to have access to simple and reliable microscopy techniques to monitor the NPs that have internalized into cells. While dark field (DF) microscopy takes advantage of the enhanced NP scattering at their plasmon resonance, its use in cells is limited by the large scattering background from the internal cell compartments. Here, we report on a novel two-color dark field microscopy that addresses these limitations by significantly reducing the cell scattering contribution. We first present the technique and demonstrate its enhanced contrast, specificity and reliability for NP detection compared to a standard optical dark field. We then demonstrate its potential suitability in two different settings, namely wide-field parallel screening of circulating cells in microfluidic chips and high-resolution tracking of internalized NPs in cells. These proof of principle experiments show a promising capability of this approach with possible extension to other kinds of targeted systems like bacteria and vesicles.
Collapse
Affiliation(s)
- Valeria Rodríguez-Fajardo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Shrivastava R, Dube A. Effect of the polyelectrolyte coating on the photothermal efficiency of gold nanorods and the photothermal induced cancer cell damage. IET Nanobiotechnol 2017; 11:909-916. [PMID: 29155389 PMCID: PMC8676409 DOI: 10.1049/iet-nbt.2016.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 09/26/2023] Open
Abstract
Coating gold nanorods (GNRs) with polyelectrolytes is an effective approach to make them biocompatible for potential use in photothermal treatment (PTT) of cancer. The authors report the effect of coating of the GNRs with polystyrene sulphonate (PSS-GNRs) and PSS plus poly di-allyl di-methyl ammonium chloride (PDDAC-GNRs) on its photothermal conversion efficiency (PTE), cellular uptake and subsequently the photothermal induced cytotoxicity in human oral cancer cells (NT8e). Coating of GNRs with PSS led to decrease in PTE by ∼30% and further coating it with PDDAC led to its increase to similar level, with respect to as- prepared GNRs. The cellular uptake of PDDAC-GNRs in cancer cells was double than that for PSS-GNRs. PTT of cancer cells after treatment with 60 pM of either PDDAC-GNRs or PSS-GNRs resulted in cytotoxicty of ∼90%. At higher concentration of 120 pM, while PSS-GNRs showed no further change, for PDDAC-GNR the photothermal induced cytotoxicity decreased to ∼50%. The broadening of longitudinal surface plasmon peak of PDDAC-GNRs and appearance of dark clusters in cells under bright-field microscope suggested intracellular clustering of PDDAC-GNRs. In conclusion, despite high PTE and cellular uptake of PDDAC-GNRs, its intracellular clustering (due to acidic pH ) adversely affect the PTT of cancer cells.
Collapse
Affiliation(s)
- Rashmi Shrivastava
- Photobiology Lab, Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore-452013, India.
| | - Alok Dube
- Photobiology Lab, Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore-452013, India
| |
Collapse
|
42
|
Kirkby C, Koger B, Suchowerska N, McKenzie DR. Dosimetric consequences of gold nanoparticle clustering during photon irradiation. Med Phys 2017; 44:6560-6569. [DOI: 10.1002/mp.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 09/20/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
- Charles Kirkby
- Department of Medical Physics; Jack Ady Cancer Centre; Lethbridge Alberta T1J-1W5 Canada
- Department of Oncology; University of Calgary; Calgary Alberta T2N-4N2 Canada
- Department of Physics and Astronomy; University of Calgary; Calgary Alberta T2N-1N4 Canada
| | - Brandon Koger
- Department of Physics and Astronomy; University of Calgary; Calgary Alberta T2N-1N4 Canada
| | - Natalka Suchowerska
- School of Physics; University of Sydney; Sydney NSW 2006 Australia
- Chris O'Brien Lifehouse; Camperdown NSW 2050 Australia
| | - David R. McKenzie
- School of Physics; University of Sydney; Sydney NSW 2006 Australia
- Chris O'Brien Lifehouse; Camperdown NSW 2050 Australia
| |
Collapse
|
43
|
Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci 2017; 188:26-36. [PMID: 28864225 PMCID: PMC5617340 DOI: 10.1016/j.lfs.2017.08.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest type of primary brain tumor with a prognosis of 14months after diagnosis. Current treatment for GBM patients includes "total" tumor resection, temozolomide-based chemotherapy, radiotherapy or a combination of these options. Although, several targeted therapies, gene therapy, and immunotherapy are currently in the clinic and/or in clinical trials, the overall survival of GBM patients has hardly improved over the last two decades. Therefore, novel multitarget modalities are urgently needed. Recently, RNA interference (RNAi) has emerged as a novel strategy for the treatment of most cancers, including GBM. RNAi-based therapies consist of using small RNA oligonucleotides to regulate protein expression at the post-transcriptional level. Despite the therapeutic potential of RNAi molecules, systemic limitations including short circulatory stability and low release into the tumor tissue have halted their progress to the clinic. The effective delivery of RNAi molecules through the blood-brain barrier (BBB) represents an additional challenge. This review focuses on connecting the translational process of RNAi-based therapies from in vitro evidence to pre-clinical studies. We delineate the effect of RNAi in GBM cell lines, describe their effectiveness in glioma mouse models, and compare the proposed drug carriers for the effective transport of RNAi molecules through the BBB to reach the tumor in the brain. Furthermore, we summarize the most important obstacles to overcome before RNAi-based therapy becomes a reality for GBM treatment.
Collapse
Affiliation(s)
- Eunice L Lozada-Delgado
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00927, United States; Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Nilmary Grafals-Ruiz
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States.
| |
Collapse
|
44
|
Kuku G, Altunbek M, Culha M. Surface-Enhanced Raman Scattering for Label-Free Living Single Cell Analysis. Anal Chem 2017; 89:11160-11166. [DOI: 10.1021/acs.analchem.7b03211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gamze Kuku
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mine Altunbek
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mustafa Culha
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|
45
|
Clemente I, Ristori S, Pierucci F, Muniz-Miranda M, Salvatici MC, Giordano C, Meacci E, Feis A, Gonnelli C. Gold Nanoparticles from Vegetable Extracts Using Different Plants from the Market: A Study on Stability, Shape and Toxicity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ilaria Clemente
- Department of Biology; University of Florence; via Gino Capponi 9 Firenze 50121 Italy
| | - Sandra Ristori
- Department Chemistry and CSGI; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”; Research unit of Molecular and Applied Biology; University of Florence; Viale GB Morgagni 50 Firenze 50134 Italy
| | - Maurizio Muniz-Miranda
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Maria Cristina Salvatici
- CEME - Centre of Electron Microscopy “Laura Bonzi”, ICCOM; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
| | - Cristiana Giordano
- CEME - Centre of Electron Microscopy “Laura Bonzi”, ICCOM; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
- Trees and Timber Institute, IVALSA; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”; Research unit of Molecular and Applied Biology; University of Florence; Viale GB Morgagni 50 Firenze 50134 Italy
| | - Alessandro Feis
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Cristina Gonnelli
- Department of Biology; University of Florence; via Gino Capponi 9 Firenze 50121 Italy
| |
Collapse
|
46
|
Biocorona formation on gold nanoparticles modulates human proximal tubule kidney cell uptake, cytotoxicity and gene expression. Toxicol In Vitro 2017; 42:150-160. [DOI: 10.1016/j.tiv.2017.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022]
|
47
|
Webb J, Ou YC, Faley S, Paul EP, Hittinger JP, Cutright CC, Lin EC, Bellan LM, Bardhan R. Theranostic Gold Nanoantennas for Simultaneous Multiplexed Raman Imaging of Immunomarkers and Photothermal Therapy. ACS OMEGA 2017; 2:3583-3594. [PMID: 28782050 PMCID: PMC5537693 DOI: 10.1021/acsomega.7b00527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/30/2017] [Indexed: 05/04/2023]
Abstract
In this study, we demonstrate the theranostic capability of actively targeted, site-specific multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. By utilizing multiplexed surface-enhanced Raman scattering (SERS) imaging, enabled by the narrow peak widths of Raman signatures, we simultaneously targeted immune checkpoint receptor programmed death ligand 1 (PDL1) and the epidermal growth factor receptor (EGFR) overexpressed in TNBC cells. A 1:1 mixture of MGNs functionalized with anti-PDL1 antibodies and Raman tag 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and MGNs functionalized with anti-EGFR antibodies and Raman tag para-mercaptobenzoic acid (pMBA) were incubated with the cells. SERS imaging revealed a cellular traffic map of MGN localization by surface binding and receptor-mediated endocytosis, enabling targeted diagnosis of both biomarkers. Furthermore, cells incubated with anti-EGFR-pMBA-MGNs and illuminated with an 808 nm laser for 15 min at 4.7 W/cm2 exhibited photothermal cell death only within the laser spot (indicated by live/dead cell fluorescence assay). Therefore, this study not only provides an optical imaging platform that can track immunomarkers with spatiotemporal control but also demonstrates an externally controlled light-triggered therapeutic approach enabling receptor-specific treatment with biocompatible theranostic nanoprobes.
Collapse
Affiliation(s)
- Joseph
A. Webb
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Yu-Chuan Ou
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Shannon Faley
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Eden P. Paul
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Joseph P. Hittinger
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Camden C. Cutright
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Eugene C. Lin
- Department of Radiology
and Radiological Sciences and Vanderbilt University Institute
of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, United States
| | - Leon M. Bellan
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Rizia Bardhan
- Department of Chemical and
Biomolecular Engineering and Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
- E-mail:
| |
Collapse
|
48
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
49
|
Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs. Bioconjug Chem 2017; 28:1791-1800. [PMID: 28574255 PMCID: PMC5737752 DOI: 10.1021/acs.bioconjchem.7b00252] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold nanoparticles (AuNPs) show potential for transfecting target cells with small interfering RNA (siRNA), but the influence of key design parameters such as the size and shape of the particle core is incomplete. This paper describes a side-by-side comparison of the in vitro response of U87 glioblastoma cells to different formulations of siRNA-conjugated gold nanoconstructs targeting the expression of isocitrate dehydrogenase 1 (IDH1) based on 13 nm spheres, 50 nm spheres, and 40 nm stars. 50 nm spheres and 40 nm stars showed much higher uptake efficiency compared to 13 nm spheres. Confocal fluorescence microscopy showed that all three formulations were localized in the endosomes at early incubation times (2 h), but after 24 h, 50 nm spheres and 40 nm stars were neither in endosomes nor in lysosomes while 13 nm spheres remained in endosomes. Transmission electron microscopy images revealed that the 13 nm spheres were enclosed and dispersed within endocytic vesicles while 50 nm spheres and 40 nm stars were aggregated, and some of these NPs were outside of endocytic vesicles. In our comparison of nanoconstructs with different sizes and shapes, while holding siRNA surface density and nanoparticle concentration constant, we found that larger particles (50 nm spheres and 40 nm stars) showed higher potential as carriers for the delivery of siRNA.
Collapse
Affiliation(s)
- Jun Yue
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy Joel Feliciano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Abstract
Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.
Collapse
|