1
|
Zhu L, Qiao G, Gao H, Jiang A, Zhang L, Wang X. Enhancing melanoma therapy with hydrogel microneedles. Front Oncol 2025; 15:1590534. [PMID: 40313257 PMCID: PMC12043666 DOI: 10.3389/fonc.2025.1590534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Melanoma is highly invasive and resistant to conventional treatments, accounting for nearly 75% of skin cancer-related deaths globally. Traditional therapies, such as chemotherapy and immunotherapy, often exhibit limited efficacy and are associated with significant side effects due to systemic drug exposure. Microneedles (MNs), as an emerging drug delivery system, offer multiple advantages, including safety, painlessness, minimal invasiveness, and controlled drug release. Among these, hydrogel microneedles (HMNs) stand out due to their extracellular matrix-like structure and swelling-induced continuous hydrogel channels, which enable the direct delivery of therapeutic agents into the tumor microenvironment (TME). This approach enhances drug bioavailability while reducing systemic toxicity, establishing HMNs as a promising platform for melanoma treatment. This review highlights recent advancements in HMNs for melanoma therapy, focusing on their applications in biomarker extraction for early diagnosis and their role in supporting multimodal treatment strategies, such as chemotherapy, immunotherapy, phototherapy, targeted therapy, and combination therapy. Furthermore, the current matrix materials and fabrication techniques for HMNs are discussed. Finally, the limitations of HMNs in melanoma treatment are critically analyzed, and recommendations for future research and development are provided.
Collapse
Affiliation(s)
- Lanqi Zhu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guanlin Qiao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Aowei Jiang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linan Zhang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaobing Wang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Yu Y, Zhang C, Yang X, Sun L, Bian F. Microfluidic Synthesis of Magnetic Nanoparticles for Biomedical Applications. SMALL METHODS 2025; 9:e2401220. [PMID: 39501972 DOI: 10.1002/smtd.202401220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Indexed: 04/25/2025]
Abstract
Magnetic nanoparticles have attracted great attention and become promising candidates in the biomedicine field due to their special physicochemical properties. They are generally divided into metallic and non-metallic magnetic nanoparticles, according to their compositions. Both of the two types have shown practical values in biomedicine applications, such as drug delivery, biosensing, bioimaging, and so on. Research efforts are devoted to the improvement of synthesis strategies to achieve magnetic nanoparticles with controllable morphology, diverse composition, active surface, or multiple functions. Taking high repeatability, programmable operation, precise fluid control, and simple device into account, the microfluidics system can expand the production scale and develop magnetic nanoparticles with desired features. This review will first describe different classifications of promising magnetic nanoparticles, followed by the advancements in microfluidic synthesis and the latest biomedical applications of these magnetic nanoparticles. In addition, the challenges and prospects of magnetic nanoparticles in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Yunru Yu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Changqing Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Yang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Lingyu Sun
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Feika Bian
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
3
|
Addissouky TA. Advancing frontiers in skin offensive odor management: from innovative diagnostics to cutting-edge treatments and emerging technologies. Arch Dermatol Res 2025; 317:539. [PMID: 40056222 DOI: 10.1007/s00403-025-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/10/2025]
Abstract
Skin bromhidrosis, commonly referred to as body odor, is caused by the microbial breakdown of sweat, leading to the formation of volatile organic compounds (VOCs) that result in unpleasant odors. While body odor is a natural consequence of sweat production, excessive or persistent odor can significantly affect quality of life, causing social stigma and psychological distress. Traditional approaches to managing body odor, such as antiperspirants and deodorants, have limitations, necessitating the development of more advanced diagnostic tools and treatments. This review aims to explore recent advancements in the diagnosis and treatment of skin offensive odor, focusing on cutting-edge technologies and novel approaches. It highlights the interplay of the skin microbiome, sweat gland activity, and external factors in odor formation and investigates innovative solutions for long-term odor management. Emerging diagnostic techniques, such as electronic nose (E-nose) technology, gas chromatography-mass spectrometry (GC-MS), and next-generation sequencing (NGS), enable precise detection and analysis of odor-causing VOCs and microbial profiles. These tools facilitate a deeper understanding of the pathophysiology of odor production. Treatment innovations include nanotechnology-based antimicrobials (e.g., silver and zinc oxide nanoparticles), probiotic formulations for microbiome modulation, and odor-neutralizing compounds such as cyclodextrins and enzymatic neutralizers. Advanced delivery systems, including microneedle patches and nanoencapsulation, enable targeted, sustained release of active ingredients. Additionally, systemic approaches like oral probiotics and dietary interventions offer complementary strategies for managing body odor. The integration of novel diagnostics with innovative topical and systemic treatments offers promising avenues for more effective and personalized management of skin offensive odor. These advancements pave the way for improved quality of life for individuals affected by bromhidrosis, with potential for widespread application in personal care and medical contexts. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Tamer A Addissouky
- Medical Laboratories Techniques Department, College of Technology and Health Sciences, AL-Mustaqbal University, Hillah, Babylon, 51001, Iraq.
- Department of Biochemistry, Science Faculty, Menoufia University, Menoufia, Egypt.
- New Burg El-Arab Hospital, Ministry of Health, Alexandria, Egypt.
- American Society for Clinical Pathology (ASCP), Chicago, USA.
| |
Collapse
|
4
|
Li L, Wang F, Zhu D, Hu S, Cheng K, Li Z. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention. FUNDAMENTAL RESEARCH 2025; 5:851-867. [PMID: 40242543 PMCID: PMC11997600 DOI: 10.1016/j.fmre.2024.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2025] Open
Abstract
Exosomes are natural nano-size particles secreted by human cells, containing numerous bioactive cargos. Serving as crucial mediators of intercellular communication, exosomes are involved in many physiological and pathological processes, such as inflammation, tissue injury, cardiovascular diseases, tumorigenesis and tumor development. Exosomes have exhibited promising results in the diagnosis and treatment of cancer, cardiovascular diseases and others. They are a rapidly growing class of drug delivery vehicles with many advantages over conventional synthetic carriers. Exosomes used in therapeutic applications encounter several challenges, such as the lack of tissue targeting capabilities and short residence time. In this review, we discuss recent advances in exosome engineering to improve tissue targeting and describe the current types of engineered exosome-like nanovesicles, and summarize their preclinical applications in the treatment of diseases. Further, we also highlight the latest engineering strategies developed to extend exosomes retention time in vivo and exosome-like nanovesicles.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
5
|
Zhang Z, Fang C, Ke J, Li Y, Duan M, Ren J, Wang C. Microneedle drug delivery system based on hyaluronic acid for improving therapeutic efficiency of hypertrophic scars. Int J Biol Macromol 2025; 297:139790. [PMID: 39805460 DOI: 10.1016/j.ijbiomac.2025.139790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS. Biological macromolecules materials affected the formability, drug release, and hardness of MNs. Therefore, several types of biomacromolecules, including hyaluronic acid (HA), chitosan, and sodium alginate, which could be used to prepare MNs, underwent prescription optimization experiments and the optimized MN prescriptions were obtained. In vitro characterization showed that the MN was sufficient to deliver drugs through the skin. Animal in vivo experiments showed that AS and 5-Fu can synergistically treat HS, significantly reduce the abnormal proliferation of fibroblasts and collagen fiber deposition, and down-regulated collagen I (Col I) and transforming growth factor-β1 (TGF-β1) expression. In conclusion, the micro-needle designed in this study has great prospects in the treatment of HS.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, PR China
| | - Chenxi Fang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Junfang Ke
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Yue Li
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
6
|
Song C, Lu M, Li N, Gu H, Li M, Lu L, Wang Y. MXene-Integrated Responsive Hydrogel Microneedles for Oral Ulcers Healing. SMART MEDICINE 2025; 4:e135. [PMID: 40059966 PMCID: PMC11862566 DOI: 10.1002/smmd.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025]
Abstract
Glucocorticoids such as dexamethasone have shown promising therapeutic effects in conquering oral ulcers. Challenges in this area are focused on enhancing the localized curative effects and responsive release. Herein, we presented a novel MXene-integrated responsive hydrogel microneedle delivering dexamethasone to promote the healing of oral ulceration. By loading MXene, the hydrogel microneedles enable NIR (Near Infrared)-responsive release of the inner dexamethasone for inflammation control and tissue regeneration. In addition, the MXene-induced local hyperthermia could inhibit the bacteria, preventing the possible infection of ulcer lesions in the oral cavity. Based on these features, we demonstrated that our strategy could relieve local inflammation, promote tissue reconstruction, and accelerate wound healing in rat oral ulcer models. Overall, these NIR-responsive MXene-integrated hydrogel microneedles show significant promise in promoting ulcer healing and bring new ways for oral disease treatment.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of Medical SchoolNanjing Stomatological HospitalInstitute of StomatologyNanjing UniversityNanjingChina
| | - Minhui Lu
- Department of Otolaryngology Head and Neck SurgerySchool of Biological Science and Medical EngineeringZhongda HospitalSoutheast UniversityNanjingChina
| | - Ning Li
- Department of Otolaryngology Head and Neck SurgerySchool of Biological Science and Medical EngineeringZhongda HospitalSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- Department of Otolaryngology Head and Neck SurgerySchool of Biological Science and Medical EngineeringZhongda HospitalSoutheast UniversityNanjingChina
| | - Minli Li
- Department of Otolaryngology Head and Neck SurgerySchool of Biological Science and Medical EngineeringZhongda HospitalSoutheast UniversityNanjingChina
| | - Ling Lu
- Department of Otolaryngology Head and Neck SurgerySchool of Biological Science and Medical EngineeringZhongda HospitalSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of Medical SchoolNanjing Stomatological HospitalInstitute of StomatologyNanjing UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
7
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
8
|
Gu Z, Song K, An H, Sun D, Ma Y, Wang H, Chen Y, Gu Q, Wen Y. Advances in adhesion of microneedles for bioengineering. J Mater Chem B 2025; 13:2592-2610. [PMID: 39876666 DOI: 10.1039/d4tb02517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microneedles have provided promising platforms in various fields thanks to their safety, painlessness, minimal invasiveness and ease of operation. The excellent adhesion of microneedles is the key characteristic to achieve long-term and comfortable treatment. However, a complex environment, such as the roughness of skin, various bodily fluids in vivo, and the movement of the body, presents great challenges to the adhesion characteristics of microneedles. This review mainly reports the remarkable adhesion properties of microneedles based on interlocking by shape effects, chemical bonds, and suction forces. Firstly, the main mechanisms of adhesion and various types of microneedles are introduced, with an emphasis on the progress in adhesive microneedles. Combined with the preparation and application of microneedles, the challenges and future trends of adhesive microneedles are discussed.
Collapse
Affiliation(s)
- Zhen Gu
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Kaiyu Song
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Heng An
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Dadi Sun
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Yinglei Ma
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Hanyu Wang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yanxia Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
9
|
Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio 2024; 29:101321. [PMID: 39554838 PMCID: PMC11567927 DOI: 10.1016/j.mtbio.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Wound healing is an ongoing concern for the medical community. The limitations of traditional dressings are being addressed by materials and manufacturing technology. Microneedles (MNs) are a novel type of drug delivery system that has been widely used in cancer therapy, dermatological treatment, and insulin and vaccine delivery. MNs locally penetrate necrotic tissue, eschar, biofilm and epidermis into deep tissues, avoiding the possibility of drug dilution and degradation and greatly improving administration efficiency with less pain. MNs represent a new direction for wound treatment and transdermal delivery. In this study, we summarise the skin wound healing process and the mechanical stimulation of MNs in the context of the wound healing process. We also introduce the structural design and manufacture of MNs. Subsequently, MNs are categorised according to the loaded drugs, where the design of the MNs according to the traumatic biological/biochemical microenvironment (pH, glucose, and bacteria) and the physical microenvironment (temperature, light, and ultrasound) is emphasised. Finally, the advantages of MNs are compared with traditional drug delivery systems and their prospects are discussed.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Jiang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiran Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiping Lu
- Senior once Class 5, Shanghai Pinghe School, Shanghai, 200000, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
10
|
Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, Kandasamy CS, Hilles AR, Hashim NM, Janakiraman AK. Biodegradable polymeric insulin microneedles - a design and materials perspective review. Drug Deliv 2024; 31:2296350. [PMID: 38147499 PMCID: PMC10763835 DOI: 10.1080/10717544.2023.2296350] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Collapse
Affiliation(s)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - C. S. Kandasamy
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, India
| | - Ayah R. Hilles
- INHART, International Islamic University, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
12
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
13
|
Li X, Xiao X, Zhang Y, Long R, Kankala RK, Wang S, Liu Y. Microneedles based on hyaluronic acid-polyvinyl alcohol with antibacterial, anti-inflammatory, and antioxidant effects promote diabetic wound healing. Int J Biol Macromol 2024; 282:137185. [PMID: 39489235 DOI: 10.1016/j.ijbiomac.2024.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Diabetic wound healing has become one of the major clinical burdens due to uncontrolled bacterial growth and an increase in the risk of various microbial infections. Despite excellent antioxidant properties, the poor aqueous solubility of resveratrol (RES) hampers its applicability. In this study, we proposed a novel multifunctional microneedle patch loaded with RES-encapsulated polymeric micelles. Resveratrol micelles (RES MC) were loaded in the microneedle tip, while the base part was coated with the antibiotic gentamicin (GEN) to promote wound healing. The microneedle tip composed of sodium hyaluronate (HA) could effectively deliver the anti-inflammatory and antioxidant RES MC. Furthermore, the base of the microneedle patch composed of polyvinyl alcohol (PVA) offered excellent flexibility, releasing GEN and providing resistance to bacterial contamination, thereby further promoting wound repair. In vitro antibacterial experiments indicated that the bactericidal rate reached 99 %. Further, the wound healing rate was recorded as 86.05 % on the 11th day of diabetes wound treatment. Together, the multifunctional microneedle patch with excellent biocompatibility exhibited anti-inflammatory, antioxidant, and antibacterial effects on the wound healing process, potentiating its efficacy in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xuemei Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yiheng Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | | | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
14
|
Wang Y, Guan P, Tan R, Shi Z, Li Q, Lu B, Hu E, Ding W, Wang W, Cheng B, Lan G, Lu F. Fiber-Reinforced Silk Microneedle Patches for Improved Tissue Adhesion in Treating Diabetic Wound Infections. ADVANCED FIBER MATERIALS 2024; 6:1596-1615. [DOI: 10.1007/s42765-024-00439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 01/12/2025]
|
15
|
Hu X, Kong B, Wang Y, Zhao Y, Li M, Zhou X. Responsive porous microneedles with riboflavin ocular microinjection capability for facilitating corneal crosslinking. J Nanobiotechnology 2024; 22:588. [PMID: 39342257 PMCID: PMC11438091 DOI: 10.1186/s12951-024-02851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Riboflavin-5-phosphate (riboflavin) is the most commonly used photosensitizer in corneal crosslinking (CXL); while its efficient delivery into the stroma through the corneal epithelial barrier is challenging. In this paper, we presented novel responsive porous microneedles with ocular microinjection capability to deliver riboflavin controllably inside the cornea to facilitate CXL. The microneedle patch was composed of Poly (N-isopropyl acrylamide) (PNIPAM), graphene oxide (GO), and riboflavin-loaded gelatin. After penetrating the cornea by the stiff and porous gelatin needle tip, the photothermal-responsive characteristic of the PNIPAM/GO hydrogel middle layer could realize the contraction of the gel under the stimulation of near-infrared light, which subsequently could control the release of riboflavin from the backing layer into the cornea stromal site both in vitro and in vivo. Based on the microneedles system, we have demonstrated that this microinjection technique exhibited superior riboflavin delivery capacity and treatment efficacy to the conventional epithelial-on protocol in a rabbit keratoconus model, with benefits including minimal invasiveness and precise administering. Thus, we believe the responsive porous microneedles with riboflavin ocular microinjection capability are promising for clinical corneal crosslinking without epithelial debridement.
Collapse
Affiliation(s)
- Xiaojun Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bin Kong
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yuanjin Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China.
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
16
|
Zhang X, Li M, Gao Q, Kang X, Sun J, Huang Y, Xu H, Xu J, Shu S, Zhuang J, Huang Y. Cutting-edge microneedle innovations: Transforming the landscape of cardiovascular and metabolic disease management. iScience 2024; 27:110615. [PMID: 39224520 PMCID: PMC11366906 DOI: 10.1016/j.isci.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoya Kang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyao Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian Zhuang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Chen G, Wang X, Li J, Xu Y, Lin Y, Wang F. Intelligent hydrogels for treating malignant melanoma. ENGINEERED REGENERATION 2024; 5:295-305. [DOI: 10.1016/j.engreg.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
18
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
19
|
Choi HJ, Ullah A, Jang MJ, Lee US, Shin MC, An SH, Kim D, Kim BH, Kim GM. Microneedle patch casting using a micromachined carbon master for enhanced drug delivery. Sci Rep 2024; 14:19228. [PMID: 39164355 PMCID: PMC11335881 DOI: 10.1038/s41598-024-70393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
For successful treatment of diseases, sufficient therapeutics must be provided to the body. Microneedle applications in therapeutic delivery and analytics sampling are restricted because of various issues, including smaller area for drug loading and analytics sampling. To achieve sufficient drug loading and analytics sampling and improve drug penetration while maintaining painless administration, patch-type microneedle arrays were designed and fabricated using polymer casting from a conical cavity mold. Microcavities were formed on a carbon plate via micromechanical machining. A porous polymer layer was coated on a microneedle patch (MNP). The pores of the porous polymer layer provided space and channels for drug delivery. A pH-sensitive polymer layer was employed to cap the porous polymer layer, which prevented drug leakage during storage and provided a stimulus drug release in response to body pH conditions. The drug can be delivered through holes connected to both sides of the patch. The drug release of the MNP was investigated in vitro and in vivo and showed conceptual proof that these MNs have the potential to enhance treatment protocols for various diseases with the flexibility of coating and therapeutic materials and offer significant scope for further variations and advancement.
Collapse
Affiliation(s)
- Hye Jin Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Asad Ullah
- Department of Mechanical Engineering, University of Engineering and Technology, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Mi Jin Jang
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Ui Seok Lee
- Department of Mechanical Engineering, Graduate School, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea
| | - Min Chul Shin
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang Hyun An
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Dongseon Kim
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Bo Hyun Kim
- School of Mechanical Engineering, Soongsil University, Seoul, 06978, South Korea.
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
20
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Su R, Zhang R, Wang Y, Li Z, Zhang L, Ma S, Li X, Ma F, Fu H. Simulated skin model for in vitro evaluation of insertion performance of microneedles: design, development, and application verification. Comput Methods Biomech Biomed Engin 2024:1-10. [PMID: 38946229 DOI: 10.1080/10255842.2024.2372621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Microneedles, as a new efficient and safe transdermal drug delivery technology, has a wide range of applications in drug delivery, vaccination, medical cosmetology, and diagnostics. The degree of microneedles penetration into the skin determines the reliability of the delivery dose, but its evaluation is not yet well-established, which is one of the major constraints in the commercialization of microneedles. In this paper, a novel visual simulated skin model was developed with reference to the physical properties of real skin. The simulated skin model was well-designed and its prescription was optimized to make the thickness, hardness, elasticity, and other parameters close to those of real skin. It not only meets the need to assess the degree of insertion of microneedles but also provides a visual observation of the insertion state of microneedles.
Collapse
Affiliation(s)
- Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Ruipeng Zhang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Wang
- WiDi Microdelivery Medical Technology (Hangzhou) Co., Ltd., Hangzhou, China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing, China
- WiDi Microdelivery Medical Technology (Hangzhou) Co., Ltd., Hangzhou, China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou, China
| | - Hongyang Fu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
23
|
Gao X, Liu L, Hou H, Jia W, Zhang A, Zhang B, Bu Y, Gong Y, Yan L, Du B. Construct a Magnetic Pt/Ru Alloy Peroxidase Mimic As a Reusable and Cost-Effective "Signal-Off" Sensing Platform for Sensitive and Wide-Linear-Range Assay. Anal Chem 2024; 96:10467-10475. [PMID: 38863336 DOI: 10.1021/acs.analchem.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.
Collapse
Affiliation(s)
- Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lan Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weijuan Jia
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aoxue Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
24
|
Cong J, Zheng Z, Fu Y, Chang Z, Chen C, Wu C, Pan X, Huang Z, Quan G. Spatiotemporal fate of nanocarriers-embedded dissolving microneedles: the impact of needle dissolving rate. Expert Opin Drug Deliv 2024; 21:965-974. [PMID: 38962819 DOI: 10.1080/17425247.2024.2375385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS P4 SLNs achieved a deeper diffusion depth of 180 μm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 μm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.
Collapse
Affiliation(s)
- Jinghang Cong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyang Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yanping Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangxin Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Dehghani L, Owliaee I, sadeghian F, Shojaeian A. The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy. J Stem Cells Regen Med 2024; 20:14-23. [PMID: 39044811 PMCID: PMC11262847 DOI: 10.46582/jsrm.2003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 07/25/2024]
Abstract
Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells (MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management.
Collapse
Affiliation(s)
- Leila Dehghani
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran.
| | - Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh sadeghian
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
26
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
27
|
Li J, Wei M, Gao B. A Review of Recent Advances in Microneedle-Based Sensing within the Dermal ISF That Could Transform Medical Testing. ACS Sens 2024; 9:1149-1161. [PMID: 38478049 DOI: 10.1021/acssensors.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Geng Y, Zou H, Li Z, Wu H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J Nanobiotechnology 2024; 22:120. [PMID: 38500178 PMCID: PMC10949774 DOI: 10.1186/s12951-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Huwei Zou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Zhaowei Li
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, 271000, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
29
|
Barati M, Hashemi S, Sayed Tabatabaei M, Zarei Chamgordani N, Mortazavi SM, Moghimi HR. Protein-based microneedles for biomedical applications: A systematic review. Biomed Microdevices 2024; 26:19. [PMID: 38430398 DOI: 10.1007/s10544-024-00701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Microneedles are minimally-invasive devices with the unique capability of bypassing physiological barriers. Hence, they are widely used for different applications from drug/vaccine delivery to diagnosis and cosmetic fields. Recently, natural biopolymers (particularly carbohydrates and proteins) have garnered attention as safe and biocompatible materials with tailorable features for microneedle construction. Several review articles have dealt with carbohydrate-based microneedles. This review aims to highlight the less-noticed role of proteins through a systematic search strategy based on the PRISMA guideline from international databases of PubMed, Science Direct, Scopus, and Google Scholar. Original English articles with the keyword "microneedle(s)" in their titles along with at least one of the keywords "biopolymers, silk, gelatin, collagen, zein, keratin, fish-scale, mussel, and suckerin" were collected and those in which the proteins undertook a structural role were screened. Then, we focused on the structures and applications of protein-based microneedles. Also, the unique features of some protein biopolymers that make them ideal for microneedle construction (e.g., excellent mechanical strength, self-adhesion, and self-assembly), as well as the challenges associated with them were reviewed. Altogether, the proteins identified so far seem not only promising for the fabrication of "better" microneedles in the future but also inspiring for designing biomimetic structural biopolymers with ideal characteristics.
Collapse
Affiliation(s)
- Maedeh Barati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Sayed Tabatabaei
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Zarei Chamgordani
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Maryam Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zhang Q, Na J, Liu X, He J. Exploration of the Delivery of Oncolytic Newcastle Disease Virus by Gelatin Methacryloyl Microneedles. Int J Mol Sci 2024; 25:2353. [PMID: 38397030 PMCID: PMC10888545 DOI: 10.3390/ijms25042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was -13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV.
Collapse
Affiliation(s)
| | | | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| |
Collapse
|
31
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
32
|
Li X, Lv J, Zhao J, Ling G, Zhang P. Swellable colorimetric microneedles for glucose detection based on glucose oxidase-like gold nanoparticles. Anal Chim Acta 2024; 1288:342152. [PMID: 38220286 DOI: 10.1016/j.aca.2023.342152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Regular blood glucose monitoring is very important for diabetic patients. The composition of skin interstitial fluid (ISF) is similar to that of blood, which can be used for daily blood sugar detection and disease care. However, most methods of ISF extraction have complicated steps, may cause skin damage, and can only extract a limited amount of ISF, resulting in low detection efficiency. Therefore, it is very necessary to develop a detection method that can not only extract a large amount of ISF safely, efficiently, and conveniently, but also realize rapid detection of glucose level in ISF. RESULTS Here, we developed a gold nanoparticle (AuNP)-based swellable colorimetric MN patch with minimally invasive sampling function and real-time ISF glucose analysis ability. The MN patch could quickly absorb a large amount of skin ISF, and 60.2 mg of ISF was extracted within 10 min in vitro. It was divided into two layers: the tip layer was embedded with AuNPs with glucose oxidase (GOx)-like activity, which catalyzed the oxidation of glucose extracted from ISF and produced hydrogen peroxide (H2O2); horseradish peroxidase (HRP) encapsulated in the backing layer catalyzed the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce oxTMB, which led to a visible color shift in the backing layer. The ISF glucose level was judged by naked eyes and further quantified by color analysis with Image J software. As a result, the colorimetric MN patch successfully identified the normal blood sugar and hyperglycemia state in vivo. SIGNIFICANCE The colorimetric MN patch combined in-situ colorimetric sensing based on AuNP nanozyme with MN patch, which detected glucose level without blood drawing, increasing patients' compliance and reducing detection steps and time. Compared with the detection methods based on natural nanozymes, our method had better stability and sensitivity to complex environments (extreme pH and high temperature, etc.) in actual detection.
Collapse
Affiliation(s)
- Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiatong Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
33
|
An H, Gu Z, Huang Z, Huo T, Xu Y, Dong Y, Wen Y. Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids Surf B Biointerfaces 2024; 233:113636. [PMID: 37979482 DOI: 10.1016/j.colsurfb.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The management and treatment of wounds are complex and pose a substantial financial burden to the patient. However, the complex environment of wounds leads to inadequate drug absorption to achieve the desired therapeutic effect. As a novel technological platform, microneedles are widely used in drug delivery because of their multiple drug loading, multistage drug release, and multiple designs of topology. This study systematically summarizes and analyzes the manufacturing methods and limitations of different microneedles, as well as the latest research advances in pain management, drug delivery, and healing promotion, and presents the challenges and opportunities for clinical applications. On this basis, the development of microneedles in external wound repair and management is envisioned, and it is hoped that this study can provide guidelines for the design of microneedle systems in different application contexts, including the selection of materials, preparation methods, and structural design, to achieve better healing and regeneration results.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Huo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081 China.
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
34
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
35
|
Li Y, Chen K, Pang Y, Zhang J, Wu M, Xu Y, Cao S, Zhang X, Wang S, Sun Y, Ning X, Wang X, Kong D. Multifunctional Microneedle Patches via Direct Ink Drawing of Nanocomposite Inks for Personalized Transdermal Drug Delivery. ACS NANO 2023; 17:19925-19937. [PMID: 37805947 DOI: 10.1021/acsnano.3c04758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Additive manufacturing, commonly known as 3D printing, allows decentralized drug fabrication of orally administered tablets. Microneedles are comparatively favorable for self-administered transdermal drug delivery with improved absorption and bioavailability. Due to the cross-scale geometric characteristics, 3D-printed microneedles face a significant trade-off between the feature resolution and production speed in conventional layer-wise deposition sequences. In this study, we introduce an economical and scalable direct ink drawing strategy to create drug-loaded microneedles. A freestanding microneedle is efficiently generated upon each pneumatic extrusion and controlled drawing process. Sharp tips of ∼5 μm are formed with submillimeter nozzles, representing 2 orders of magnitude improved resolution. As the key enabler of this fabrication strategy, the yield-stress fluid inks are formulated by simply filling silica nanoparticles into regular polymer solutions. The approach is compatible with various microneedles based on dissolvable, biodegradable, and nondegradable polymers. Various matrices are readily adopted to adjust the release behaviors of the drug-loaded microneedles. Successful fabrication of multifunctional patches with heterogeneously integrated microneedles allows the treatment of melanoma via synergistic photothermal therapy and combination chemotherapy. The personalized patches are designed for cancer severity to achieve high therapeutic efficacy with minimal side effects. The direct ink drawing reported here provides a facile and low-cost fabrication strategy for multifunctional microneedle patches for self-administering transdermal drug delivery.
Collapse
Affiliation(s)
- Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Shitai Cao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinxin Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Han Y, Li J, Chen T, Gao B, Wang H. Modern microelectronics and microfluidics on microneedles. Analyst 2023; 148:4591-4615. [PMID: 37664954 DOI: 10.1039/d3an01045g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Possessing the attractive advantages of moderate invasiveness and high compliance, there is no doubt that microneedles (MNs) have been a gradually rising star in the field of medicine. Recent evidence implies that microelectronics technology based on microcircuits, microelectrodes and other microelectronic elements combined with MNs can realize mild electrical stimulation, drug release and various types of electrical sensing detection. In addition, the combination of microfluidics technology and MNs makes it possible to transport fluid drugs and access a small quantity of body fluids which have shown significant untapped potential for a wide range of diagnostics. Of particular note is that combining both technologies and MNs is more difficult, but is promising to build a modern healthcare platform with more comprehensive functions. This review introduces the properties of MNs that can form integrated systems with microelectronics and microfluidics, and summarizes these systems and their applications. Furthermore, the future challenges and perspectives of the integrated systems are conclusively proposed.
Collapse
Affiliation(s)
- Yanzhang Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tingting Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Huili Wang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Lyu S, Dong Z, Xu X, Bei HP, Yuen HY, James Cheung CW, Wong MS, He Y, Zhao X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater 2023; 27:303-326. [PMID: 37122902 PMCID: PMC10140753 DOI: 10.1016/j.bioactmat.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Microneedle, as a novel drug delivery system, has attracted widespread attention due to its non-invasiveness, painless and simple administration, controllable drug delivery, and diverse cargo loading capacity. Although microneedles are initially designed to penetrate stratum corneum of skin for transdermal drug delivery, they, recently, have been used to promote wound healing and regeneration of diverse tissues and organs and the results are promising. Despite there are reviews about microneedles, few of them focus on wound healing and tissue regeneration. Here, we review the recent advances of microneedles in this field. We first give an overview of microneedle system in terms of its potential cargos (e.g., small molecules, macromolecules, nucleic acids, nanoparticles, extracellular vesicle, cells), structural designs (e.g., multidrug structures, adhesive structures), material selection, and drug release mechanisms. Then we briefly summarize different microneedle fabrication methods, including their advantages and limitations. We finally summarize the recent progress of microneedle-assisted wound healing and tissue regeneration (e.g., skin, cardiac, bone, tendon, ocular, vascular, oral, hair, spinal cord, and uterine tissues). We expect that our article would serve as a guideline for readers to design their microneedle systems according to different applications, including material selection, drug selection, and structure design, for achieving better healing and regeneration efficacy.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Chung-Wai James Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Man-Sang Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
- Corresponding author.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| |
Collapse
|
38
|
Lobita MC, El-Sayed N, Pinto JF, Santos HA. Development of fast dissolving polymer-based microneedles for delivery of an antigenic melanoma cell membrane. Int J Pharm 2023; 642:123143. [PMID: 37330154 DOI: 10.1016/j.ijpharm.2023.123143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.
Collapse
Affiliation(s)
- Maria C Lobita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Nesma El-Sayed
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - João F Pinto
- iMED-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1640-003 Lisbon, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
39
|
Garg M, Jain N, Kaul S, Rai VK, Nagaich U. Recent advancements in the expedition of microneedles: from lab worktops to diagnostic care centers. Mikrochim Acta 2023; 190:301. [PMID: 37464230 DOI: 10.1007/s00604-023-05859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Microneedle (MN) technology plays a significant role in bioengineering as it allows for minimally invasive exposure to the skin via the non-invasive procedure, increased drug permeability, and improved biological molecule detectability in the epidermal layers, all while improving therapeutic safety and effectiveness. However, MNs have several significant drawbacks, including difficulty scaling up, variability in drug delivery pattern regarding the skin's external environment, blockage of dermal tissues, induction of inflammatory response at the administration site, and limitation of dosing based on the molecular weight of drug and size. Despite these drawbacks, MNs have emerged as a special transdermal theranostics instrument in clinical research to assess physiological parameters. Bioimaging technology relies on microneedles that can measure particular analytes in the extracellular fluid effectively by crossing the stratum corneum, making them "a unique tool in diagnostics detection and therapeutic application inside the body." This review article discusses the recent advances in the applications especially related to the diagnostics and toxicity challenges of microneedles. In addition, this review article discusses the clinical state and commercial accessibility of microneedle technology-based devices in order to provide new information to scientists and researchers.
Collapse
Affiliation(s)
- Megha Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India.
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'o' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India.
| |
Collapse
|
40
|
Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243:125232. [PMID: 37302628 DOI: 10.1016/j.ijbiomac.2023.125232] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | | | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Saghebasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
41
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
42
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
43
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
44
|
Xie Z, Zhang X, Chen G, Che J, Zhang D. Wearable microneedle-integrated sensors for household health monitoring. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymer-based microneedle composites for enhanced non-transdermal drug delivery. APPLIED MATERIALS TODAY 2022; 29:101659. [DOI: 10.1016/j.apmt.2022.101659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Zhang X, Cheng Y, Liu R, Zhao Y. Globefish-Inspired Balloon Catheter with Intelligent Microneedle Coating for Endovascular Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204497. [PMID: 36257827 PMCID: PMC9731713 DOI: 10.1002/advs.202204497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Balloon catheters exhibit important values in treating cardiovascular diseases, while their functions are still under improvements. Here, inspired by the thorn-hiding and deflating-inflating characteristics of globefish, intelligent balloon catheters decorated with invisible microneedles are presented for endovascular drug delivery to inhibit postintervention restenosis (PIRS). These microneedle balloon catheters (MNBCs) fabricated by dipping and rolling-assisted template replication contain three coating layers of sandwiched drug-carrying microneedles and black phosphorus (BP)-carrying gelatin. During the emplacement, the microneedles of MNBCs are hidden under the outermost gelatin protective layer, allowing smooth movements inside the blood vessel. After reaching the destination, the embedded BP converts near infrared (NIR) into heat, increases local temperature, and melts the gelatin layer, enabling the exposure and vascular penetration of the microneedles. Besides, as the innermost gelatin also melts, the microneedles can detach from the balloon catheter and be left inside the blood vessel for continuous drug release. Based on advantages of responsiveness, penetration capacity, and biosafety, it is demonstrated that the MNBCs behave satisfactorily in delivering rapamycin to inhibit abdominal aorta restenosis in rats. All these features indicate that these MNBCs are promising medical devices for clinical applications.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yi Cheng
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
47
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
48
|
Huang D, Fu X, Zhang X, Zhao Y. Christmas Tree-Shaped Microneedles as FOLFIRINOX Spatiotemporal Delivery System for Pancreatic Cancer Treatment. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9809417. [PMID: 36340504 PMCID: PMC9620638 DOI: 10.34133/2022/9809417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 09/19/2023]
Abstract
As an effective combination chemotherapy, FOLFIRINOX regimen (fluorouracil, leucovorin, irinotecan, and oxaliplatin) has shown definite antitumor efficacy for treating pancreatic cancer (PC) nowadays. However, the traditional systematic administration of these chemotherapeutics limits the drug targeting and causes unwanted effects. Herein, we present a novel Christmas tree-shaped adhesive microneedle (MN) patch coloading fluorouracil, leucovorin, irinotecan, and oxaliplatin simultaneously to realize spatiotemporal FOLFIRINOX therapy in situ. Such MN patch was fabricated by using a layer-by-layer mold replication method, in which oxaliplatin and leucovorin are encapsulated in the top MNs, while irinotecan and fluorouracil are encapsulated in the bottom MNs. The multilayer structure imparts the MNs with enhanced adhesive ability and spatiotemporal drug release property, contributing to the antitumor effect on PC organoid models. Therefore, our Christmas tree-shaped MN patch represents an innovative approach for spatiotemporal multiple-drug delivering and realizes the combination chemotherapy for PC in a single platform.
Collapse
Affiliation(s)
- Danqing Huang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Xiao Fu
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Xiaoxuan Zhang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
49
|
Priya S, Singhvi G. Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain. Biomed Pharmacother 2022; 155:113717. [PMID: 36174381 DOI: 10.1016/j.biopha.2022.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Pain is a personalized event or body alarm system that can limit a patient's activities and lead to negative repercussions. The commercially available conventional treatment strategies like oral, parenteral, and topical drug delivery systems for pain management are associated with side effects and poor patient compliance. The transdermal route is eminent for its painless distribution. Among transdermal drug delivery system, microneedles (MNs) are gaining attention for their application with delivery at the deeper dermal layer because it bypasses the major barrier of the skin, easily accesses the skin dermal microcirculation, prevents damage to dermal blood vessels, and can be simply inserted into the skin without utilizing any additional applicator devices. Hence, considered a promising drug delivery strategy with high patient compliance. This review highlights the recent advancements of MNs in pain management. The present work mainly emphasizes all the case studies reported from the past 10 years that utilize MNs containing therapeutics in the treatment of chronic pain-associated diseases like rheumatoid arthritis, neuropathic pain, osteoarthritis, psoriatic arthritis, and atopic dermatitis. These studies have proven the efficacious application of MNs in the management of chronic pain and inflammation. The review also covered the clinical trials, patents, and future goals of pain management by using MNs.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
50
|
Moghaddas SA, Nekoei M, Golafshani EM, Behnood A, Arashpour M. Application of artificial bee colony programming techniques for predicting the compressive strength of recycled aggregate concrete. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|