1
|
Lu W, Yan L, Peng L, Wang X, Tang X, Du J, Lin J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in acute on chronic liver failure: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2025; 16:197. [PMID: 40254564 PMCID: PMC12010635 DOI: 10.1186/s13287-025-04303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Acute-on-chronic liver failure has become a serious global health burden, which is characterized by an acute deterioration of liver function, rapidly evolving organ failure, and high short-term mortality in patients with chronic liver disease. The pathogenesis includes extensive hepatic necrosis, which is related to intense systemic inflammation and subsequently causes the inflammatory cytokine storm, resulting in portal hypertension, organ dysfunction, and organ failure. Mesenchymal stem cells can function as seed cells to remodel and repair damaged liver tissues, thus showing potential therapeutic alternatives for patients with chronic liver disease. However, standard treatment protocols for mesenchymal stem cells in acute-on-chronic liver failure patients have not been established. METHODS We conducted a detailed search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library to find randomized controlled trials published before October 23, 2021. We formulated criteria for the literature screening according to the PICOS principle (Population, Intervention, Comparison, Outcome, Study design). Subsequently, the bias risk assessment tool was used to assess the quality of all enrolled studies. Finally, outcome measurements including the model of end-stage liver disease score, albumin, total bilirubin, coagulation function, and aminotransferase were extracted for statistical analysis. RESULTS A total of 7 clinical trials were included. The results of enrolled studies indicated that patients with acute-on-chronic liver failure who received mesenchymal stem cells inoculation showed a decreased MELD score in 4 weeks and 24 weeks, compared with counterparts who received conventional treatment. Reciprocally, mesenchymal stem cells inoculation improved the ALB levels in 4 weeks and 24 weeks. For secondary indicators, mesenchymal stem cells treatment significantly reduced INR levels and ALT levels, compared with the control group. Our results showed no significant differences in the incidence of adverse reactions or serious adverse events monitored in patients after mesenchymal stem cells inoculation. CONCLUSION This meta-analysis indicated that mesenchymal stem cell infusion is effective and safe in the treatment of patients with acute-on-chronic liver failure. Without increasing the incidence of adverse events or serious adverse events, MSC treatment improved liver function including a decrease in MELD score and an increase in ALB levels in patients with acute-on-chronic liver failure. However, large-cohort randomized controlled trials with longer follow-up periods are required to further confirm our conclusions.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lulu Peng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Lin
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
2
|
Czekaj P, Król M, Kolanko E, Wieczorek P, Bogunia E, Hermyt M, Grajoszek A, Prusek A. Optimization of methods for intrasplenic administration of human amniotic epithelial cells in order to perform safe and effective cell-based therapy for liver diseases. Stem Cell Rev Rep 2024; 20:1599-1617. [PMID: 38769232 PMCID: PMC11319411 DOI: 10.1007/s12015-024-10735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.5, 1, and 2 million hAECs by direct bolus injection (400 µl/min) and via a subcutaneous splenic port by fast (20 μl/min) and slow (10 μl/min) infusion. The port was prepared by translocating the spleen to the skin pocket. The spleen, liver, and lungs were collected at 3 h, 6 h, and 24 h after the administration of cells. The distribution of hAECs, histopathological changes in the organs, complete blood count, and biochemical markers of liver damage were assessed. It has been shown that the method of intrasplenic cell administration affects the degree of liver damage. The largest number of mice showing significant liver damage was observed after direct administration and the lowest after slow administration through a port. Liver damage increased with the number of administered cells, which, paradoxically, resulted in increased liver colonization efficiency. It was concluded that the administration of 1 × 106 hAECs by slow infusion via a subcutaneous splenic port reduces the incidence of complications at the expense of a slight decrease in the effectiveness of implantation of the transplanted cells in the liver.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
| | - Mateusz Król
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Emanuel Kolanko
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Edyta Bogunia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Aniela Grajoszek
- Department of Experimental Medicine, Medical University of Silesia in Katowice, Medyków 4, Katowice, 40-752, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| |
Collapse
|
3
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
5
|
Zhang F, Ju J, Diao H, Song J, Bian Y, Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br J Pharmacol 2024. [PMID: 38514420 DOI: 10.1111/bph.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/23/2024] Open
Abstract
Liver disease constitutes a significant global health concern, particularly in China where it has distinctive characteristics. China grapples with a staggering 300 million cases, predominantly due to hepatitis B and metabolic non-alcoholic fatty liver disease. Additionally, hepatocellular carcinoma has become a prevalent which is a lethal type of cancer. Despite the scarcity of innovative treatment options, Chinese hepatologists and researchers have achieved notable breakthroughs in the prevention, diagnosis, management and treatment of liver diseases. Traditional Chinese medicines have found widespread application in the treatment of various liver ailments owing to their commendable pharmacological efficacy and minimal side effects. Furthermore, there is a growing body of research in extracellular vesicles, cell therapy and gene therapy, offering new hope in the fight against liver diseases. This paper provides a comprehensive overview of the epidemiological characteristics of liver diseases and the diverse array of treatments that Chinese scholars and scientists have pursued in critical field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Eldredge JA, Hardikar W. Current status and future directions of liver transplantation for metabolic liver disease in children. Pediatr Transplant 2024; 28:e14625. [PMID: 37859572 DOI: 10.1111/petr.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Orthotopic liver transplantation (OLT) in the care of children with inborn errors of metabolism (IEM) is well established and represent the second most common indication for pediatric liver transplantation in most centers worldwide, behind biliary atresia. OLT offers cure of disease when a metabolic defect is confined to the liver, but may still be transformative on a patient's quality of life reducing the chance of metabolic crises causing neurological damage in children be with extrahepatic involvement and no "functional cure." Outcomes post-OLT for inborn errors of metabolism are generally excellent. However, this benefit must be balanced with consideration of a composite risk of morbidity, and commitment to a lifetime of post-transplant chronic disease management. An increasing number of transplant referrals for children with IEM has contributed to strain on graft access in many parts of the world. Pragmatic evaluation of IEM referrals is essential, particularly pertinent in cases where progression of extra-hepatic disease is anticipated, with long-term outcome expected to be poor. Decision to proceed with liver transplantation is highly individualized based on the child's dynamic risk-benefit profile, their family unit, and their treating multidisciplinary team. Also to be considered is the chance of future treatments, such as gene therapies, emerging in the medium term.
Collapse
Affiliation(s)
- Jessica A Eldredge
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Winita Hardikar
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy to treat murine liver diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575286. [PMID: 38260488 PMCID: PMC10802626 DOI: 10.1101/2024.01.11.575286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
|
8
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
9
|
Takido N, Fujio A, Nishimaki H, Yamana H, Imura T, Kashiwadate T, Goto M, Unno M, Kamei T. Functional Assessment of Cardiac Arrest Hepatocytes and Effect of Mechanical Perfusion on Function in a Rat Model. Transplant Proc 2023:S0041-1345(23)00229-4. [PMID: 37100736 DOI: 10.1016/j.transproceed.2023.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Hepatocyte transplantation has been reported to be useful for metabolic diseases and acute liver failure. However, the shortage of donors limits its widespread use. The use of livers from donors after circulatory death, which are currently unavailable for liver transplantation, may alleviate donor shortage. In this study, we investigated the effects of mechanical perfusion on cardiac arrest hepatocytes in a rat model using cardiac arrest donor livers, and we evaluated the function of cardiac arrest hepatocytes. METHODS F344 rat hepatocytes isolated from livers removed during cardiac pulsation were compared with those isolated from livers removed after 30 minutes of warm ischemia after cardiac arrest. We then compared hepatocytes isolated from livers removed after 30 minutes of warm ischemia with those isolated after 30 minutes of mechanical perfusion before isolation. The yield per liver weight, ammonia removal capacity, and adenosine diphosphate/adenosine triphosphate ratio were evaluated. RESULTS Thirty minutes of warm inhibition reduced hepatocyte yield but did not alter ammonia removal capacity and energy status. Mechanical perfusion increased hepatocyte yield and improved the adenosine diphosphate/adenosine triphosphate ratio after 30 minutes of warm inhibition. CONCLUSION Thirty minutes of warm ischemic time may decrease isolated hepatocyte yield without degrading their function. If increased yields are obtained, livers from donors dying of cardiac arrest could be used for hepatocyte transplantation. The results also suggest that mechanical perfusion may positively affect the energy status of hepatocytes.
Collapse
Affiliation(s)
- Naruhito Takido
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Atsushi Fujio
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan.
| | - Hiroyasu Nishimaki
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Hiroki Yamana
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Toshiaki Kashiwadate
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| | - Takashi Kamei
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi prefecture, Japan
| |
Collapse
|
10
|
Abou Rayia DM, Ashour DS, Abo Safia HS, Abdel Ghafar MT, Amer RS, Saad AE. Human umbilical cord blood mesenchymal stem cells as a potential therapy for schistosomal hepatic fibrosis: an experimental study. Pathog Glob Health 2023; 117:190-202. [PMID: 35435145 PMCID: PMC9970248 DOI: 10.1080/20477724.2022.2064795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The objective of our study was to assess the effect of human umbilical cord blood (HUCB) mesenchymal stem cells (MSCs) transplantation on schistosomal hepatic fibrosis in mice. The study animals were divided into three groups. Group I is a control group, where the mice were infected with Schistosoma mansoni cercariae and remained untreated. The mice of the other two groups were infected and treated with either praziquantel (Group II) or HUCB-MSCs (Group III). Liver function tests, as well as histopathological evaluation of liver fibrosis using hematoxylin and eosin and Masson's trichrome stains, were performed. Additionally, an immunohistochemical study was carried out using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells. Compared to the control group, the treated (praziquantel and MSCs) groups showed a substantial improvement, with a significant difference regarding the histopathological evaluation of liver fibrosis in the MSCs-treated group. In conclusion, MSCs could be a promising and efficient cell therapy for liver fibrosis.
Collapse
Affiliation(s)
- Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Rania S Amer
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Medical Parasitology Sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
11
|
Froghi S, de Andrade MO, Hadi LM, Gelat P, Rashidi H, Quaglia A, Fuller B, Saffari N, Davidson B. Liver Ultrasound Histotripsy: Novel Analysis of the Histotripsy Site Cell Constituents with Implications for Histotripsy Application in Cell Transplantation and Cancer Therapy. Bioengineering (Basel) 2023; 10:bioengineering10020276. [PMID: 36829770 PMCID: PMC9952788 DOI: 10.3390/bioengineering10020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Allogenic hepatocyte transplantation is an attractive alternative to whole-organ transplantation, particularly for the treatment of metabolic disorders and acute liver failure. However, the shortage of human donor organs for cell isolation, the low cell yield from decellularisation regimes, and low engraftment rates from portal administration of donor cells have restricted its clinical application. Using ultrasound histotripsy to provide a nidus in the liver for direct cell transplantation offers a new approach to overcoming key limitations in current cell therapy. We have analysed the liver cavity constituents to assess their potential as a site for cell delivery and implantation. Methods: Using human organ retrieval techniques, pig livers were collected from the abattoir and transported in ice-cold storage to the laboratory. Following 2 h of cold storage, the livers were flushed with organ preservation solution and placed on an organ perfusion circuit to maintain viability. Organs were perfused with Soltran™ organ preservation solution via the portal vein at a temperature of 24-30 °C. The perfusion circuit was oxygenated through equilibration with room air. Perfused livers (n=5) were subjected to ultrasound histotripsy, producing a total of 130 lesions. Lesions were generated by applying 50 pulses at 1 Hz pulse repetition frequency and 1% duty cycle using a single element 2 MHz bowl-shaped transducer (Sonic Concepts, H-148). Following histotripsy, a focal liver lesion was produced, which had a liquid centre. The fluid from each lesion was aspirated and cultured in medium (RPMI) at 37 °C in an incubator. Cell cultures were analysed at 1 and 7 days for cell viability and a live-dead assay was performed. The histotripsy sites were excised following aspiration and H&E staining was used to characterise the liver lesions. Cell morphology was determined by histology. Results: Histotripsy created a subcapsular lesion (~5 mm below the liver capsule; size ranging from 3 to 5 mm), which contained a suspension of cells. On average, 61×104 cells per mL were isolated. Hepatocytes were present in the aspirate, were viable at 24 h post isolation and remained viable in culture for up to 1 week, as determined by phalloidin/DAPI cell viability stains. Cultures up to 21 days revealed metabolically active live hepatocyte. Live-dead assays confirmed hepatocyte viability at 1 week (Day 1: 12% to Day 7: 45% live cells; p < 0.0001), which retained metabolic activity and morphology, confirmed on assay and microscopy. Cell Titre-GloTM showed a peak metabolic activity at 1 week (average luminescence 24.6 RLU; p < 0.0001) post-culture compared with the control (culture medium alone), reduced to 1/3 of peak level (7.85 RLU) by day 21. Conclusions: Histotripsy of the liver allows isolation and culture of hepatocytes with a high rate of viability after 1 week in culture. Reproducing these findings using human livers may lead to wide clinical applications in cell therapy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation Surgery, Royal Free London NHS Foundation Trust, Pond Street, Hampstead, London NW3 2QG, UK
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, UCL Division of Surgery & Interventional Sciences, Royal Free Hospital Campus, Pond Street, Hampstead, London NW3 2QG, UK
- Correspondence: or
| | - Matheus Oliveira de Andrade
- Ultrasonics Group, Department of Mechanical Engineering, Roberts Engineering Building, University College London, Torrington Place, London WC1E 7JE, UK
| | - Layla Mohammad Hadi
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, UCL Division of Surgery & Interventional Sciences, Royal Free Hospital Campus, Pond Street, Hampstead, London NW3 2QG, UK
| | - Pierre Gelat
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, UCL Division of Surgery & Interventional Sciences, Royal Free Hospital Campus, Pond Street, Hampstead, London NW3 2QG, UK
| | - Hassan Rashidi
- Stem Cell & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, Pond Street, Hampstead, London NW3 2QG, UK
| | - Barry Fuller
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, UCL Division of Surgery & Interventional Sciences, Royal Free Hospital Campus, Pond Street, Hampstead, London NW3 2QG, UK
| | - Nader Saffari
- Ultrasonics Group, Department of Mechanical Engineering, Roberts Engineering Building, University College London, Torrington Place, London WC1E 7JE, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation Surgery, Royal Free London NHS Foundation Trust, Pond Street, Hampstead, London NW3 2QG, UK
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, UCL Division of Surgery & Interventional Sciences, Royal Free Hospital Campus, Pond Street, Hampstead, London NW3 2QG, UK
| |
Collapse
|
12
|
Wang C, Zhang L, Sun Z, Yuan X, Wu B, Cen J, Cui L, Zhang K, Li C, Wu J, Shu Y, Sun W, Wang J, Hui L. Dedifferentiation-associated inflammatory factors of long-term expanded human hepatocytes exacerbate their elimination by macrophages during liver engraftment. Hepatology 2022; 76:1690-1705. [PMID: 35229337 DOI: 10.1002/hep.32436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte transplantation has been demonstrated to be effective to treat liver metabolic disease and acute liver failure. Nevertheless, the shortage of donor hepatocytes restrained its application in clinics. To expand human hepatocytes at a large scale, several dedifferentiation-based protocols have been established, including proliferating human hepatocytes (ProliHH). However, the decreased transplantation efficiency of these cells after long-term expansion largely impedes their application. APPROACH AND RESULTS We found that accompanied with dedifferentiation, long-term cultured ProliHH (lc-ProliHH) up-regulated a panel of chemokines and cytokines related to innate immunity, which were referred to as dedifferentiation-associated inflammatory factors (DAIF). DAIF elicited excessive macrophage responses, accounting for the elimination of lc-ProliHH specifically during engraftment. Two possible strategies to increase ProliHH transplantation were then characterized. Blockage of innate immune response by dexamethasone reverted the engraftment and repopulation of lc-ProliHH to a level comparable to primary hepatocytes, resulting in improved liver function and a better survival of fumarylacetoacetate hydrolase-deficient mice. Alternatively, rematuration of lc-ProliHH as organoids reduced the expression of DAIF and led to markedly improved engraftment. CONCLUSIONS These results revealed that lc-ProliHH triggers exacerbated macrophage activation by DAIF and provided potential solutions for clinical transplantation of lc-ProliHH.
Collapse
Affiliation(s)
- Chenhua Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhen Sun
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Xiang Yuan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Baihua Wu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jin Cen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Lei Cui
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Kun Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Chun Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jingqi Wu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yajing Shu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenbin Sun
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijian Hui
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina.,School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina.,Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina.,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
14
|
Zhang W, Wauthier E, Lanzoni G, Hani H, Yi X, Overi D, Shi L, Simpson S, Allen A, Suitt C, Ezzell JA, Alvaro D, Cardinale V, Gaudio E, Carpino G, Prestwich G, Dominguez-Bendala J, Gerber D, Mathews K, Piedrahita J, Adin C, Sethupathy P, He Z, Reid LM. Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials 2022; 288:121647. [PMID: 36030102 PMCID: PMC10495116 DOI: 10.1016/j.biomaterials.2022.121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥108th (pigs) or ≥106th-7th (mice) organoids/patch. Graft conditions fostered expression of multiple matrix-metalloproteinases (MMPs), especially secretory isoforms, resulting in transient loss of the organ's matrix-dictated histological features, including organ capsules, and correlated with rapid integration within a week of organoids throughout the organs and without emboli or ectopic cell distribution. Secondarily, within another week, there was clearance of graft biomaterials, followed by muted expression of MMPs, restoration of matrix-dictated histology, and maturation of donor cells to functional adult fates. The ability of patch grafts of organoids to rescue hosts from genetic-based disease states was demonstrated with grafts of BTSC/ELSMC organoids on livers, able to rescue NRG/FAH-KO mice from type I tyrosinemia, a disease caused by absence of fumaryl acetoacetate hydrolase. With the same grafts, if on pancreas, they were able to rescue NRG/Akita mice from type I diabetes, caused by a mutation in the insulin 2 gene. The potential of patch grafting for cell therapies for solid organs now requires translational studies to enable its adaptation and uses for clinical programs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Homayoun Hani
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Xianwen Yi
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Diletta Overi
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Lei Shi
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Amanda Allen
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Carolyn Suitt
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Jennifer Ashley Ezzell
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Domenico Alvaro
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Eugenio Gaudio
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Guido Carpino
- Translational and Precision Medicine, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Glenn Prestwich
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, 00135, Italy.
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - David Gerber
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Kyle Mathews
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Christopher Adin
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Praveen Sethupathy
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Lola M Reid
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Cellular Therapies in Pediatric Liver Diseases. Cells 2022; 11:cells11162483. [PMID: 36010561 PMCID: PMC9406752 DOI: 10.3390/cells11162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the gold standard for the treatment of pediatric end-stage liver disease and liver based metabolic disorders. Although liver transplant is successful, its wider application is limited by shortage of donor organs, surgical complications, need for life long immunosuppressive medication and its associated complications. Cellular therapies such as hepatocytes and mesenchymal stromal cells (MSCs) are currently emerging as an attractive alternative to liver transplantation. The aim of this review is to present the existing world experience in hepatocyte and MSC transplantation and the potential for future effective applications of these modalities of treatment.
Collapse
|
16
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
17
|
Abstract
Acute liver failure (ALF) in children, irrespective of cause, is a rapidly evolving catastrophic clinical condition that results in high mortality and morbidity without prompt identification and intervention. Massive hepatocyte necrosis impairs the synthetic, excretory, and detoxification abilities of the liver, with resultant coagulopathy, jaundice, metabolic disturbance, and encephalopathy. Extrahepatic organ damage, multiorgan failure, and death result from circulating inflammatory mediators released by the hepatocytes undergoing necrosis. There are yet no treatment options available for reversing or halting hepatocellular necrosis, thus current therapy focuses on supporting failing organs and preventing life threatening complications pending either spontaneous liver recovery or transplantation. The aims of this review are to define pediatric acute liver failure (PALF), understand the pathophysiologic processes that lead to multiorgan failure, to describe the consequences of a failing liver on extrahepatic organs, to enumerate the critical care challenges encountered during PALF management, and to describe pharmacologic and extracorporeal options available to support a critically ill child with ALF in the intensive care unit.
Collapse
Affiliation(s)
- Divya G Sabapathy
- Department of Pediatrics, Division of Pediatric Critical Care Medicine and Liver ICU, Baylor College of Medicine, 1, Baylor Plaza, Houston, TX 77030, USA
| | - Moreshwar S Desai
- Department of Pediatrics, Division of Pediatric Critical Care Medicine and Liver ICU, Baylor College of Medicine, 1, Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Short-term inhalation of isoflurane improves the outcomes of intraportal hepatocyte transplantation. Sci Rep 2022; 12:4241. [PMID: 35273344 PMCID: PMC8913608 DOI: 10.1038/s41598-022-08237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Clinical hepatocyte transplantation (HTx) is only performed without general anesthesia, while inhalation anesthetics are usually used in animal experiments. We hypothesized that isoflurane may be a possible reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx. Syngeneic rat hepatocytes (1.0 × 107) were transplanted to analbuminemic rats with (ISO group) and without (AW group) isoflurane. The serum albumin, AST, ALT, LDH levels and several inflammatory mediators were analyzed. Immunohistochemical staining and ex vivo imaging were also performed. The serum albumin levels of the ISO group were significantly higher in comparison to the AW group (p < 0.05). The serum AST, ALT, LDH levels of the ISO group were significantly suppressed in comparison to the AW group (p < 0.0001, respectively). The serum IL-1β, IL-10, IL-18, MCP-1, RNTES, Fractalkine and LIX levels were significantly suppressed in the ISO group. The ischemic regions of the recipient livers in the ISO group tended to be smaller than the AW group; however, the distribution of transplanted hepatocytes in the liver parenchyma was comparable between the two groups. Isoflurane may at least in part be a reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx.
Collapse
|
19
|
Santamaria R, Ballester M, Garcia-Llorens G, Martinez F, Blazquez M, Ribes-Koninckx C, Castell JV, Wuestefeld T, Bort R. Derivation of healthy hepatocyte-like cells from a female patient with ornithine transcarbamylase deficiency through X-inactivation selection. Sci Rep 2022; 12:2308. [PMID: 35145162 PMCID: PMC8831560 DOI: 10.1038/s41598-022-06184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Autologous cell replacement therapy for inherited metabolic disorders requires the correction of the underlying genetic mutation in patient's cells. An unexplored alternative for females affected from X-linked diseases is the clonal selection of cells randomly silencing the X-chromosome containing the mutant allele, without in vivo or ex vivo genome editing. In this report, we have isolated dermal fibroblasts from a female patient affected of ornithine transcarbamylase deficiency and obtained clones based on inactivation status of either maternally or paternally inherited X chromosome, followed by differentiation to hepatocytes. Hepatocyte-like cells derived from these clones display indistinct features characteristic of hepatocytes, but express either the mutant or wild type OTC allele depending on X-inactivation pattern. When clonally derived hepatocyte-like cells were transplanted into FRG® KO mice, they were able to colonize the liver and recapitulate OTC-dependent phenotype conditioned by X-chromosome inactivation pattern. This approach opens new strategies for cell therapy of X-linked metabolic diseases and experimental in vitro models for drug development for such diseases.
Collapse
Affiliation(s)
- Ramon Santamaria
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Maria Ballester
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Guillem Garcia-Llorens
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biochemistry and Molecular Biology Department, Universidad de Valencia, Valencia, Spain
| | - Francisco Martinez
- Genetics Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - Marina Blazquez
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Coeliac Disease and Inmunopathology Research Unit, Instituto de Investigación Sanitaria La Fe, Pediatric Gastroenterology, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - Jose V Castell
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biochemistry and Molecular Biology Department, Universidad de Valencia, Valencia, Spain
| | - Torsten Wuestefeld
- Laboratory for In Vivo Genetics & Gene Therapy, Genome Institute of Singapore, A*STAR & National Cancer Centre Singapore, School of Biological Science, SingHealth & Adj. Ass.-Prof. Nanyang Technological University, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Roque Bort
- Experimental Hepatology Unit, Instituto de Investigación Sanitaria La Fe, CIBERehd, Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
20
|
Perikamana SKM, Seale N, Hoque J, Ryu JH, Kumar V, Shih YV, Varghese S. Molecularly Tailored Interface for Long-Term Xenogeneic Cell Transplantation. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2108221. [PMID: 37920452 PMCID: PMC10622113 DOI: 10.1002/adfm.202108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/04/2023]
Abstract
Encapsulation of therapeutic cells in a semipermeable device can mitigate the need for systemic immune suppression following cell transplantation by providing local immunoprotection while being permeable to nutrients, oxygen, and different cell-secreted biomolecules. However, fibrotic tissue deposition around the device has been shown to compromise the long-term function of the transplanted cells. Herein, a macroencapsulation device design that improves long-term survival and function of the transplanted cells is reported. The device is comprised of a semipermeable chitosan pouch with a tunable reservoir and molecularly engineered interface. The chitosan pouch interface decorated with 1,12-dodecanedioic acid (DDA), limits the cell adhesion and vigorous foreign body response while maintaining the barrier properties amenable to cell encapsulation. The device provides long-term protection to the encapsulated human primary hepatocytes in the subcutaneous space of immunocompetent mice. The device supports the encapsulated cells for up to 6 months as evident from cell viability and presence of human specific albumin in circulation. Solutions that integrate biomaterials and interfacial engineering such as the one described here may advance development of easy-to manufacture and retrievable devices for the transplantation of therapeutic cells in the absence of immunosuppression.
Collapse
Affiliation(s)
| | - Nailah Seale
- Department of Bioengineering University of California-San Diego La Jolla, CA 92093, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Vardhman Kumar
- Department of Biomedical Engineering Duke University Durham, NC 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
- Department of Biomedical Engineering Duke University Durham, NC 27710, USA
- Department of Mechanical Engineering and Materials Science Duke University Durham, NC 27710, USA
| |
Collapse
|
21
|
Giancotti A, D'Ambrosio V, Corno S, Pajno C, Carpino G, Amato G, Vena F, Mondo A, Spiniello L, Monti M, Muzii L, Bosco D, Gaudio E, Alvaro D, Cardinale V. Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy 2022; 24:376-384. [DOI: 10.1016/j.jcyt.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
|
22
|
Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells 2021; 11:cells11010024. [PMID: 35011586 PMCID: PMC8750013 DOI: 10.3390/cells11010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success. The aim of this study was to investigate in vitro the immunological properties of human pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs). These cells expressed MHC class I molecules while they lacked MHC class II and co-stimulatory molecules, such as CD80 and CD86. Following stimulation with IFN-γ, HLCs upregulated CD40, PD-L1 and MHC class I molecules. When co-cultured with allogeneic T cells, HLCs did not induce T cell proliferation; furthermore, when T cells were stimulated via αCD3/CD28 beads, HLCs inhibited their proliferation via IDO1 and tryptophan deprivation. These results demonstrate that PSC-derived HLCs possess immunoregulatory functions, at least in vitro.
Collapse
|
23
|
Ogasawara H, Inagaki A, Fathi I, Imura T, Yamana H, Saitoh Y, Matsumura M, Fukuoka K, Miyagi S, Nakamura Y, Ohashi K, Unno M, Kamei T, Goto M. Preferable Transplant Site for Hepatocyte Transplantation in a Rat Model. Cell Transplant 2021; 30:9636897211040012. [PMID: 34525872 PMCID: PMC8450989 DOI: 10.1177/09636897211040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intraportal injection is regarded as the current standard procedure of hepatocyte transplantation (HTx). In islet transplantation, which shares many aspects with HTx, recent studies have clarified that instant blood-mediated inflammatory reaction (IBMIR), characterized by strong innate immune responses, can cause poor engraftment, so other transplant sites to avoid such a reaction have been established. Although IBMIR was reported to occur in HTx, few reports have evaluated alternative transplant sites for HTx. In this study, we sought to determine the optimum transplant site for HTx. Rat hepatocytes (1.0 × 107) were transplanted at the 9 transplant sites (intraportal (IPO), intrasplenic (IS), liver parenchyma, subcutaneous, intraperitoneal, renal subcapsular, muscle, inguinal subcutaneous white adipose tissue, and omentum) of analbuminemic rats. The serum albumin levels, immunohistochemical staining (albumin, TUNEL, and BrdU), and in vivo imaging of the grafts were evaluated. The serum albumin levels of the IPO group were significantly higher than those of the other groups (p < .0001). The BrdU-positive hepatocyte ratio of liver in the IS group (0.9% ± 0.2%) was comparable to that of the IPO group (0.9% ± 0.3%) and tended to be higher than that of the spleen in the IS group (0.5% ± 0.1%, p = .16). Considering the in vivo imaging evaluation and the influence of splenectomy, the graft function in the IS group may be almost entirely achieved by hepatocytes that have migrated to the liver. The present study clearly showed that the intraportal injection procedure is more efficient than other procedures for performing HTx
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Yamana
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneyuki Matsumura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Fukuoka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Ohashi
- Laboratory of Drug Development and Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Zhang W, Lanzoni G, Hani H, Overi D, Cardinale V, Simpson S, Pitman W, Allen A, Yi X, Wang X, Gerber D, Prestwich G, Lozoya O, Gaudio E, Alvaro D, Tokaz D, Dominguez-Bendala J, Adin C, Piedrahita J, Mathews K, Sethupathy P, Carpino G, He Z, Wauthier E, Reid LM. Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials 2021; 277:121067. [PMID: 34517276 DOI: 10.1016/j.biomaterials.2021.121067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥107th organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites. Hyaluronan coatings (~200-300 Pa) onto the serosal surface of the graft served to minimize adhesions with neighboring organs. The organ's clearance of hyaluronans enabled restoration of tissue-specific paracrine and systemic signaling, resulting in return of normal hepatic histology, with donor parenchymal cells uniformly integrated amidst host cells and that had differentiated to mature hepatocytes and cholangiocytes. Grafts containing donor mature hepatocytes, partnered with endothelia, and in the same graft biomaterials as for stem/progenitor organoids, did not engraft. Engraftment occurred if porcine liver-derived mesenchymal stem cells (MSCs) were co-transplanted with donor mature cells. RNA-seq analyses revealed that engraftment correlated with expression of matrix-metalloproteinases (MMPs), especially secreted isoforms that were found expressed strongly by organoids, less so by MSCs, and minimally, if at all, by adult cells. Engraftment with patch grafting strategies occurred without evidence of emboli or ectopic cell distribution. It was successful with stem/progenitor organoids or with cells with a source(s) of secreted MMP isoforms and offers significant potential for enabling cell therapies for solid organs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Giacomo Lanzoni
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Homayoun Hani
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Wendy Pitman
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Amanda Allen
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xianwen Yi
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - David Gerber
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Oswaldo Lozoya
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Debra Tokaz
- Department of Population Health and Pathobiology, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Christopher Adin
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Kyle Mathews
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Roma, Italy
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Eliane Wauthier
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lola M Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Lucena-Valera A, Perez-Palacios D, Muñoz-Hernandez R, Romero-Gómez M, Ampuero J. Wilson's disease: Revisiting an old friend. World J Hepatol 2021; 13:634-649. [PMID: 34239699 PMCID: PMC8239488 DOI: 10.4254/wjh.v13.i6.634] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson's disease (WD) is a rare condition caused by copper accumulation primarily in the liver and secondly in other organs, such as the central nervous system. It is a hereditary autosomal recessive disease caused by a deficiency in the ATP7B transporter. This protein facilitates the incorporation of copper into ceruloplasmin. More than 800 mutations associated with WD have been described. The onset of the disease frequently includes manifestations related to the liver (as chronic liver disease or acute liver failure) and neurological symptoms, although it can sometimes be asymptomatic. Despite it being more frequent in young people, WD has been described in all life stages. Due to its fatal prognosis, WD should be suspected in all patients with unexplained biochemical liver abnormalities or neurological or psychiatric symptoms. The diagnosis is established with a combination of clinical signs and tests, including the measurement of ceruloplasmin, urinary copper excretion, copper quantification in liver biopsy, or genetic assessment. The pharmacological therapies include chelating drugs, such as D-penicillamine or trientine, and zinc salts, which are able to change the natural history of the disease, increasing the survival of these patients. In some cases of end-stage liver disease or acute liver failure, liver transplantation must be an option to increase survival. In this narrative review, we offer an overview of WD, focusing on the importance of clinical suspicion, the correct diagnosis, and treatment.
Collapse
Affiliation(s)
- Ana Lucena-Valera
- Department of Gastroenterology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Domingo Perez-Palacios
- Department of Gastroenterology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Rocio Muñoz-Hernandez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, España
| | - Manuel Romero-Gómez
- Department of Unit of Digestive Diseases, Hospital Universitario Virgen del Rocio, Sevilla 41014, Spain
| | - Javier Ampuero
- Department of Unit of Digestive Diseases, Hospital Universitario Virgen del Rocio, Sevilla 41014, Spain.
| |
Collapse
|
26
|
Oldhafer F, Wittauer EM, Beetz O, Weigle CA, Sieg L, Eismann H, Braubach P, Bock M, Jonigk D, Johanning K, Vondran FWR. Supportive Hepatocyte Transplantation after Partial Hepatectomy Enhances Liver Regeneration in a Preclinical Pig Model. Eur Surg Res 2021; 62:238-247. [PMID: 34044396 DOI: 10.1159/000516690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocyte transplantation (HTx) is regarded as a potential treatment modality for various liver diseases including acute liver failure. We developed a preclinical pig model to evaluate if HTx could safely support recovery from liver function impairment after partial hepatectomy. METHODS Pigs underwent partial hepatectomy with reduction of the liver volume by 50% to induce a transient but significant impairment of liver function. Thereafter, 2 protocols for HTx were evaluated and compared to a control group receiving liver resection only (group 1, n = 5). Portal pressure-controlled HTx was performed either immediately after surgery (group 2, n = 6) or 3 days postoperatively (group 3, n = 5). In all cases, liver regeneration was monitored by conventional laboratory tests and the novel noninvasive maximum liver function capacity (LiMAx) test with a follow-up of 4 weeks. RESULTS Partial hepatectomy significantly impaired liver function according to conventional liver function tests as well as LiMAx in all groups. A mean of 4.10 ± 1.1 × 108 and 3.82 ± 0.7 × 108 hepatocytes were transplanted in groups 2 and 3, respectively. All animals remained stable with respect to vital parameters during and after HTx. The animals in group 2 showed enhanced liver regeneration as observed by mean postoperative LiMAx values (621.5 vs. 331.3 μg/kg/h on postoperative day 7; p < 0.001) whereas HTx in group 3 led to a significant increase in mean liver-specific coagulation factor VII (112.2 vs. 54.0% on postoperative day 7; p = 0.003) compared to controls (group 1), respectively. In both experimental groups, thrombotic material was observed in the portal veins and pulmonary arteries on histology, despite the absence of clinical symptoms. CONCLUSION HTx can be performed safely and effectively immediately after a partial (50%) hepatectomy as well as 3 days postoperatively, with comparable results regarding the enhancement of liver function and regeneration.
Collapse
Affiliation(s)
- Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany,
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Clara A Weigle
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Lion Sieg
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Hendrik Eismann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kai Johanning
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wolfgang Rudolf Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
27
|
Omer L, Hudson EA, Hudgins LC, Boyd NL. Cohort Generation and Characterization of Patient-Specific Familial Hypercholesterolemia Induced Pluripotent Stem Cells. Stem Cells Dev 2021; 30:632-640. [PMID: 34029164 DOI: 10.1089/scd.2021.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Homozygous familial hypercholesterolemia (hoFH) is a rare disorder caused primarily by pathological mutations in the low-density lipoprotein receptor (LDLR), which disrupts LDL-cholesterol (LDL-C) metabolism homeostasis. hoFH patients are at extremely high risk for cardiovascular disease and are resistant to standard therapies. LDLR knockout animals and in vitro cell models overexpressing different mutations have proved useful, but may not fully recapitulate human LDLR mutation biology. We and others have generated induced pluripotent stem cells (iPSC) from hoFH patient's fibroblasts and T cells and demonstrated their ability to recapitulate hoFH biology. In this study, we present the generation and characterization of a cohort of seven hoFH-iPSC lines derived from peripheral blood mononuclear cells (PBMC) collected from four homozygous and three compound heterozygous patients. The hoFH-iPSC cohort demonstrated a wide range of LDLR expression and LDL-C internalization in response to rosuvastatin that correlated with the predicted pathogenicity of the mutation. We were able to confirm that hoFH-iPSC cohort were pluripotent by differentiation toward all three germ layers and specifically to hepatocyte-like cells (HLC), the cell with primary LDL-C metabolic regulatory control, by expression of hepatocyte markers. hoFH patient PBMC-derived iPSC recapitulate the LDLR dysfunction of their specific mutation. They were capable of differentiating to HLC and could be useful for early developmental studies, pharmacology/toxicology, and potentially autologous cell therapy.
Collapse
Affiliation(s)
- Linda Omer
- Department of Biochemistry and Molecular Genetics and University of Louisville School of Medicine, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Elizabeth A Hudson
- Department of Biochemistry and Molecular Genetics and University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, New York, USA
| | - Nolan L Boyd
- Department of Biochemistry and Molecular Genetics and University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Deng L, Tang SG. Effect of ultraviolet irradiation on immunogenicity and biological activity of primary adult human hepatocytes. Shijie Huaren Xiaohua Zazhi 2020; 28:683-690. [DOI: 10.11569/wcjd.v28.i15.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The immune rejection of the recipient is the main factor affecting the therapeutic effect of hepatocyte transplantation, and ultraviolet can cause immunosuppression. Appropriate intensity of ultraviolet irradiation can not only reduce the immunogenicity of hepatocytes, but also avoid excessive damage to hepatocytes caused by ultraviolet irradiation, so as to better preserve the stability of hepatocytes and cell synthesis function.
AIM To investigate the effect of ultraviolet radiation on the immunogenicity and biological activity of primary adult human hepatocytes.
METHODS Hepatocytes were isolated from benign adult liver tissues by collagenase perfusion and divided into a control group (0 J/m2) and four experimental groups with different UV irradiation intensities (200, 350, 550, and 750 J/m2). Trypan blue and CCK-8 were used to detect the cell viability. Mitochondrial membrane potential changes were detected with JC-1 dye. The proliferation of recipient T cells was determined by mixed lymphocyte hepatocyte culture (MLHC). The levels of albumin and lactate dehydrogenase in culture supernatant were tested.
RESULTS The viable rate of newly isolated hepatocytes was more than 90%. CCK-8 detection revealed that the viability of hepatocytes in the 200 J/m2 group was the highest, which had no significant difference compared with that of the control group, but was significantly higher than that of other experimental groups. In the presence of JC-1 dye, the hepatocytes in the control group and the 200 J/m2 group mainly exhibited red fluorescence, and brown (350 J/m2), yellow green (550 J/m2), and green (750 J/m2) changes were noted with the increase of irradiation intensity. The OD value of the 200 J/m2 group was the highest, which had no significant difference compared with that of the control group, indicating that the membrane potential of hepatocytes was stable and the cell activity was the best; with the increase of irradiation intensity, the membrane potential of hepatocytes decreased significantly. The MLHC test showed that the 200 J/m2-irradiated hepatocytes had a significantly reduced lymphocyte proliferative ability compared with the control group, while that in the 350, 550, and 750 J/m2 irradiation groups was increased. Biochemical test showed that the level of albumin was the highest in the 200 J/m2 group, which had no difference compared with that of the control group. On the third day of culture, the secretory and synthetic functions of hepatocytes were in the best state.
CONCLUSION Ultraviolet radiation at an intensity of 200 J/m2 can reduce the ability of adult primary hepatocytes to cause T cell proliferation, while the vitality and synthesis function of hepatocytes are well preserved.
Collapse
Affiliation(s)
- Lan Deng
- Department of Infectious Diseases, Peoples' Hospital of Hunan Province/First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Shi-Gang Tang
- Department of Infectious Diseases, Peoples' Hospital of Hunan Province/First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
29
|
Liao N, Shi Y, Wang Y, Liao F, Zhao B, Zheng Y, Zeng Y, Liu X, Liu J. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res Ther 2020; 11:237. [PMID: 32546282 PMCID: PMC7298967 DOI: 10.1186/s13287-020-01763-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although it has been preclinically suggested that adipose tissue-derived mesenchymal stem cell (ADSC)-based therapy could effectively treat chronic liver diseases, the hepatic engraftment of ADSCs is still extremely low, which severely limits their long-term efficacy for chronic liver diseases. This study was designed to investigate the impact of antioxidant preconditioning on hepatic engraftment efficiency and therapeutic outcomes of ADSC transplantation in liver fibrotic mice. METHODS Liver fibrosis model was established by using intraperitoneal injection of carbon tetrachloride (CCl4) in the male C57BL/6 mice. Subsequently, the ADSCs with or without antioxidant pretreatment (including melatonin and reduced glutathione (GSH)) were administrated into fibrotic mice via tail vein injection. Afterwards, the ADSC transplantation efficiency was analyzed by ex vivo imaging, and the liver functions were assessed by biochemical analysis and histopathological examination, respectively. Additionally, a typical hydrogen peroxide (H2O2)-induced cell injury model was applied to mimic the cell oxidative injury to further investigate the protective effects of antioxidant preconditioning on cell migration, proliferation, and apoptosis of ADSCs. RESULTS Our data showed that antioxidant preconditioning could enhance the therapeutic effects of ADSCs on liver function recovery by reducing the level of AST, ALT, and TBIL, as well as the content of hepatic hydroxyproline and fibrotic area in liver tissues. Particularly, we also found that antioxidant preconditioning could enhance hepatic engraftment efficiency of ADSCs in liver fibrosis model through inhibiting oxidative injury. CONCLUSIONS Antioxidant preconditioning could effectively improve therapeutic effects of ADSC transplantation for liver fibrosis through enhancing intrahepatic engraftment efficiency by reducing oxidative injuries. These findings might provide a practical strategy for enhancing ADSC transplantation and therapeutic efficiency.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Fangyu Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China. .,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
30
|
Exposure of von Willebrand Factor on Isolated Hepatocytes Promotes Tethering of Platelets to the Cell Surface. Transplantation 2020; 103:1630-1638. [PMID: 30896677 DOI: 10.1097/tp.0000000000002707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatocyte transplantation (Hctx) is a potentially attractive method for the treatment of acute liver failure and liver-based metabolic disorders. Unfortunately, the procedure is hampered by the instant blood-mediated inflammatory reaction (IBMIR), a thromboinflammatory response elicited by the vascular innate immune system, causing activation of the coagulation and complement systems and clearance of transplanted cells. Observations have also revealed platelets adhered to the surface of the hepatocytes (Hc). To establish Hctx as a clinical treatment, all factors that trigger IBMIR need to be identified and controlled. This work explores the expression of von Willebrand factor (VWF) on isolated Hc resulting in tethering of platelets. METHODS VWF on Hc was studied by flow cytometry, confocal microscopy, immunoblot, and real-time polymerase chain reaction. Interaction between Hc and platelets was studied in a Chandler loop model. Adhesion of platelets to the hepatocyte surface was demonstrated by flow cytometry and confocal microscopy. RESULTS Isolated Hc constitutively express VWF on their cell surface and mRNA for VWF was found in the cells. Hc and platelets, independently of coagulation formed complexes, were shown by antibody blocking studies to be dependent on hepatocyte-associated VWF and platelet-bound glycoprotein Ibα. CONCLUSIONS VWF on isolated Hc causes, in contact with blood, adhesion of platelets, which thereby forms an ideal surface for coagulation. This phenomenon needs to be considered in hepatocyte-based reconstitution therapy and possibly even in other settings of cell transplantation.
Collapse
|
31
|
Iwanaka T, Yamaza T, Sonoda S, Yoshimaru K, Matsuura T, Yamaza H, Ohga S, Oda Y, Taguchi T. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res Ther 2020; 11:134. [PMID: 32213198 PMCID: PMC7093986 DOI: 10.1186/s13287-020-01630-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human deciduous pulp stem cells (hDPSCs) have remarkable stem cell potency associated with cell proliferation, mesenchymal multipotency, and immunosuppressive function and have shown beneficial effects in a variety of animal disease models. Recent studies demonstrated that hDPSCs exhibited in vivo anti-fibrotic and anti-inflammatory action and in vivo hepatogenic-associated liver regeneration, suggesting that hDPSCs may offer a promising source with great clinical demand for treating liver diseases. However, how to manufacture ex vivo large-scale clinical-grade hDPSCs with the appropriate quality, safety, and preclinical efficacy assurances remains unclear. METHODS We isolated hDPSCs from human deciduous dental pulp tissues formed by the colony-forming unit-fibroblast (CFU-F) method and expanded them under a xenogeneic-free and serum-free (XF/SF) condition; hDPSC products were subsequently stored by two-step banking including a master cell bank (MCB) and a working cell bank (WCB). The final products were directly thawed hDPSCs from the WCB. We tested the safety and quality check, stem cell properties, and preclinical potentials of final hDPSC products and hDPSC products in the MCB and WCB. RESULTS We optimized manufacturing procedures to isolate and expand hDPSC products under a XF/SF culture condition and established the MCB and the WCB. The final hDPSC products and hDPSC products in the MCB and WCB were validated the safety and quality including population doubling ability, chromosome stability, microorganism safety, and stem cell properties including morphology, cell surface marker expression, and multipotency. We also evaluated the in vivo immunogenicity and tumorigenicity and validated in vivo therapeutic efficacy for liver regeneration in a CCl4-induced chronic liver fibrosis mouse model in the final hDPSC products and hDPSC products in the WCB. CONCLUSION The manufacture and quality control results indicated that the present procedure could produce sufficient numbers of clinical-grade hDPSC products from a tiny deciduous dental pulp tissue to enhance clinical application of hDPSC products in chronic liver fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Iwanaka
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
32
|
Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020; 9:cells9020420. [PMID: 32059501 PMCID: PMC7072243 DOI: 10.3390/cells9020420] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The liver is a very complex organ that ensures numerous functions; it is thus susceptible to multiple types of damage and dysfunction. Since 1983, orthotopic liver transplantation (OLT) has been considered the only medical solution available to patients when most of their liver function is lost. Unfortunately, the number of patients waiting for OLT is worryingly increasing, and extracorporeal liver support devices are not yet able to counteract the problem. In this review, the current and expected methodologies in liver regeneration are briefly analyzed. In particular, human pluripotent stem cells (hPSCs) as a source of hepatic cells for liver therapy and regeneration are discussed. Principles of hPSC differentiation into hepatocytes are explored, along with the current limitations that have led to the development of 3D culture systems and organoid production. Expected applications of these organoids are discussed with particular attention paid to bio artificial liver (BAL) devices and liver bio-fabrication.
Collapse
Affiliation(s)
- Antonietta Messina
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Eléanor Luce
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Marwa Hussein
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: ; Tel.: +33-145595138
| |
Collapse
|
33
|
Kruitwagen HS, Oosterhoff LA, van Wolferen ME, Chen C, Nantasanti Assawarachan S, Schneeberger K, Kummeling A, van Straten G, Akkerdaas IC, Vinke CR, van Steenbeek FG, van Bruggen LW, Wolfswinkel J, Grinwis GC, Fuchs SA, Gehart H, Geijsen N, Vries RG, Clevers H, Rothuizen J, Schotanus BA, Penning LC, Spee B. Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease. Cells 2020; 9:cells9020410. [PMID: 32053895 PMCID: PMC7072637 DOI: 10.3390/cells9020410] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson’s disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease.
Collapse
Affiliation(s)
- Hedwig S. Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Sathidpak Nantasanti Assawarachan
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Giora van Straten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Ies C. Akkerdaas
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Christel R. Vinke
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Leonie W.L. van Bruggen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Jeannette Wolfswinkel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Guy C.M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Sabine A. Fuchs
- Division of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Helmuth Gehart
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Niels Geijsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Robert G. Vries
- Hubrecht Organoid Technology (HUB), 3584 CT Utrecht, The Netherlands;
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Baukje A. Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| |
Collapse
|
34
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:E386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
35
|
Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells 2019; 8:cells8080914. [PMID: 31426422 PMCID: PMC6721721 DOI: 10.3390/cells8080914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
During foetal life, the liver plays the important roles of connection and transient hematopoietic function. Foetal liver cells develop in an environment called a hematopoietic stem cell niche composed of several cell types, where stem cells can proliferate and give rise to mature blood cells. Embryologically, at about the third week of gestation, the liver appears, and it grows rapidly from the fifth to 10th week under WNT/β-Catenin signaling pathway stimulation, which induces hepatic progenitor cells proliferation and differentiation into hepatocytes. Development of new strategies and identification of new cell sources should represent the main aim in liver regenerative medicine and cell therapy. Cells isolated from organs with endodermal origin, like the liver, bile ducts, and pancreas, could be preferable cell sources. Furthermore, stem cells isolated from these organs could be more susceptible to differentiate into mature liver cells after transplantation with respect to stem cells isolated from organs or tissues with a different embryological origin. The foetal liver possesses unique features given the co-existence of cells having endodermal and mesenchymal origin, and it could be highly available source candidate for regenerative medicine in both the liver and pancreas. Taking into account these advantages, the foetal liver can be the highest potential and available cell source for cell therapy regarding liver diseases and diabetes.
Collapse
|
36
|
Hyaluronan-Based Grafting Strategies for Liver Stem Cell Therapy and Tracking Methods. Stem Cells Int 2019; 2019:3620546. [PMID: 31354838 PMCID: PMC6636496 DOI: 10.1155/2019/3620546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion is essential for survival, it plays important roles in physiological cell functions, and it is an innovative target in regenerative medicine. Among the molecular interactions and the pathways triggered during cell adhesion, the binding of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, to hyaluronic acid (HA), a major component of the extracellular matrix, is a crucial step. Cell therapy has emerged as a promising treatment for advanced liver diseases; however, so far, it has led to low cell engraftment and limited cell repopulation of the target tissue. Currently, different strategies are under investigation to improve cell grafting in the liver, including the use of organic and inorganic biomatrices that mimic the microenvironment of the extracellular matrix. Hyaluronans, major components of stem cell niches, are attractive candidates for coating stem cells since they improve viability, proliferation, and engraftment in damaged livers. In this review, we will discuss the new strategies that have been adopted to improve cell grafting and track cells after transplantation.
Collapse
|
37
|
Acun A, Oganesyan R, Uygun BE. Liver Bioengineering: Promise, Pitfalls, and Hurdles to Overcome. CURRENT TRANSPLANTATION REPORTS 2019; 6:119-126. [PMID: 31289714 PMCID: PMC6615568 DOI: 10.1007/s40472-019-00236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advancements in liver bioengineering and cell therapy and future advancements to improve the field towards clinical applications. RECENT FINDINGS 3D printing, hydrogel-based tissue fabrication, and the use of native decellularized liver extracellular matrix as a scaffold are used to develop whole or partial liver substitutes. The current focus is on developing a functional liver graft through achieving a non-leaky endothelium and a fully constructed bile duct. Use of cell therapy as a treatment is less invasive and less costly compared to transplantation, however, lack of readily available cell sources with low or no immunogenicity and contradicting outcomes of clinical trials are yet to be overcome. SUMMARY Liver bioengineering is advancing rapidly through the development of in vitro and in vivo tissue and organ models. Although there are major challenges to overcome, through optimization of the current methods and successful integration of induced pluripotent stem cells, the development of readily available, patient-specific liver substitutes can be achieved.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
38
|
Miki T, Takano C, Garcia IM, Grubbs BH. Construction and Evaluation of a Subcutaneous Splenic Injection Port for Serial Intraportal Vein Cell Delivery in Murine Disease Models. Stem Cells Int 2019; 2019:5419501. [PMID: 31191676 PMCID: PMC6525820 DOI: 10.1155/2019/5419501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
The liver is the largest internal organ and the center of homeostatic metabolism. Liver-directed cell transplantation is, therefore, an attractive therapeutic option to treat various metabolic disorders as well as liver diseases. Although clinical liver-directed cell transplantation requires multiple cell injections into the portal venous system, a mouse model is lacking which allows us to perform repetitive cell injections into the portal venous system. Here, we propose a surgical model that utilizes the spleen as a subcutaneous injection port. Mouse spleens were translocated under the skin with intact vascular pedicles. Human placental stem cell transplantations were performed one week following this port construction and repeated three times. Cell distribution was analyzed by quantifying human DNA using human Alu-specific primers. About 50% of the transplanted cells were located homogeneously in the liver one hour after the splenic port injection. Fluorescent-labeled cell tracking and antihuman mitochondrion immunohistochemistry studies demonstrated that the cells localized predominantly in small distal portal branches. A similar cell distribution was observed after multiple cell injections. These data confirm that the subcutaneous splenic injection port is suitable for performing repetitive cell transplantation into the portal venous system of mouse models.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Chika Takano
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Irving M. Garcia
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, 1200 N. State Street, IRD 220, Los Angeles, CA 90033, USA
| |
Collapse
|
39
|
Iansante V, Chandrashekran A, Dhawan A. Cell-based liver therapies: past, present and future. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0229. [PMID: 29786563 DOI: 10.1098/rstb.2017.0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/16/2022] Open
Abstract
Liver transplantation represents the standard treatment for people with an end-stage liver disease and some liver-based metabolic disorders; however, shortage of liver donor tissues limits its availability. Furthermore, whole liver replacement eliminates the possibility of using native liver as a possible target for future gene therapy in case of liver-based metabolic defects. Cell therapy has emerged as a potential alternative, as cells can provide the hepatic functions and engraft in the liver parenchyma. Various options have been proposed, including human or other species hepatocytes, hepatocyte-like cells derived from stem cells or more futuristic alternatives, such as combination therapies with different cell types, organoids and cell-biomaterial combinations. In this review, we aim to give an overview of the cell therapies developed so far, highlighting preclinical and/or clinical achievements as well as the limitations that need to be overcome to make them fully effective and safe for clinical applications.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| | - Anil Chandrashekran
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| | - Anil Dhawan
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| |
Collapse
|
40
|
Agarwal N, Popovic B, Martucci NJ, Fraunhoffer NA, Soto-Gutierrez A. Biofabrication of Autologous Human Hepatocytes for Transplantation: How Do We Get There? Gene Expr 2019; 19:89-95. [PMID: 30143060 PMCID: PMC6466180 DOI: 10.3727/105221618x15350366478989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed differentiation of hepatocytes from induced pluripotent stem cells (iPSCs) holds promise as source material for treating some liver disorders. The unlimited availability of perfectly differentiated iPSC-derived hepatocytes will dramatically facilitate cell therapies. While systems to manufacture large quantities of iPSC-derived cells have been developed, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. This short review highlights important challenges and possible solutions to the current state of hepatocyte biofabrication for cellular therapies to treat liver diseases. Successful cell transplantation will require optimizing the best cell function, overcoming limitations to cell numbers and safety, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new autologous stem cell-based therapies to treat liver diseases.
Collapse
Affiliation(s)
- Nandini Agarwal
- *School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Branimir Popovic
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole J. Martucci
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas A. Fraunhoffer
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- §Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
41
|
Matsumura M, Imura T, Inagaki A, Ogasawara H, Fukuoka K, Fathi I, Miyagi S, Ohashi K, Unno M, Kamei T, Satomi S, Goto M. A Simple and Useful Predictive Assay for Evaluating the Quality of Isolated Hepatocytes for Hepatocyte Transplantation. Sci Rep 2019; 9:6166. [PMID: 30992529 PMCID: PMC6467914 DOI: 10.1038/s41598-019-42720-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
No optimal assay for assessing isolated hepatocytes before hepatocyte transplantation (HTx) has been established, therefore reliable and rapid assays are warranted. Isolated rat hepatocytes were dipped in a water bath (necrosis model), and were also cultured with Okadaic acid (apoptosis model) or vehicle, followed by cellular assessment including trypan blue exclusion (TBE) viability, ADP /ATP ratio, plating efficiency (PE), DNA quantity and ammonia elimination. Hepatocytes were transplanted into the liver of analbuminemic rats, subsequently engraftment was assessed by serum albumin and the histology of transplanted grafts. In the necrosis model, the ADP/ATP ratio was strongly and negatively correlated with the TBE (R2 = 0.559, P < 0.001). In the apoptosis model, the ADP/ATP ratio assay, PE, DNA quantification and an ammonia elimination test clearly distinguished the groups (P < 0.001, respectively). The ADP/ATP ratio, PE and DNA quantity were well-correlated and the ammonia elimination was slightly correlated with the transplant outcome. TBE could not distinguish the groups and was not correlated with the outcome. The ADP/ATP ratio assay predicted the transplant outcome. PE and DNA quantification may improve the accuracy of the retrospective (evaluations require several days) quality assessment of hepatocytes. The ADP/ATP ratio assay, alone or with a short-term metabolic assay could improve the efficiency of HTx.
Collapse
Affiliation(s)
- Muneyuki Matsumura
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, 980-0872, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, 980-0872, Sendai, Japan
| | - Hiroyuki Ogasawara
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Kengo Fukuoka
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, 980-0872, Sendai, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Kazuo Ohashi
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Susumu Satomi
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, 980-0872, Sendai, Japan. .,Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, 980-0872, Sendai, Japan.
| |
Collapse
|
42
|
Gaillard M, Tranchart H, Lainas P, Trassard O, Remy S, Dubart-Kupperschmitt A, Dagher I. Improving Hepatocyte Engraftment Following Hepatocyte Transplantation Using Repeated Reversible Portal Vein Embolization in Rats. Liver Transpl 2019; 25:98-110. [PMID: 30358068 DOI: 10.1002/lt.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocyte transplantation (HT) has emerged as a promising alternative to orthotopic liver transplantation, yet liver preconditioning is needed to promote hepatocyte engraftment. A method of temporary occlusion of the portal flow called reversible portal vein embolization (RPVE) has been demonstrated to be an efficient method of liver preconditioning. By providing an additional regenerative stimulus, repeated reversible portal vein embolization (RRPVE) could further boost liver engraftment. The aim of this study was to determine the efficiency of liver engraftment of transplanted hepatocytes after RPVE and RRPVE in a rat model. Green fluorescent protein-expressing hepatocytes were isolated from transgenic rats and transplanted into 3 groups of syngeneic recipient rats. HT was associated with RPVE in group 1, with RRPVE in group 2, and with sham embolization in the sham group. Liver engraftment was assessed at day 28 after HT on liver samples after immunostaining. Procedures were well tolerated in all groups. RRPVE resulted in increased engraftment rate in total liver parenchyma compared with RPVE (3.4% ± 0.81% versus 1.4% ± 0.34%; P < 0.001). In conclusion, RRPVE successfully enhanced hepatocyte engraftment after HT and could be helpful in the frame of failure of HT due to low cell engraftment.
Collapse
Affiliation(s)
- Martin Gaillard
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Hadrien Tranchart
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Panagiotis Lainas
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Olivier Trassard
- Institut Biomédical Bicêtre UMS32, Hôpital Bicetre, Kremlin-Bicetre, France
| | | | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Ibrahim Dagher
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| |
Collapse
|
43
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
44
|
Nicolas CT, Hickey RD, Allen KL, Du Z, Guthman RM, Kaiser RA, Amiot B, Bansal A, Pandey MK, Suksanpaisan L, DeGrado TR, Nyberg SL, Lillegard JB. Hepatocyte spheroids as an alternative to single cells for transplantation after ex vivo gene therapy in mice and pig models. Surgery 2018; 164:473-481. [PMID: 29884476 PMCID: PMC6573031 DOI: 10.1016/j.surg.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autologous hepatocyte transplantation after ex vivo gene therapy is an alternative to liver transplantation for metabolic liver disease. Here we evaluate ex vivo gene therapy followed by transplantation of single-cell or spheroid hepatocytes. METHODS Pig and mouse hepatocytes were isolated, labeled with zirconium-89 and returned to the liver as single cells or spheroids. Biodistribution was evaluated through positron emission tomography-computed tomography. Fumarylacetoacetate hydrolase-deficient pig hepatocytes were isolated and transduced with a lentiviral vector containing the Fah gene. Animals received portal vein infusion of single-cell or spheroid autologous hepatocytes after ex vivo gene delivery. Portal pressures were measured and ultrasound was used to evaluate for thrombus. Differences in engraftment and expansion of ex vivo corrected single-cell or spheroid hepatocytes were followed through histologic analysis and animals' ability to thrive off 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione. RESULTS Positron emission tomography-computed tomography imaging showed spheroid hepatocytes with increased heterogeneity in biodistribution as compared with single cells, which spread more uniformly throughout the liver. Animals receiving spheroids experienced higher mean changes in portal pressure than animals receiving single cells (P < .01). Additionally, two animals from the spheroid group developed portal vein thrombi that required systemic anticoagulation. Immunohistochemical analysis of spheroid- and single-cell-transplanted animals showed similar engraftment and expansion rates of fumarylacetoacetate hydrolase-positive hepatocytes in the liver, correlating with similar weight stabilization curves. CONCLUSION Ex vivo gene correction of autologous hepatocytes in fumarylacetoacetate hydrolase-deficient pigs can be performed using hepatocyte spheroids or single-cell hepatocytes, with spheroids showing a more heterogeneous distribution within the liver and higher risks for portal vein thrombosis and increased portal pressures.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN; Faculty of Medicine, University of Barcelona, Spain
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Kari L Allen
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN
| | | | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Aditya Bansal
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN; Pediatric Surgical Associates, Minneapolis, MN.
| |
Collapse
|
45
|
Iansante V, Dhawan A, Masmoudi F, Lee CA, Fernandez-Dacosta R, Walker S, Fitzpatrick E, Mitry RR, Filippi C. A New High Throughput Screening Platform for Cell Encapsulation in Alginate Hydrogel Shows Improved Hepatocyte Functions by Mesenchymal Stromal Cells Co-encapsulation. Front Med (Lausanne) 2018; 5:216. [PMID: 30140676 PMCID: PMC6095031 DOI: 10.3389/fmed.2018.00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte transplantation has emerged as an alternative to liver transplant for liver disease. Hepatocytes encapsulated in alginate microbeads have been proposed for the treatment of acute liver failure, as they are able to provide hepatic functions while the liver regenerates. Furthermore, they do not require immunosuppression, as the alginate protects the hepatocytes from the recipient's immune cells. Mesenchymal stromal cells are very attractive candidates for regenerative medicine, being able to differentiate into cells of the mesenchymal lineages and having extensive proliferative ability. When co-cultured with hepatocytes in two-dimensional cultures, they exert a trophic role, drastically improving hepatocytes survival and functions. In this study we aimed to (i) devise a high throughput system (HTS) to allow testing of a variety of different parameters for cell encapsulation and (ii) using this HTS, investigate whether mesenchymal stromal cells could have beneficial effects on the hepatocytes when co-encapsulated in alginate microbeads. Using our HTS platform, we observed some improvement of hepatocyte behavior with MSCs, subsequently confirmed in the low throughput analysis of cell function in alginate microbeads. Therefore, our study shows that mesenchymal stromal cells may be a good option to improve the function of hepatocytes microbeads. Furthermore, the platform developed may be used for HTS studies on cell encapsulation, in which several conditions (e.g., number of cells, combinations of cells, alginate modifications) could be easily compared at the same time.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Fatma Masmoudi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Charlotte A Lee
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Raquel Fernandez-Dacosta
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Simon Walker
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Céline Filippi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| |
Collapse
|
46
|
Matsui A, Uchida S, Hayashi A, Kataoka K, Itaka K. Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. J Control Release 2018; 285:1-11. [PMID: 29966689 DOI: 10.1016/j.jconrel.2018.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Cell transplantation therapy needs engraftment efficiency improvement of transplanted cells to the host tissues. Ex vivo transfection of a pro-survival gene to transplanted cells is a possible solution; however prolonged expression and/or genomic integration of the gene can be cancer promoting. To supply pro-survival protein only when it is needed, we used mRNA transfection, which exhibits transient protein expression profiles without the risk of genomic integration. Ex vivo transfection of mRNA encoding Bcl-2, a pro-survival factor, led to enhanced hepatocyte engraftment in both of normal and diseased mouse liver, effectively supporting liver function in a model of chronic hepatitis. The transplanted hepatocytes maintained their viability and function in the liver for at least one month, though Bcl-2 expression from mRNA was sustained for just a few days. Mechanism analyses suggest that Bcl-2 inhibits Kupffer cell-mediated hepatocyte clearance, which occurs within 2 days after transplantation. Within 2 days, hepatocytes migrated to the liver parenchyma, presumably a suitable place for the hepatocytes to survive without Bcl-2 expression. Thus, the duration of Bcl-2 expression from mRNA was sufficient to achieve prolonged engraftment. Ex vivo mRNA transfection allows supply of pro-survival factors to transplanted cells with minimal safety concerns accompanying prolonged expression, providing an effective platform to improve engraftment efficiency in cell transplantation therapy.
Collapse
Affiliation(s)
- Akitsugu Matsui
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
47
|
Gilgenkrantz H, Collin de l'Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1316-1327. [PMID: 29673755 DOI: 10.1016/j.ajpath.2018.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- INSERM U1149, Center for Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
48
|
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology 2018; 154:1258-1272. [PMID: 29428334 PMCID: PMC6237283 DOI: 10.1053/j.gastro.2018.01.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; The Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas, Madrid, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Zhang Y, Li Y, Zhang L, Li J, Zhu C. Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther 2018. [PMID: 29523186 PMCID: PMC5845383 DOI: 10.1186/s13287-018-0814-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nowadays, orthotopic liver transplantation is considered the most efficient approach to the end stage of chronic hepatic cirrhosis. Because of the limitations of orthotopic liver transplantation, stem cells are an attractive therapeutic option. Mesenchymal stem cells (MSCs) especially show promise as an alternative treatment for hepatic cirrhosis in animal models and during clinical trials. Nevertheless, the homing of transplanted MSCs to the liver occurs in limited numbers. Therefore, we review the strategies for enhancing the homing of MSCs, mainly via the delivery routes, optimizing cell culture conditions, stimulating the target sites, and genetic modification.
Collapse
Affiliation(s)
- Yongting Zhang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lili Zhang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017. Cytotherapy 2018; 20:461-476. [PMID: 29398624 DOI: 10.1016/j.jcyt.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
Collapse
|