1
|
Mari V, Angerilli V, Munari G, Scarpa M, Bao QR, Pucciarelli S, Fassan M, Spolverato G. Molecular Determinants of Peritoneal Dissemination in Gastric Adenocarcinoma. Dig Dis 2022; 41:49-65. [PMID: 35940137 DOI: 10.1159/000526333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peritoneal dissemination represents a poor prognostic indicator in gastric cancer. Despite a comprehensive molecular characterization of this disease, no peritoneal dissemination-specific signature has been identified, limiting the tailoring of the surgical and oncological treatments. In this review, we outline the available literature focusing on the role of the different molecular pathways involved in the acquisition of peritoneal metastatic dissemination. SUMMARY According to our results, several molecular determinants are associated with peritoneal carcinomatosis and are involved in several cellular and molecular carcinogenetic processes. However, a comprehensive understanding of the complex molecular landscape of gastric carcinosis is still lacking. KEY MESSAGES More efforts should be made toward the integration of molecular and histologic data to perform a risk prediction assessment of peritoneal dissemination based on molecular profiling and histological evaluation.
Collapse
Affiliation(s)
- Valentina Mari
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Marco Scarpa
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Gaya Spolverato
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| |
Collapse
|
2
|
Doubleday PF, Fornelli L, Ntai I, Kelleher NL. Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS J 2021; 288:6683-6699. [PMID: 34227245 DOI: 10.1111/febs.16111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC), and recent findings have demonstrated independent and nonredundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that the expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS, and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1 supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.
Collapse
Affiliation(s)
- Peter F Doubleday
- Department of Molecular Biosciences and Chemistry, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Department of Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | | | - Neil L Kelleher
- Department of Molecular Biosciences and Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Gao Y, Xu J, Li H, Hu Y, Yu G. Identification of Metastasis-Associated MicroRNAs in Metastatic Melanoma by miRNA Expression Profile and Experimental Validation. Front Genet 2021; 12:663110. [PMID: 33897771 PMCID: PMC8063111 DOI: 10.3389/fgene.2021.663110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
It is reported that microRNAs (miRNA) have paramount functions in many cellular biological processes, development, metabolism, differentiation, survival, proliferation, and apoptosis included, some of which are involved in metastasis of tumors, such as melanoma. Here, three metastasis-associated miRNAs, miR-18a-5p (upregulated), miR-155-5p (downregulated), and miR-93-5p (upregulated), were identified from a total of 63 different expression miRNAs (DEMs) in metastatic melanoma compared with primary melanoma. We predicted 262 target genes of miR-18a-5p, 904 miR-155-5p target genes, and 1220 miR-93-5p target genes. They participated in pathways concerning melanoma, such as TNF signaling pathway, pathways in cancer, FoxO signaling pathway, cell cycle, Hippo signaling pathway, and TGF-beta signaling pathway. We identified the top 10 hub nodes whose degrees were higher for each survival-associated miRNA as hub genes through constructing the PPI network. Using the selected miRNA and the hub genes, we constructed the miRNA-hub gene network, and PTEN and CCND1 were found to be regulated by all three miRNAs. Of note, miR-155-5p was obviously downregulated in metastatic melanoma tissues, and miR-18a-5p and miR-93-5p were obviously regulated positively in metastatic melanoma tissues. In validating experiments, miR-155-5p's overexpression inhibited miR-18a-5p's and miR-93-5p's expression, which could all significantly reduce SK-MEL-28 cells' invasive ability. Finally, miR-93-5p and its potential target gene UBC were selected for further validation. We found that miR-93-5p's inhibition could reduce SK-MEL-28 cell's invasive ability through upregulated the expression of UBC, and the anti-invasive effect was reserved by downregulation of UBC. The results show that the selected three metastasis-associated miRNAs participate in the process of melanoma metastasis via regulating their target genes, providing a potential molecular mechanism for this disease.
Collapse
Affiliation(s)
- Yunshu Gao
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwei Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Hu
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers (Basel) 2021; 13:cancers13061327. [PMID: 33809510 PMCID: PMC8001840 DOI: 10.3390/cancers13061327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Glioblastomas are very aggressive tumours without efficient treatment, where cancer stem-like cells are thought to be responsible for relapse. This pilot study investigated the metabolic discrepancies between monolayer and neurosphere cultures of two glioblastoma cell lines using transcriptomics and metabolomics. We show that the two culture systems display substantial differences regarding their metabolome and transcriptome. Specifically, we found that metabolic reactions connected to arginine biosynthesis are crucial to support the different metabolic needs of neurospheres from the two cell lines. By identifying metabolic vulnerabilities in different glioblastoma subpopulations, new therapeutic strategies may be emerging that can be explored to treat this disease. Moreover, this data set may be of great value as a resource for the scientific community. Abstract Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM.
Collapse
|
5
|
Li T, Zhu Y, Cheng F, Lu C, Jung JU, Gao SJ. Oncogenic Kaposi's Sarcoma-Associated Herpesvirus Upregulates Argininosuccinate Synthase 1, a Rate-Limiting Enzyme of the Citrulline-Nitric Oxide Cycle, To Activate the STAT3 Pathway and Promote Growth Transformation. J Virol 2019; 93:JVI.01599-18. [PMID: 30463977 PMCID: PMC6364034 DOI: 10.1128/jvi.01599-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer cells are required to rewire existing metabolic pathways to support their abnormal proliferation. We have previously shown that, unlike glucose-addicted cancers, Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells depend on glutamine rather than glucose for energy production and amino acid and nucleotide syntheses. High-level consumption of glutamine is tightly regulated and often coupled with the citrulline-nitric oxide (NO) cycle. We have found that KSHV infection accelerates nitrogen efflux by upregulating the expression of argininosuccinate synthase 1 (ASS1), a key enzyme in the citrulline-NO cycle. KSHV utilizes multiple microRNAs to upregulate ASS1 expression. Depletion of either ASS1 or inducible nitric oxide synthase (iNOS) in KSHV-transformed cells suppresses growth proliferation, abolishes colony formation in soft agar, and decreases NO generation. Furthermore, by maintaining intracellular NO levels, ASS1 expression facilitates KSHV-mediated activation of the STAT3 pathway, which is critical for virus-induced transformation. These results illustrate a novel mechanism by which an oncogenic virus hijacks a key metabolic pathway to promote growth transformation and reveal a potential novel therapeutic target for KSHV-induced malignancies.IMPORTANCE We have previously shown that Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells depend on glutamine rather than glucose for energy production and amino acid and nucleotide syntheses. In this study, we have further examined how the KSHV-reprogramed metabolic pathways are regulated and discovered that KSHV hijacks the citrulline-nitric oxide (NO) cycle to promote growth proliferation and transformation. Multiple KSHV-encoded microRNAs upregulate argininosuccinate synthase 1 (ASS1), a key enzyme in the citrulline-NO cycle. ASS1 is required for KSHV-induced proliferation, colony formation in soft agar, and NO generation of KSHV-transformed cells, which also depends on inducible nitric oxide synthase. By maintaining intracellular NO levels, ASS1 mediates KSHV activation of the STAT3 pathway, which is essential for KSHV-induced abnormal cell proliferation and transformation. These results illustrate a novel mechanism by which an oncogenic virus hijacks a key metabolic pathway to promote growth transformation and reveal a potential novel therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Tingting Li
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ying Zhu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiansu, China
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiansu, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Sun H. Identification of key genes associated with gastric cancer based on DNA microarray data. Oncol Lett 2015; 11:525-530. [PMID: 26870242 PMCID: PMC4727153 DOI: 10.3892/ol.2015.3929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 09/09/2015] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to identify genes with a differential pattern of expression in gastric cancer (GC), and to find novel molecular biomarkers for GC diagnosis and therapeutic treatment. The gene expression profile of GSE19826, including 12 GC samples and 15 normal controls, was downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) were screened in the GC samples compared with the normal controls. Two-way hierarchical clustering of DEGs was performed to distinguish the normal controls from the GC samples. The co-expression coefficient was analyzed among the DEGs using the data from COXPRESdb. The gene co-expression network was constructed based on the DEGs using Cytoscape software, and modules in the network were analyzed by ClusterOne and Bingo. Furthermore, enrichment analysis of the DEGs in the modules was performed using the Database for Annotation, Visualization and Integrated Discovery. In total, 596 DEGs in the GC samples and 57 co-expression gene pairs were identified. A total of 7 genes were enriched in the same module, for which the function was phosphate transport and which was annotated to participate in the extracellular matrix-receptor interaction pathway. These genes were collagen, type VI, α3 (COL6A3), COL1A2, COL1A1, COL5A2, thrombospondin 2, COL11A1 and COL5A1. Overall, the present study identified several biomarkers for GC using the gene expression profiling of human GC samples. The COL family is a promising prognostic marker for GC. Gene expression products represent candidate biomarkers endowed with great potential for the early screening and therapy of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- Department of Surgical Oncology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
8
|
Hyper-dependence of breast cancer cell types on the nuclear transporter Importin β1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1870-8. [PMID: 25960398 DOI: 10.1016/j.bbamcr.2015.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 12/27/2022]
Abstract
We previously reported that overexpression of members of the Importin (Imp) superfamily of nuclear transporters results in increased nuclear trafficking through conventional transport pathways in tumour cells. Here we show for the first time that the extent of overexpression of Impβ1 correlates with disease state in the MCF10 human breast tumour progression system. Excitingly, we find that targeting Impβ1 activity through siRNA is >30 times more efficient in decreasing the viability of malignant ductal carcinoma cells compared to isogenic non-transformed counterparts, and is highly potent and tumour selective at subnanomolar concentrations. Tumour cell selectivity of the siRNA effects was unique to Impβ1 and not other Imps, with flow cytometric analysis showing >60% increased cell death compared to controls concomitant with reduced nuclear import efficiency as indicated by confocal microscopic analysis. This hypersensitivity of malignant cell types to Impβ1 knockdown raises the exciting possibility of anti-cancer therapies targeted at Impβ1.
Collapse
|
9
|
Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell migration in gastric cancer cell lines. Sci Rep 2015; 5:9783. [PMID: 25928182 PMCID: PMC4415574 DOI: 10.1038/srep09783] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/19/2015] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer metastasis remains a major cause of cancer-related deaths. There is an
urgent need to develop new therapeutic approaches targeting metastatic gastric
cancer. Argininosuccinate synthetase 1 (ASS1) expression is increased in gastric
cancer. We detected the protein expression of ASS1 in human gastric cancer cell
lines (AGS, NCI-N87, and MKN45) and in murine gastric cancer cell lines (3I and
3IB2). We used vector-mediated short hairpin RNA (shRNA) expression to silence ASS1
expression in the MKN45 and 3IB2 cell lines, and analyzed the effects of this
protein on cell migration and metastasis. We demonstrated that ASS1 silencing
suppressed cell migration in the MKN45 and 3IB2 cell lines. ASS1 knockdown
significantly reduced liver metastasis in mice after the intrasplenic implantation
of 3IB2 cancer cell clones. To determine whether arginine restriction may represent
a therapeutic approach to treat gastric cancer, the sensitivity of tumor cells to
arginine depletion was determined in gastric cancer cells. Arginine depletion
significantly inhibited cell migration in the gastric cancer cell line. The
silencing of ASS1 expression in MKN45 and 3IB2 gastric cancer cells markedly
decreased STAT3 protein expression. In conclusion, our results indicate that the
ASS1 protein is required for cell migration in gastric cancer cell lines.
Collapse
|
10
|
Shan YS, Hsu HP, Lai MD, Yen MC, Luo YP, Chen YL. Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer. Oncol Rep 2014; 33:49-57. [PMID: 25333458 PMCID: PMC4254671 DOI: 10.3892/or.2014.3556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/01/2014] [Indexed: 01/22/2023] Open
Abstract
Aberrant expression of argininosuccinate synthetase (ASS1, also known as ASS) has been found in cancer cells and is involved in the carcinogenesis of gastric cancer. The aim of the present study was to investigate the level of ASS expression in human gastric cancer and to determine the possible correlations between ASS expression and clinicopathological findings. Immunohistochemistry was performed on paraffin-embedded tissues to determine whether ASS was expressed in 11 of 11 specimens from patients with gastric cancer. The protein was localized primarily to the cytoplasm of cancer cells and normal epithelium. In the Oncomine cancer microarray database, expression of the ASS gene was significantly increased in gastric cancer tissues. To investigate the clinicopathological and prognostic roles of ASS expression, we performed western blot analysis of 35 matched specimens of gastric adenocarcinomas and normal tissue obtained from patients treated at the National Cheng Kung University Hospital. The ratio of relative ASS expression (expressed as the ASS/β-actin ratio) in tumor tissues to that in normal tissues was correlated with large tumor size (P=0.007) and with the tumor, node, metastasis (TNM) stage of the American Joint Committee on Cancer staging system (P=0.031). Patients whose cancer had increased the relative expression of ASS were positive for perineural invasion and had poor recurrence-free survival. In summary, ASS expression in gastric cancer was associated with a poor prognosis. Further study of mechanisms to silence the ASS gene or decrease the enzymatic activity of ASS protein has the potential to provide new treatments for patients with gastric cancer.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Pey Luo
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| |
Collapse
|
11
|
Jones DT, Lechertier T, Mitter R, Herbert JMJ, Bicknell R, Jones JL, Li JL, Buffa F, Harris AL, Hodivala-Dilke K. Gene expression analysis in human breast cancer associated blood vessels. PLoS One 2012; 7:e44294. [PMID: 23056178 PMCID: PMC3462779 DOI: 10.1371/journal.pone.0044294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antibodies/immunology
- Antibodies/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Bevacizumab
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- In Vitro Techniques
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Microscopy, Confocal
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Oligonucleotide Array Sequence Analysis
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA Interference
- Transplantation, Heterologous
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/immunology
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Dylan T. Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tanguy Lechertier
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Richard Mitter
- Bioinformatics and Biostatistics Service, Cancer Research United Kingdom, London, United Kingdom
| | - John M. J. Herbert
- Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Roy Bicknell
- Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - J. Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ji-Liang Li
- Molecular Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Francesca Buffa
- Molecular Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Molecular Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Huang HY, Hua KT, Kuo ML. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer 2012; 118:5757-67. [PMID: 22736399 DOI: 10.1002/cncr.27565] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/23/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Annexin A1 (AnxA1) has been well-known as a glucocorticoid-regulated anti-inflammatory protein, and it is implicated in tumorigenesis in a tumor type-specific pattern. However, the role of AnxA1 in gastric cancer (GC) is indeterminate, and the underlying mechanism is not clear. The purpose of this study was to evaluate the prognostic significance and associated mechanism of AnxA1 in GC. METHODS Immunohistochemical staining was employed to analyze 118 GC patients. Both AnxA1 gain-of-function and loss-of-function approaches were performed in GC cells. Western blotting and reverse-transcription polymerase chain reaction were used for assessment of the AnxA1 regulation mechanism in GC cells. An intraperitoneal inoculation model in severe combined immunodeficient mice was used for an in vivo assay. RESULTS High AnxA1 expression was significantly associated with peritoneal metastasis (P = .009) and serosal invasion (P = .044). Cox multivariate analysis showed that high AnxA1 expression was an independent risk factor for poor overall survival in GC patients (P = .037). AnxA1 expression positively correlated with invasiveness of human GC cells both in vitro and in vivo. AnxA1 could regulate the GC cell invasion through the formyl peptide receptor (FPR)/extracellular signal-regulated kinase/integrin beta-1-binding protein pathway, and all 3 FPRs (FPR1 through FPR3) were involved in the regulation process. CONCLUSIONS High AnxA1 expression was associated with more serosal invasion, more peritoneal metastasis, and poorer overall survival in GC patients. The current study demonstrated a novel mechanism involving FPRs, extracellular signal-regulated kinases 1 and 2, and integrin beta-1-binding protein 1 by which AnxA1 regulated GC cell invasion.
Collapse
Affiliation(s)
- Tsu-Yao Cheng
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kuusisto HV, Wagstaff KM, Alvisi G, Roth DM, Jans DA. Global enhancement of nuclear localization-dependent nuclear transport in transformed cells. FASEB J 2011; 26:1181-93. [PMID: 22155563 DOI: 10.1096/fj.11-191585] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fundamental to eukaryotic cell function, nucleocytoplasmic transport can be regulated at many levels, including through modulation of the importin/exportin (Imp/Exp) nuclear transport machinery itself. Although Imps/Exps are overexpressed in a number of transformed cell lines and patient tumor tissues, the efficiency of nucleocytoplasmic transport in transformed cell types compared with nontransformed cells has not been investigated. Here we use quantitative live cell imaging of 3 isogenic nontransformed/transformed cell pairs to show that nuclear accumulation of nuclear localization signal (NLS)-containing proteins, but not their NLS-mutated derivatives, is increased up to 7-fold in MCF10CA1h human epithelial breast carcinoma cells and in simian virus 40 (SV40)-transformed fibroblasts of human and monkey origin, compared with their nontransformed counterparts. The basis for this appears to be a significantly faster rate of nuclear import in transformed cell types, as revealed by analysis using fluorescence recovery after photobleaching for the human MCF10A/MCF10CA1h cell pair. Nuclear accumulation of NLS/nuclear export signal-containing (shuttling) proteins was also enhanced in transformed cell types, experiments using the nuclear export inhibitor leptomycin B demonstrating that efficient Exp-1-mediated nuclear export was not impaired in transformed compared with nontransformed cells. Enhanced nuclear import and export efficiencies were found to correlate with 2- to 4-fold higher expression of specific Imps/Exps in transformed cells, as indicated by quantitative Western blot analysis, with ectopic expression of Imps able to enhance NLS nuclear accumulation levels up to 5-fold in nontransformed MCF10A cells. The findings indicate that transformed cells possess altered nuclear transport properties, most likely due to the overexpression of Imps/Exps. The findings have important implications for the development of tumor-specific drug nanocarriers in anticancer therapy.
Collapse
Affiliation(s)
- Henna V Kuusisto
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | |
Collapse
|
14
|
Kim HK, Kim J, Korolevich S, Choi IJ, Kim CH, Munroe DJ, Green JE. Distinctions in gastric cancer gene expression signatures derived from laser capture microdissection versus histologic macrodissection. BMC Med Genomics 2011; 4:48. [PMID: 21635755 PMCID: PMC3141377 DOI: 10.1186/1755-8794-4-48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/02/2011] [Indexed: 02/08/2023] Open
Abstract
Background Gastric cancer samples obtained by histologic macrodissection contain a relatively high stromal content that may significantly influence gene expression profiles. Differences between the gene expression signature derived from macrodissected gastric cancer samples and the signature obtained from isolated gastric cancer epithelial cells from the same biopsies using laser-capture microdissection (LCM) were evaluated for their potential experimental biases. Methods RNA was isolated from frozen tissue samples of gastric cancer biopsies from 20 patients using both histologic macrodissection and LCM techniques. RNA from LCM was subject to an additional round of T7 RNA amplification. Expression profiling was performed using Affymetrix HG-U133A arrays. Genes identified in the expression signatures from each tissue processing method were compared to the set of genes contained within chromosomal regions found to harbor copy number aberrations in the tumor samples by array CGH and to proteins previously identified as being overexpressed in gastric cancer. Results Genes shown to have increased copy number in gastric cancer were also found to be overexpressed in samples obtained by macrodissection (LS P value < 10-5), but not in array data generated using microdissection. A set of 58 previously identified genes overexpressed in gastric cancer was also enriched in the gene signature identified by macrodissection (LS P < 10-5), but not in the signature identified by microdissection (LS P = 0.013). In contrast, 66 genes previously reported to be underexpressed in gastric cancer were enriched in the gene signature identified by microdissection (LS P < 10-5), but not in the signature identified by macrodissection (LS P = 0.89). Conclusions The tumor sampling technique biases the microarray results. LCM may be a more sensitive collection and processing method for the identification of potential tumor suppressor gene candidates in gastric cancer using expression profiling.
Collapse
|
15
|
Over-expression of Ephb4 is associated with carcinogenesis of gastric cancer. Dig Dis Sci 2011; 56:698-706. [PMID: 20686847 DOI: 10.1007/s10620-010-1346-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/12/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gastric cancer is one of the most frequently diagnosed malignancies in the world. The gene expression profile and molecular grouping of gastric cancer has been a challenging task due to its inherent complexity and variation among individuals. AIMS To determine the molecular mechanism associated with gastric carcinogenesis. METHODS We analyzed the gene expression profiles of 20 cancerous tissues and their tumor-adjacent tissue from patients with gastric cancer by using a 14 K cDNA microarray. The differentially expressed genes and their products were verified by semiquantitative reverse transcription PCR (RT-PCR), western blotting and immunohistochemistry of gastric cancer and normal tissue samples. RESULTS A total of 69 genes were found to be differentially regulated in the cancerous tissue. Among them, genes such as CDH17, ETV4, S100A6, S100A11, Ephb4, and KLK10 were confirmed by RT-PCR to be up-regulated, while genes such as NK4 and PPP2R1B were down-regulated. Western blotting and immunohistochemistry indicated that Ephb4 was over-expressed and localized to the cytoplasm of gastric cancer cells. Moreover, Ephb4 protein was observed as being significantly related to tumor size and pN category (p = 0.001 and 0.007, respectively). CONCLUSIONS These newly identified genes might provide a valuable resource for understanding the molecular mechanism associated with the carcinogenesis of gastric cancer and for finding potential diagnostic markers of gastric cancer.
Collapse
|
16
|
Qureshi AA, Reis JC, Qureshi N, Papasian CJ, Morrison DC, Schaefer DM. δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens. Lipids Health Dis 2011; 10:39. [PMID: 21356098 PMCID: PMC3053241 DOI: 10.1186/1476-511x-10-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of in vitro tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in de novo cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds. RESULTS The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% - 84% (P < 0.001), and 14% - 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% - 57%; P < 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids. CONCLUSIONS This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Julia C Reis
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nilofer Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Christopher J Papasian
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - David C Morrison
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Daniel M Schaefer
- Department of Animal Sciences, University of Wisconsin, Madison, WI. 53706, USA
| |
Collapse
|
17
|
Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, Ramakrishnan SA. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int 2010; 10:45. [PMID: 21092330 PMCID: PMC3004887 DOI: 10.1186/1475-2867-10-45] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/24/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the common cancers seen in south India. Unfortunately more than 90% are advanced by the time they report to a tertiary centre in the country. There is an urgent need to characterize these cancers and try to identify potential biomarkers and novel therapeutic targets. MATERIALS AND METHODS We used 24 gastric cancers, 20 Paired normal (PN) and 5 apparently normal gastric tissues obtained from patients with non-gastric cancers (Apparently normal - AN) for the microarray study followed by validation of the significant genes (n = 63) by relative quantitation using Taqman Low Density Array Real Time PCR. We then used a custom made Quantibody protein array to validate the expression of 15 proteins in gastric tissues (4 AN, 9 PN and 9 gastric cancers). The same array format was used to study the plasma levels of these proteins in 58 patients with gastric cancers and 18 from patients with normal/non-malignant gastric conditions. RESULTS Seventeen genes (ASPN, CCL15/MIP-1δ, MMP3, SPON2, PRSS2, CCL3, TMEPAI/PMEPAI, SIX3, MFNG, SOSTDC1, SGNE1, SST, IGHA1, AKR1B10, FCGBP, ATP4B, NCAPH2) were shown to be differentially expressed between the tumours and the paired normal, for the first time. EpCAM (p = 0.0001), IL8 (p = 0.0003), CCL4/MIP-1β (p = 0.0026), CCL20/MIP-3α (p = 0.039) and TIMP1 (p = 0.0017) tissue protein levels were significantly different (Mann Whitney U test) between tumours versus AN & PN. In addition, median plasma levels of IL8, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, PDGFR-B and TIMP1 proteins were significantly different between the non-malignant group and the gastric cancer group. The post-surgical levels of EpCAM, IGFBP3, IL8, CXCL10/IP10, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, SPP1/OPN and PDGFR-B showed a uniform drop in all the samples studied. CONCLUSIONS Our study has identified several genes differentially expressed in gastric cancers, some for the first time. Some of these have been confirmed at the protein level, as well. Some of these proteins will need to be evaluated further for their potential as diagnostic biomarkers in gastric cancers and some could be useful as follow-up markers in gastric cancer.
Collapse
Affiliation(s)
- Thangarajan Rajkumar
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | | | - Gopisetty Gopal
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Kesavan Sabitha
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Sundersingh Shirley
- Dept. of Pathology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Uthandaraman M Raja
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Seshadri A Ramakrishnan
- Dept. of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| |
Collapse
|
18
|
Xie HL, Li ZY, Gan RL, Li XJ, Zhang QL, Hui M, Zhou XT. Differential gene and protein expression in primary gastric carcinomas and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. J Dig Dis 2010; 11:167-75. [PMID: 20579220 DOI: 10.1111/j.1751-2980.2010.00432.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To gain insight into the molecular events of lymph node metastasis of human gastric carcinoma. METHODS The gene expression profile of five matched primary gastric carcinomas and their lymph node metastases was analyzed by complementary DNA (cDNA) microarray. Differential genes were identified in the metastatic and corresponding primary tumor pairs. Among the differentially expressed genes, carbonic anhydrase II (CAII) and insulin-like growth factor binding protein 4 (IGFBP 4) genes were detected by RT-PCR. CTTN protein expression was examined by tissue microarray. RESULTS There was a high expression (over twofold) of 44 genes and a low expression (under twofold) of 32 genes in lymph node metastasis compared with primary gastric carcinoma, respectively. CAII mRNA was downregulated and IGFBP 4 mRNA was upregulated in paired lymph node metastases of gastric carcinomas. The overexpression of CTTN protein was related to the lymph node metastasis and the clinical stage of gastric carcinomas. CONCLUSION This study showed that there is a low expression of genes relative to growth signal and immune response in lymph node metastases, and a high expression of genes relative to growth factor, cell cycle, cell motility and adhesion in lymph node metastases compared with primary gastric carcinomas. The expression of CTTN was related to the invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Hai Long Xie
- Cancer Research Institute, Medical College of University of South China, Hengyang, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
19
|
RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation. Mol Cell Biol 2009; 30:1269-84. [PMID: 20038531 DOI: 10.1128/mcb.01328-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about how differentiating cells reorganize their cellular structure to perform specialized physiological functions. MIST1, an evolutionarily conserved transcription factor, is required for the formation of large, specialized secretory vesicles in gastric zymogenic (chief) cells (ZCs) as they differentiate from their mucous neck cell progenitors. Here, we show that MIST1 binds to highly conserved CATATG E-boxes to directly activate transcription of 6 genes, including those encoding the small GTPases RAB26 and RAB3D. We next show that RAB26 and RAB3D expression is significantly downregulated in Mist1(-)(/)(-) ZCs, suggesting that MIST1 establishes large secretory granules by inducing RAB transcription. To test this hypothesis, we transfected human gastric cancer cell lines stably expressing MIST1 with red fluorescent protein (RFP)-tagged pepsinogen C, a key secretory product of ZCs. Those cells upregulate expression of RAB26 and RAB3D to form large secretory granules, whereas control, non-MIST1-expressing cells do not. Moreover, granule formation in MIST1-expressing cells requires RAB activity because treatment with a RAB prenylation inhibitor and transfection of dominant negative RAB26 abrogate granule formation. Together, our data establish the molecular process by which a transcription factor can directly induce fundamental cellular architecture changes by increasing transcription of specific cellular effectors that act to organize a unique subcellular compartment.
Collapse
|
20
|
Sepulveda AR, Aisner DL. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2009:365-393. [DOI: 10.1016/b978-0-12-374419-7.00019-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Babyatsky M, Lin J, Yio X, Chen A, Zhang JY, Zheng Y, Twyman C, Bao X, Schwartz M, Thung S, Lawrence Werther J, Itzkowitz S. Trefoil factor-3 expression in human colon cancer liver metastasis. Clin Exp Metastasis 2008; 26:143-151. [PMID: 18979216 DOI: 10.1007/s10585-008-9224-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/15/2008] [Indexed: 01/11/2023]
Abstract
Deaths from colorectal cancer are often due to liver metastasis. Trefoil factor-3 (TFF3) is expressed by normal intestinal epithelial cells and its expression is maintained throughout the colon adenoma-carcinoma sequence. Our previous work demonstrated a correlation between TFF3 expression and metastatic potential in an animal model of colon cancer. The aim of this study was to determine whether TFF3 is expressed in human colon cancer liver metastasis (CCLM) and whether inhibiting TFF3 expression in colon cancer cells would alter their invasive potential in vitro. Human CCLMs were analyzed at the mRNA and protein level for TFF3 expression. Two highly metastatic rat colon cancer cell lines that either natively express TFF3 (LN cells) or were transfected with TFF3 (LPCRI-2 cells), were treated with two rat TFF3 siRNA constructs (si78 and si365), and analyzed in an in vitro invasion assay. At the mRNA and protein level, TFF3 was expressed in 17/17 (100%) CCLMs and 10/11 (91%) primary colon cancers, but not in normal liver tissue. By real time PCR, TFF3 expression was markedly inhibited by both siRNA constructs in LN and LPCRI-2 cells. The si365 and si78 constructs inhibited invasion by 44% and 53%, respectively, in LN cells, and by 74% and 50%, respectively, in LPCRI-2 cells. These results provide further evidence that TFF3 contributes to the malignant behavior of colon cancer cells. These observations may have relevance for designing new diagnostic and treatment approaches to colorectal cancer.
Collapse
Affiliation(s)
- Mark Babyatsky
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1069, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blatt R, Srinivasan S. Defining disease with laser precision: laser capture microdissection in gastroenterology. Gastroenterology 2008; 135:364-9. [PMID: 18619446 PMCID: PMC3736118 DOI: 10.1053/j.gastro.2008.06.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laser capture microdissection (LCM) is an efficient and precise method for obtaining pure cell populations or specific cells of interest from a given tissue sample. LCM has been applied to animal and human gastroenterology research in analyzing the protein, DNA, and RNA from all organs of the gastrointestinal system. There are numerous potential applications for this technology in gastroenterology research, including malignancies of the esophagus, stomach, colon, biliary tract, and liver. This technology can also be used to study gastrointestinal infections, inflammatory bowel disease, pancreatitis, motility, malabsorption, and radiation enteropathy. LCM has multiple advantages when compared with conventional methods of microdissection, and this technology can be exploited to identify precursors to disease, diagnostic biomarkers, and therapeutic interventions.
Collapse
|
23
|
Caretti E, Devarajan K, Coudry R, Ross E, Clapper ML, Cooper HS, Bellacosa A. Comparison of RNA amplification methods and chip platforms for microarray analysis of samples processed by laser capture microdissection. J Cell Biochem 2008; 103:556-63. [PMID: 17546586 DOI: 10.1002/jcb.21426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laser capture microdissection (LCM) permits isolation of pure cell populations from which RNA can be extracted, amplified, and subjected to microarray analysis, allowing information to be obtained on the gene expression profile of defined cell types. To avoid amplification artifacts and detect genes expressed at different levels, it is important to optimize the choice of both RNA amplification step and microarray platform. We captured by LCM the same colon cancer biopsy and conducted a cross comparison of distinct RNA amplification methods and different chip platforms. We tested two RNA amplification methods with different chemistry: the one-cycle Ovation system (NuGEN) and the two-cycle Ribo OA method (Arcturus). We also compared two different whole genome platforms, based on Affymetrix technology: the U133 plus 2.0 and the X3P array, with probe sets closer to the 3' end of transcripts. After RNA amplification, microarray analysis, and data normalization, we investigated reproducibility and correlation of different methods and arrays. Our results indicate that the Arcturus Ribo OA method is superior for both array choices, especially in combination with X3P arrays, showing the lowest variance and Spearman correlation of 0.986. The quicker NuGEN procedure, when coupled with X3P arrays, also yielded excellent results (correlation of 0.951). These observations will be useful for planning large-scale analyses of LCM-dissected clinical samples.
Collapse
Affiliation(s)
- Elena Caretti
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Xu C, Houck JR, Fan W, Wang P, Chen Y, Upton M, Futran ND, Schwartz SM, Zhao LP, Chen C, Mendez E. Simultaneous isolation of DNA and RNA from the same cell population obtained by laser capture microdissection for genome and transcriptome profiling. J Mol Diagn 2008; 10:129-34. [PMID: 18258925 DOI: 10.2353/jmoldx.2008.070131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laser capture microdissection (LCM) is used extensively for genome and transcriptome profiling. Traditionally, however, DNA and RNA are purified from separate populations of LCM-harvested cells, limiting the strength of inferences about the relationship between gene expression and gene sequence variation. There have been no published protocols for the simultaneous isolation of DNA and RNA from the same cells that are obtained by LCM of patient tissue specimens. Here we report an adaptation of the Qiagen AllPrep method that allows the purification of DNA and RNA from the same LCM-harvested cells. We compared DNA and RNA purified by the QIAamp DNA Micro kit and the PicoPure RNA Isolation kit, respectively, from LCM-collected cells from adjacent tissue sections of the same specimen. The adapted method yields 90% of DNA and 38% of RNA compared with the individual methods. When tested with the GeneChip 250K Nsp Array, the concordance rate of the single nucleotide polymorphism heterozygosity calls was 98%. When tested with the GeneChip U133 Plus 2.0 Array, the correlation coefficient of the raw gene expression was 97%. Thus, we developed a method to obtain both DNA and RNA material from a single population of LCM-harvested cells and herein discuss the strengths and limitations of this methodology.
Collapse
Affiliation(s)
- Chang Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ding Y, Xu L, Chen S, Jovanovic BD, Helenowski IB, Kelly DL, Catalona WJ, Yang XJ, Pins M, Ananthanarayanan V, Bergan RC. Characterization of a method for profiling gene expression in cells recovered from intact human prostate tissue using RNA linear amplification. Prostate Cancer Prostatic Dis 2006; 9:379-91. [PMID: 16786039 DOI: 10.1038/sj.pcan.4500888] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coupling array technology to laser capture microdissection (LCM) has the potential to yield gene expression profiles of specific cell populations within tissue. However, remaining problems with linear amplification preclude accurate expression profiling when using the low nanogram amounts of RNA recovered after LCM of human tissue. We describe a novel robust method to reliably amplify RNA after LCM, allowing direct probing of 12K gene arrays. The fidelity of amplification was demonstrated by comparing the ability of amplified RNA (aRNA) versus that of native RNA to identify differentially expressed genes between two different cell lines, demonstrating a 99.3% concordance between observations. Array findings were validated by quantitative polymerase chain reaction analysis of a randomly selected subset of 32 genes. Using LCM to recover normal (N=5 subjects) or cancer (N=3) cell populations from intact human prostate tissue, three differentially expressed genes were identified. Independent investigators have previously identified differential expression of two of these three genes, hepsin and beta-microseminoprotein, in prostate cancer. Taken together, the current study demonstrates that accurate gene expression profiling can readily be performed on specific cell populations present within complex tissue. It also demonstrates that this approach efficiently identifies biologically relevant genes.
Collapse
Affiliation(s)
- Y Ding
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Medical School and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|