1
|
Wang C, Sun X, Liu X, Wang Y, Luo J, Yang X, Liu Y. Protective effects of betaine on the early fatty liver in laying hens through ameliorating lipid metabolism and oxidative stress. Front Nutr 2024; 11:1505357. [PMID: 39654538 PMCID: PMC11627039 DOI: 10.3389/fnut.2024.1505357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Fatty liver syndrome (FLS) is a prevalent nutritional and metabolic disease that mainly occurs in caged laying hens, causing substantial losses in the poultry industry. The study was carried out to explore the protective effect and potential mechanism of betaine on early FLS. Methods There were three groups: Con group (basal diet), FLS group (Dexamethasone injection + basal diet) and betaine group (Dexamethasone injection + basal diet with 8 g/kg betaine). Birds in FLS and betaine groups were treated with subcutaneous dexamethasone injection once a day at a dosage of 4.50 mg/kg body weight for 7 days. Results The results revealed that DXM treatment significantly increased the liver index, serum aspartate aminotransferase (AST), total protein (TP), total bilirubin (TBIL), total biliary acid (TBA), total cholesterol (TC), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), and glucose (GLU) (p < 0.05). Additionally, hepatic TC and TG levels were also elevated (p < 0.05). Meanwhile, H&E and oil red O staining showed that there were a large number of vacuoles and lipid droplets in the liver of hens in FLS group. Dietary betaine addition significantly alleviated the increasing of serum TBIL, TBA and hepatic TC caused by dexamethasone treatment (p < 0.05). There existed 1,083 up- and 996 down-regulated genes in FLS group when compared with the control, and there were 169 upregulation and 405 downregulation genes in BT group when compared with FLS group. A total of 37 differential expression genes (DEGs) were rescued by betaine addition, which were related to lipid metabolism and antioxidant functions including APOC3, APOA4, G0S2, ERG28, PLA2G3, GPX4 and SLC5A8. Serum metabolomics analysis showed that 151 differential metabolites were identified in FLS group when compared with the control. Dietary betaine addition could rescue the changes of metabolites partly such as chicoric acid, gamma-aminobutyric acid, linoleic acid, telmisartan, which were associated with anti-oxidative function. In addition, RT-PCR results showed that genes involved in lipid metabolism, such as ACC, FAS, SCD1, ELOVL6, SREBP1, GR, ATGL and MTTP were markedly upregulated at the mRNA level (p < 0.05). However, dietary supplementation with betaine can reversed the expression of these genes (p < 0.05). Importantly, dietary betaine supplementation could reverse increased lipid synthesis partly by regulating PI3K/AKT/SREBP and CEBPα pathways in the liver based on western blot results (p < 0.05). Conclusion Dexamethasone treatment could establish the early FLS model in laying hens with hepatic lipid accumulation and no inflammation, which could be attenuated by dietary betaine addition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Yang L, Jiang Z, Yang L, Zheng W, Chen Y, Qu F, Crabbe MJC, Zhang Y, Andersen ME, Zheng Y, Qu W. Disinfection Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12356-12367. [PMID: 38953388 DOI: 10.1021/acs.est.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fei Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yubin Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Chen Y, Liu X, Ma J, Wang W, Li Z, Wu H, Lu Z, Zhang D, Zhang X, Zhang Y, Zhang S. Hydrangea paniculata coumarins alleviate adriamycin-induced renal lipotoxicity through activating AMPK and inhibiting C/EBPβ. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118156. [PMID: 38583729 DOI: 10.1016/j.jep.2024.118156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPβ) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPβ.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhanxi Lu
- Beijing No. 80 High School International Department, Beijing, 100102, PR China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiaoying Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yu Zhang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, 610041, PR China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
4
|
de Oliveira E Silva AM, Pereira RO, Oliveira AKDS, Harris FS, de Melo ILP, Almeida-Souza TH, Yoshime LT, Dos Santos Melo C, Lopes Dos Santos J, de Andrade-Wartha ERS, Cogliati B, Granato D, Mancini-Filho J. Ameliorative effects of aqueous extract from rosemary on oxidative stress and inflammation pathways caused by a high-fat diet in C57BL/6 mice. Appl Physiol Nutr Metab 2024; 49:459-472. [PMID: 38048548 DOI: 10.1139/apnm-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Rosemary is an herb exhibits biological properties, attenuates inflammation, oxidative stress, and improves lipid profile. Here, we evaluated the effects of rosemary aqueous extract (RE) on mice fed with a high-fat diet (HFD). Male C57BL/6 mice were administered a control diet or HFD for 10 weeks. The treated groups received RE in the diet at different concentrations: 25, 250, and 500 mg/100 g. After 10 weeks, serum concentrations of glucose, lipid, insulin, leptin, adiponectin, and cytokines were evaluated and the oxygen radical absorbance capacity was determined. Histological analysis was performed to determine the concentrations of triacylglycerides (TG), total cholesterol, cytokines, and antioxidant enzymes as well as the expression of genes involved in lipid metabolism, oxidative stress, and inflammation. The dietary RE ameliorated HFD-induced weight gain, adipose tissue weight, glucose intolerance, and insulin, leptin, and free fatty acid levels. Reduction in hepatic TG deposition was observed. The levels of inflammatory cytokines decreased, and the expression of genes involved in lipid metabolism increased. RE mitigated oxidative stress and reduced the production of reactive oxygen species in HepG2 and 3T3-L1 cells. Therefore, RE is a potential therapeutic agent for the prevention of inflammation and oxidative stress outcomes associated with obesity.
Collapse
Affiliation(s)
- Ana Mara de Oliveira E Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Raquel Oliveira Pereira
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | | | - Fernanda Santana Harris
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Illana Louise Pereira de Melo
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | | | - Luciana Tedesco Yoshime
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Caroline Dos Santos Melo
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Jymmys Lopes Dos Santos
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Feng X, Guo M, Li J, Shen Z, Mo F, Tian Y, Wang B, Wang C. The structural characterization of a novel Chinese yam polysaccharide and its hypolipidemic activity in HFD-induced obese C57BL/6J mice. Int J Biol Macromol 2024; 265:130521. [PMID: 38553396 DOI: 10.1016/j.ijbiomac.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 → 2, 6, 1 → 4, 1 → 4, 6, 1→, or 1 → 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.
Collapse
Affiliation(s)
- Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Mingzhu Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Zhanyu Shen
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Fanghua Mo
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Tian
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Binghui Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
6
|
Qubi W, Zheng J, Wang Y, Xu G, Li Y, Xiong Y, Wang Y, Liu W, Lin Y. Goat miR-92a-3p Targets APOL6 Gene to Regulate the Differentiation of Intramuscular Precursor Adipocytes. Genes (Basel) 2023; 15:57. [PMID: 38254947 PMCID: PMC10815674 DOI: 10.3390/genes15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The quality of lamb meat is positively correlated with intramuscular fat content. In recent years, a large number of studies have shown that miRNAs play an important role in the proliferation and differentiation of adipocytes. In this study, we aimed to explore the effect of miR-92a-3p on the differentiation of goat intramuscular preadipocytes. The results showed that the expression level of miR-92a-3p was low in the early stage of differentiation, reached the highest level on the third day of differentiation, and then decreased. And miR-92a-3p can inhibit the accumulation of lipid droplets and down-regulate the determinants of adipogenic differentiation. Mechanistically, by predicting target genes, we found that miR-92a-3p affects the differentiation of goat intramuscular preadipocytes and the accumulation of lipid droplets by regulating the expression of goat gene APOL6. This study provides important new information to better understand the relationship between miRNAs and the differentiation of goat intramuscular preadipocytes, thus providing a new reference for goat intramuscular adipogenesis.
Collapse
Affiliation(s)
- Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Jianying Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Guishan Xu
- College of Animal Science and Technology, Tarim University, Alar 843301, China;
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
7
|
Hatano M, Akiyama Y, Shimada S, Yagi K, Akahoshi K, Itoh M, Tanabe M, Ogawa Y, Tanaka S. Loss of KDM6B epigenetically confers resistance to lipotoxicity in nonalcoholic fatty liver disease-related HCC. Hepatol Commun 2023; 7:e0277. [PMID: 37782459 PMCID: PMC10545410 DOI: 10.1097/hc9.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yagi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Li J, Kou C, Sun T, Liu J, Zhang H. Identification and Validation of Hub Immune-Related Genes in Non-Alcoholic Fatty Liver Disease. Int J Gen Med 2023; 16:2609-2621. [PMID: 37362825 PMCID: PMC10289249 DOI: 10.2147/ijgm.s413545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common progressive liver disease worldwide. It can cause liver cancer and possibly death. Abnormal immune infiltration is involved in the progression of NAFLD. The aim of this study was to identify and validate the hub immune-related genes in NAFLD. Methods Microarray data were downloaded from Gene Expression Omnibus, and immune-related differentially expressed genes (IRDEGs) were obtained. A protein-protein interaction network was used to further screen. The diagnostic value of the IRDEGs was evaluated by receiver operating characteristic curves. Differences in immune infiltration levels were analyzed using single-sample gene set enrichment analysis. Hub IRDEGs were identified by correlation analysis with immune infiltration levels. Finally, molecular experiments were used to confirm the expression of the hub IRDEGs and explore their roles in NAFLD. Results We obtained 18 IRDEGs. Five hub genes were further identified by protein-protein interaction network, receiver operating characteristic curves and correlation analysis: AQP9, BACH2, CD4, IL17RE and S100A9. Based on functional enrichment analysis, the hub genes were enriched primarily in many immune-related pathways. In NAFLD, AQP9, CD4, and IL17RE expression was significantly reduced, whereas BACH2 and S100A9 expression was elevated. PCR, oil red O staining and triglyceride detection revealed that the knock-down of BACH2 and S100A9 reduced lipid accumulation in NAFLD cells. Conclusion This study provided insight into the profile of immune infiltration underlying NAFLD and identified AQP9, BACH2, CD4, IL17RE and S100A9 as ancillary diagnostic indicators of NAFLD. And BACH2 and S100A9 might be therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230001, People's Republic of China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tiantian Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Shakoor H, Hussein H, Al-Hassan N, Alketbi M, Kizhakkayil J, Platat C. The Muscle-Conditioned Medium Containing Protocatechuic Acid Improves Insulin Resistance by Modulating Muscle Communication with Liver and Adipose Tissue. Int J Mol Sci 2023; 24:9490. [PMID: 37298440 PMCID: PMC10253324 DOI: 10.3390/ijms24119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetes mellitus is a public health concern, affecting 10.5% of the population. Protocatechuic acid (PCA), a polyphenol, exerts beneficial effects on insulin resistance and diabetes. This study investigated the role of PCA in improving insulin resistance and the crosstalk between muscle with liver and adipose tissue. C2C12 myotubes received four treatments: Control, PCA, insulin resistance (IR), and IR-PCA. Conditioned media from C2C12 was used to incubate HepG2 and 3T3-L1 adipocytes. The impact of PCA was analyzed on glucose uptake and signaling pathways. PCA (80 µM) significantly enhanced glucose uptake in C2C12, HepG2, and 3T3-L1 adipocytes (p < 0.05). In C2C12, PCA significantly elevated GLUT-4, IRS-1, IRS-2, PPAR-γ, P-AMPK, and P-Akt vs. Control (p ≤ 0.05), and modulated pathways in IR-PCA. In HepG2, PPAR-γ and P-Akt increased significantly in Control (CM) vs. No CM, and PCA dose upregulated PPAR-γ, P-AMPK, and P-AKT (p < 0.05). In the 3T3-L1 adipocytes, PI3K and GLUT-4 expression was elevated in PCA (CM) vs. No CM. A significant elevation of IRS-1, GLUT-4, and P-AMPK was observed in IR-PCA vs. IR (p ≤ 0.001). Herein, PCA strengthens insulin signaling by activating key proteins of that pathway and regulating glucose uptake. Further, conditioned media modulated crosstalk between muscle with liver and adipose tissue, thus regulating glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (H.S.)
| |
Collapse
|
10
|
Wang M, Wang B, Zhou S, Liu J, Lu H, Wu H, Ding M, Li Y. Quercetin ameliorates chicken quality by activating the PI3K/PKB/AMPK signaling pathway in broilers. Front Vet Sci 2022; 9:951512. [PMID: 36578440 PMCID: PMC9791930 DOI: 10.3389/fvets.2022.951512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the effects and mechanism of quercetin on chicken quality in broilers. We selected 480 AA broilers (1 day old) and randomly allotted those to four treatments (negative control and 0.2, 0.4, or 0.6 g of quercetin per kg of diet) for 42 days. Compared with the control group, the supplementation with 0.4 g of quercetin significantly increased the pH45min and L * value of the thigh muscle and decreased the shearing force of the thigh muscle and breast muscle and drip loss of the thigh muscle (P < 0.05). The supplementation with 0.6 g/kg of quercetin significantly increased the pH45min and L * value of the thigh muscle, and pH45min of breast muscle and decreased the drip loss of the thigh muscle (P < 0.05). Sensory scores of meat color, tenderness, and juiciness also were improved with increasing quercetin concentration (P < 0.05). The inosinic acid (IMP) content of the breast and thigh muscles of broilers was significantly increased by supplementation with 0.6 g/kg of quercetin (P < 0.05). Supplementation with 0.2, 0.4, and 0.6 g of quercetin significantly reduced mRNA expression of L-FABP (P < 0.05, P < 0.05, and P < 0.05); supplementation with 0.4 and 0.6 g/kg of quercetin significantly increased mRNA expression of PKB and AMPKα1 (P < 0.05 and P < 0.05); supplementation with 0.6 g/kg of quercetin in the diet significantly reduced mRNA expression of SREBP1 and HMGR (P < 0.05 and P < 0.05) and significantly increased mRNA expression of CPT1 and PPARγ (P < 0.05 and P < 0.05); and supplementation with 0.2, 0.4, and 0.6 g/kg of quercetin significantly increased mRNA expression of PI3K, LPL, and Apo A1 and significantly reduced mRNA expression of ACC and FATP1 in the breast muscle of broilers (P > 0.05). PI3k, PKB, AMPK, SREBP1, and L-FABP were significantly and positively correlated with pH45min (P < 0.05); PPARγ was significantly and positively correlated with shear force (P < 0.05); CPT1 was significantly and positively correlated with the L * value (P < 0.05); and HMGR was significantly and positively correlated with drip loss (P < 0.05). In conclusion, quercetin improved the meat quality, protecting it against lipid oxidation and deposition by regulating the PI3K/PKB/AMPKα1 signaling pathway in the breast muscle of broilers.
Collapse
Affiliation(s)
- Mi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Bo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shuaishuai Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiayan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Han Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Manyi Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Yao Li
| |
Collapse
|
11
|
Gonzalez MA, Olivas IM, Bencomo‐Alvarez AE, Rubio AJ, Barreto‐Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV, Schenkel K, Reffell K, Perkins M, Nguyen N, Apaflo JN, Alvidrez E, Young JE, Lara JJ, Yan D, Senina A, Ahmann J, Varley KE, Mason CC, Eide CA, Druker BJ, Nurunnabi M, Padilla O, Bajpeyi S, Eiring AM. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med 2022; 12:e1146. [PMID: 36536477 PMCID: PMC9763536 DOI: 10.1002/ctm2.1146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.
Collapse
Affiliation(s)
- Mayra A. Gonzalez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Idaly M. Olivas
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Alfonso E. Bencomo‐Alvarez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Andres J. Rubio
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | | | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sara K. Dang
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Emily McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Gonzalo Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Katherine Schenkel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Kelaiah Reffell
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Mariah Perkins
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Nhu Nguyen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jehu N. Apaflo
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Efren Alvidrez
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Joshua J. Lara
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Dongqing Yan
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anna Senina
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jonathan Ahmann
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | | | - Clinton C. Mason
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Christopher A. Eide
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Brian J. Druker
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Osvaldo Padilla
- Department of PathologyTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sudip Bajpeyi
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Anna M. Eiring
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| |
Collapse
|
12
|
Kanno K, Kayashima Y, Tamura K, Miyara T, Baba K, Koganei M, Natsume M, Imai S. Fatty acid tryptamide from cacao elongates Drosophila melanogaster lifespan with sirtuin-dependent heat shock protein expression. Sci Rep 2022; 12:12080. [PMID: 35840713 PMCID: PMC9287426 DOI: 10.1038/s41598-022-16471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Life span is increasing in developed countries as Japan, and an aging society is becoming a problem. In fact, healthy lifespan is not extended, and it is desired to extend it by functional food. Cacao (Theobroma cacao) contains various active components and is considered a preventative agent against metabolic disease. In addition, it has long been thought that regular cacao intake extends a healthy lifespan. However, there is no direct evidence for this belief. The purpose of this study is to identify the cacao component that elongate the lifespan of D. melanogaster as a model organism and to elucidate its functional mechanism. The activation of sirtuins, a family of NAD+-dependent deacetylases, has been reported to extend the lifespans of various organisms. Heat shock factor 1 is known to be deacetylated by reaction with sirtuins, thereby inducing gene expression of various heat shock proteins by heat stress and effectively extending the lifespan of organisms. Therefore, we evaluated whether components in cacao activate sirtuins and extend the lifespan of D. melanogaster. In the process, we discovered the fatty acid tryptamide as a lifespan-elongating component of cacao. Therefore, we investigated whether the fatty acid tryptamide from cacao upregulates the genes of heat shock proteins. As a result, it was confirmed that the gene expression of multiple heat shock proteins was significantly increased. This suggests that fatty acid tryptamide may activate sirtuins, increase gene expression of heat shock proteins, and elongate the lifespan of D. melanogaster.
Collapse
Affiliation(s)
- Kiko Kanno
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi, 400-8575, Japan
| | - Kazuji Tamura
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Takako Miyara
- Meiji Seika Pharma Co., Ltd., 788, Kayama, Odawara, Kanagawa, 250-0852, Japan
| | - Kento Baba
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Megumi Koganei
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Midori Natsume
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Shinjiro Imai
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
13
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
14
|
Retraction Note: The nuclear orphan receptor Nur77 alleviates palmitate-induced fat accumulation by down-regulating G0S2 in HepG2 cells. Sci Rep 2022; 12:5309. [PMID: 35351974 PMCID: PMC8964669 DOI: 10.1038/s41598-022-09547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Wang S, Liu T, Sun L, Du H, Xu Z, Li R, Yu Y, Mao Y, Shi K. Menin regulates lipid deposition in mouse hepatocytes via interacting with transcription factor FoxO1. Mol Cell Biochem 2022; 477:1555-1568. [PMID: 35182330 DOI: 10.1007/s11010-022-04392-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly being recognized as the leading cause of chronic liver disease worldwide. Men1, encoding protein of menin, is a key causative gene of multiple endocrine neoplasia type 1 syndrome including pancreatic tumor. It is known that insulin that secretes by endocrine tissue pancreatic islets plays a critical role in hepatic metabolism. Mouse model of hemizygous deletion of Men1 was shown to have severe hepatic metabolism disorders. However, the molecular function of menin on lipid deposition in hepatocytes needs to be further studied. Transcriptome sequencing does show that expression suppression of Men1 in mouse hepatocytes widely affect signaling pathways involved in hepatic metabolism, such as fatty acid metabolism, insulin response, glucose metabolism and inflammation. Further molecular studies indicates that menin overexpression inhibits expressions of the fat synthesis genes Srebp-1c, Fas, and Acc1, the fat differentiation genes Pparγ1 and Pparγ2, and the fat transport gene Cd36, thereby inhibiting the fat accumulation in hepatocytes. The biological process of menin regulating hepatic lipid metabolism was accomplished by interacting with the transcription factor FoxO1, which is also found to be critical for lipid metabolism. Moreover, menin responds to insulin in hepatocytes and mediates its regulatory effect on hepatic metabolism. Our findings suggest that menin is a crucial mediation factor in regulating the hepatic fat deposition, suggesting it could be a potential important therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Shengxuan Wang
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Tingjun Liu
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Lili Sun
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Hongxia Du
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Zhongjin Xu
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Ranran Li
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100093, China
| | - Yongjiang Mao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian, Shandong, 271018, China.
| |
Collapse
|
16
|
Rajan P, Natraj P, Ranaweera SS, Dayarathne LA, Lee YJ, Han CH. Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells. J Vet Sci 2022; 23:e4. [PMID: 35088951 PMCID: PMC8799946 DOI: 10.4142/jvs.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the anti-adipogenic effects of flavonoids are unclear. OBJECTIVES The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. METHODS The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. RESULTS The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. CONCLUSION The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.
Collapse
Affiliation(s)
- Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
17
|
Marino M, Del Bo C, Tucci M, Venturi S, Mantegazza G, Taverniti V, Møller P, Riso P, Porrini M. A mix of chlorogenic and caffeic acid reduces C/EBPß and PPAR-γ1 levels and counteracts lipid accumulation in macrophages. Eur J Nutr 2021; 61:1003-1014. [PMID: 34698900 DOI: 10.1007/s00394-021-02714-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Chlorogenic acid (CGA) and caffeic acid (CA) are bioactive compounds in whole grains, berries, apples, some citrus fruits and coffee, which are hypothesized to promote health-beneficial effects on the cardiovascular system. This study aimed to evaluate the capacity of CGA and CA to reduce lipid accumulation in macrophages, recognized as a critical stage in the progression of atherosclerosis. Furtherly, the modulation of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor- γ1 (PPAR-γ1), as transcription factors involved in lipid metabolism, was evaluated. METHODS THP-1-derived macrophages were treated for 24 h with 0.03, 0.3, 3 and 30 μM of CGA and CA, tested alone or in combination, and a solution of oleic/palmitic acid (500 μM, 2:1 ratio). Lipid storage was assessed spectrophotometrically through fluorescent staining of cells with Nile red. C/EBPβ and PPAR-γ1 mRNA and protein levels were evaluated by RT-PCR and enzyme-linked immunosorbent assay, respectively. RESULTS The mix of CGA + CA (1:1 ratio) reduced lipid accumulation at all concentrations tested, except for the highest one. The greatest effect ( - 65%; p < 0.01) was observed at the concentration of 0.3 μM for each compound. The same concentration significantly (p < 0.01) downregulated C/EBPβ and PPAR-γ1 gene expression and reduced their protein levels at 2 h and 24 h, respectively. CONCLUSION The results indicate that the capacity of CGA + CA mix to reduce lipid storage in macrophages is mediated by a reduction in the expression of transcription factors C/EBPβ and PPAR-γ1.
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Cristian Del Bo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Samuele Venturi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014, Copenhagen K, Denmark
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| |
Collapse
|
18
|
Gao J, Zhang M, Niu R, Gu X, Hao E, Hou X, Deng J, Bai G. The combination of cinnamaldehyde and kaempferol ameliorates glucose and lipid metabolism disorders by enhancing lipid metabolism via AMPK activation. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis. LIVERS 2021. [DOI: 10.3390/livers1030011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression. Flag-pulldowns in both LiSa-2 and HepG2 cells and human primary hepatocytes revealed binding of CYLD preferentially to CSNCSN7A. This was influenced by PA treatment. Silencing of CSNCSN7B blocked lipid droplet formation caused a compensatory increase of CSNCSN7A stabilizing CYLD. Our results demonstrate that CSNCSN7A-mediated CYLD stabilization impedes hepatic steatosis. Therefore, stabilizing CSNCSN7A-CYLD interaction might be a strategy to retard hepatic steatosis.
Collapse
|
20
|
Wu L, Guo T, Deng R, Liu L, Yu Y. Apigenin Ameliorates Insulin Resistance and Lipid Accumulation by Endoplasmic Reticulum Stress and SREBP-1c/SREBP-2 Pathway in Palmitate-Induced HepG2 Cells and High-Fat Diet-Fed Mice. J Pharmacol Exp Ther 2021; 377:146-156. [PMID: 33509902 DOI: 10.1124/jpet.120.000162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is the common basis of diabetes and cardiovascular diseases, and its development is closely associated with lipid metabolism disorder. Flavonoids have definite chemical defense effects, including anti-inflammatory effects, anticancer effects, and antimutation effects. However, the function and mechanism of apigenin (AP, a kind of flavonoid) in IR are still unclear. In our study, intracellular fat accumulation model cells and high-fat diet (HFD)-fed model mice were established using palmitate (PA) and HFD. Mechanistically, we first demonstrated that AP could notably downregulate sterol regulatory element-binding protein 1c (SREBP-1c), sterol regulatory element-binding protein 2 (SREBP-2), fatty acid synthase, stearyl-CoA desaturase 1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase in PA-induced hyperlipidemic cells and mice. Functionally, we verified that AP could markedly reduce lipid accumulation in PA-induced hyperlipidemic cells and decrease the body weight, visceral fat weight, IR, and lipid accumulation in HFD-induced hyperlipidemic mice. Besides, we showed that PA could significantly downregulate endoplasmic reticulum stress (ERS)-related proteins and inhibit ERS. Furthermore, we proved that AP could reduce blood lipids by inhibiting ERS in PA-induced hyperlipidemic cells. Meanwhile, 4-phenyl butyric acid (also called ERS alleviator), like AP, could significantly reduce blood lipids and alleviate IR in HFD-fed model mice. Therefore, we concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of SREBP-1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and IR. SIGNIFICANCE STATEMENT: Apigenin, a nontoxic and naturally sourced flavonoid, has antihyperlipidemic properties in mice and hepatocyte. This study highlights a new mechanism of apigenin and proposes that these hypolipidemic effects are associated with the mitigation of endoplasmic reticulum stress and insulin resistance in diet-induced obesity. This study might provide translational insight into the prevention and treatment of apigenin in hyperlipidemia-related diseases.
Collapse
Affiliation(s)
- Liling Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingdong Guo
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ranxi Deng
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
21
|
Piras IS, Gerhard GS, DiStefano JK. Palmitate and Fructose Interact to Induce Human Hepatocytes to Produce Pro-Fibrotic Transcriptional Responses in Hepatic Stellate Cells Exposed to Conditioned Media. Cell Physiol Biochem 2021; 54:1068-1082. [PMID: 33095528 PMCID: PMC8265013 DOI: 10.33594/000000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Excessive consumption of dietary fat and sugar is associated with an elevated risk of nonalcoholic fatty liver disease (NAFLD). Hepatocytes exposed to saturated fat or sugar exert effects on nearby hepatic stellate cells (HSCs); however, the mechanisms by which this occurs are poorly understood. We sought to determine whether paracrine effects of hepatocytes exposed to palmitate and fructose produced profibrotic transcriptional responses in HSCs. METHODS We performed expression profiling of mRNA and lncRNA from HSCs treated with conditioned media (CM) from human hepatocytes treated with palmitate (P), fructose (F), or both (PF). RESULTS In HSCs exposed to CM from palmitate-treated hepatocytes, we identified 374 mRNAs and 607 lncRNAs showing significant differential expression (log2 foldchange ≥ |1|; FDR ≤0.05) compared to control cells. In HSCs exposed to CM from PF-treated hepatocytes, the number of differentially expressed genes was much higher (1198 mRNAs and 3348 lncRNAs); however, CM from fructose-treated hepatocytes elicited no significant changes in gene expression. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis and hepatic stellate cell activation in P- (FDR =1.30E-04) and PF-(FDR =9.24E-06)
groups. We observed 71 lncRNA/nearby mRNA pairs showing differential expression under PF conditions. There were 90 mRNAs and 264 lncRNAs strongly correlated between the PF group and differentially expressed transcripts from a comparison of activated and quiescent HSCs, suggesting that some of the transcriptomic changes occurring in response to PF overlap with HSC activation. CONCLUSION The results reported here have implications for dietary modifications in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | - Glenn S Gerhard
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, Ying L, Mao Y, Li Y. Effect of Quercetin on Lipids Metabolism Through Modulating the Gut Microbial and AMPK/PPAR Signaling Pathway in Broilers. Front Cell Dev Biol 2021; 9:616219. [PMID: 33634119 PMCID: PMC7900412 DOI: 10.3389/fcell.2021.616219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was conducted to investigate effects and mechanism of quercetin on lipids metabolism in broilers. 480 AA broilers were randomly allotted to four treatments (0, 0.2, 0.4, and 0.6 g/kg quercetin) for 42 days. Compared with the control, 0.6 g/kg quercetin significantly decreased percentage of abdominal fat (P < 0.05); 0.2, 0.4, and 0.6 g/kg quercetin significantly decreased relative abundance of Lachnospiraceae and Desulfovibrionaceae (P < 0.05, P < 0.05, P < 0.01; P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased mRNA expression of PI3K, AMPKα1, AMPKα2, AMPKβ2, LKB1 (P < 0.01, P < 0.01, P < 0.05, P < 0.01, P < 0.05), and significantly reduced mRNA expression of SREBP1 and PPARγ (P < 0.01, P < 0.05); 0.4 g/kg quercetin significantly increased mRNA expression of LKB1 and PKB (P < 0.05, P < 0.01) and significantly reduced mRNA expression of ACC, HMGR, PPARγ, and SREBP1 (P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.6 g/kg quercetin significantly increased mRNA expression of AMPKγ, LKB1, CPT1, PPARα, PKB (P < 0.01, P < 0.01, P < 0.01, P < 0.05, P < 0.05), and significantly reduced the mRNA expression of PI3K, ACC, HMGR, PPARγ, SREBP1 (P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased protein expression of AMPK (P < 0.01); 0.6 g/kg quercetin significantly increased protein expression of LKB1 (P < 0.01), 0.2 and 0.6 g/kg quercetin significantly increased protein expression of PI3K, PKB, CPT1 (P < 0.05, P < 0.01, P < 0.05, P < 0.01, P < 0.01, P < 0.01), and significantly reduced protein expression of ACC and SREBP1 (P < 0.01, P < 0.01, P < 0.01, P < 0.01). In conclusion, quercetin improved lipid metabolism by modulating gut microbial and AMPK/PPAR signaling pathway in broilers.
Collapse
Affiliation(s)
- Mi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.,College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Bo Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shanshan Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Han Lu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Manyi Ding
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Linlin Ying
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yanjun Mao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Zhou L, Song Z, Hu J, Liu L, Hou Y, Zhang X, Yang X, Chen K. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Am J Cancer Res 2021; 11:841-860. [PMID: 33391508 PMCID: PMC7738848 DOI: 10.7150/thno.49384] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Current endocrine therapy for prostate cancer (PCa) mainly inhibits androgen/androgen receptor (AR) signaling. However, due to increased intratumoural androgen synthesis and AR variation, PCa progresses to castration-resistant prostate cancer (CRPC), which ultimately becomes resistant to endocrine therapy. A search for new therapeutic perspectives is urgently needed. Methods: By screening lipid metabolism-related gene sets and bioinformatics analysis in prostate cancer database, we identified the key lipid metabolism-related genes in PCa. Bisulfite genomic Sequence Polymerase Chain Reaction (PCR) (BSP) and Methylation-Specific Polymerase Chain Reaction (PCR) (MSP) were preformed to detect the promoter methylation of ACSS3. Gene expression was analyzed by qRT-PCR, Western blotting, IHC and co-IP. The function of ACSS3 in PCa was measured by CCK-8, Transwell assays. LC/MS, Oil Red O assays and TG and cholesterol measurement assays were to detect the levels of TG and cholesterol in cells. Resistance to Enzalutamide in C4-2 ENZR cells was examined in a xenograft tumorigenesis model in vivo. Results: We found that acyl-CoA synthetase short chain family member 3 (ACSS3) was downregulated and predicted a poor prognosis in PCa. Loss of ACSS3 expression was due to gene promoter methylation. Restoration of ACSS3 expression in PCa cells significantly reduced LD deposits, thus promoting apoptosis by increasing endoplasmic reticulum (ER) stress, and decreasing de novo intratumoral androgen synthesis, inhibiting CRPC progression and reversing Enzalutamide resistance. Mechanistic investigations demonstrated that ACSS3 reduced LD deposits by regulating the stability of the LD coat protein perilipin 3 (PLIN3). Conclusions: Our study demonstrated that ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3.
Collapse
|
24
|
Balkrishna A, Gohel V, Singh R, Joshi M, Varshney Y, Srivastava J, Bhattacharya K, Varshney A. Tri-Herbal Medicine Divya Sarva-Kalp-Kwath (Livogrit) Regulates Fatty Acid-Induced Steatosis in Human HepG2 Cells through Inhibition of Intracellular Triglycerides and Extracellular Glycerol Levels. Molecules 2020; 25:molecules25204849. [PMID: 33096687 PMCID: PMC7587968 DOI: 10.3390/molecules25204849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Steatosis is characterized by excessive triglycerides accumulation in liver cells. Recently, application of herbal formulations has gained importance in treating complex diseases. Therefore, this study explores the efficacy of tri-herbal medicine Divya Sarva-Kalp-Kwath (SKK; brand name, Livogrit) in treating free fatty acid (FFA)-induced steatosis in human liver (HepG2) cells and rat primary hepatocytes. Previously, we demonstrated that cytosafe SKK ameliorated CCl4-induced hepatotoxicity. In this study, we evaluated the role of SKK in reducing FFA-induced cell-death, and steatosis in HepG2 through analysis of cell viability, intracellular lipid and triglyceride accumulation, extracellular free glycerol levels, and mRNA expression changes. Plant metabolic components fingerprinting in SKK was performed via High Performance Thin Layer Chromatography (HPTLC). Treatment with SKK significantly reduced the loss of cell viability induced by 2 mM-FFA in a dose-dependent manner. SKK also reduced intracellular lipid, triglyceride accumulation, secreted AST levels, and increased extracellular free glycerol presence in the FFA-exposed cells. SKK normalized the FFA-stimulated overexpression of SREBP1c, FAS, C/EBPα, and CPT1A genes associated with the induction of steatosis. In addition, treatment of rat primary hepatocytes with FFA and SKK concurrently, reduced intracellular lipid accumulation. Thus, SKK showed efficacy in reducing intracellular triglyceride accumulation and increasing extracellular glycerol release, along with downregulation of related key genetic factors for FFA-associated steatosis.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G41 1AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Yash Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Correspondence: ; Tel.: +91-1334-244-107 (ext. x7458); Fax: +91-1334-244-805
| |
Collapse
|
25
|
Korovila I, Jung T, Deubel S, Grune T, Ott C. Punicalagin Attenuates Palmitate-Induced Lipid Droplet Content by Simultaneously Improving Autophagy in Hepatocytes. Mol Nutr Food Res 2020; 64:e2000816. [PMID: 32918380 DOI: 10.1002/mnfr.202000816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/17/2022]
Abstract
SCOPE Several studies show that excessive lipid intake can cause hepatic steatosis. To investigate lipotoxicity on cellular level, palmitate (PA) is often used to highly increase lipid droplets (LDs). One way to remove LDs is autophagy, while it is controversially discussed if autophagy is also affected by PA. It is aimed to investigate whether PA-induced LD accumulation can impair autophagy and punicalagin, a natural autophagy inducer from pomegranate, can improve it. METHODS AND RESULTS To verify the role of autophagy in LD degradation, HepG2 cells are treated with PA and analyzed for LD and perilipin 2 content in presence of autophagy inducer Torin 1 and inhibitor 3-Methyladenine. PA alone seems to initially induce autophagy-related proteins but impairs autophagic-flux in a time-dependent manner, considering 6 and 24 h PA. To examine whether punicalagin can prevent autophagy impairment, cells are cotreated for 24 h with PA and punicalagin. Results show that punicalagin preserves expression of autophagy-related proteins and autophagic flux, while simultaneously decreasing LDs and perilipin 2. CONCLUSION Data provide new insights into the role of PA-induced excessive LD content on autophagy and suggest autophagy-inducing properties of punicalagin, indicating that punicalagin can be a health-beneficial compound for future research on lipotoxicity in liver.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany.,Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Cluster-Office NutriAct, Nuthetal, 14558, Germany.,German Center for Diabetes Research (DZD), Munich, Neuherberg, 85764, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany
| |
Collapse
|
26
|
Wang ZY, Jiang ZM, Xiao PT, Jiang YQ, Liu WJ, Liu EH. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur J Pharmacol 2020; 878:173103. [DOI: 10.1016/j.ejphar.2020.173103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
|
27
|
Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 2020; 235:8938-8950. [PMID: 32342523 DOI: 10.1002/jcp.29739] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
GPR81 (also named as HCA1) is a member of a subfamily of orphan G-protein coupled receptors (GPCRs), coupled to Gi -type G proteins. GPR81 was discovered in 2001 and identified as the only known endogenous receptor of lactate under physiological conditions in 2008, which opened a new field of research on how lactate may act as a signal molecule along with the GPR81 expression in the roles of metabolic process and inflammatory response. Recent studies showed that the physiological functions of GPR81 include lipid metabolism in adipose tissues, metabolic excitability in the brain, cellular development, and inflammatory response modulation. These findings may reveal a novel therapeutic strategy to treat clinical, metabolic, and inflammatory diseases. This article will summarize past research on GPR81, including its characteristics of distribution and expression, functional residues, pharmacological, and physiological agonists, involvement in signal transduction, and pharmacological applications.
Collapse
Affiliation(s)
- Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuran Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, Shandong, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruifang Ji
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
28
|
A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158582. [DOI: 10.1016/j.bbalip.2019.158582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
29
|
Du Q, Tan Z, Shi F, Tang M, Xie L, Zhao L, Li Y, Hu J, Zhou M, Bode A, Luo X, Cao Y. PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation. Cancer Sci 2019; 110:2050-2062. [PMID: 30945396 PMCID: PMC6550130 DOI: 10.1111/cas.14011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The PPAR coactivator-1α (PGC1α) is an important transcriptional co-activator in control of fatty acid metabolism. Mitochondrial fatty acid oxidation (FAO) is the primary pathway for the degradation of fatty acids and promotes NADPH and ATP production. Our previous study demonstrated that upregulation of carnitine palmitoyl transferase 1 A (CPT1A), the key regulator of FAO, promotes radiation resistance of nasopharyngeal carcinoma (NPC). In this study, we found that high expression of PGC1α is associated with poor overall survival in NPC patients after radiation treatment. Targeting PGC1α could sensitize NPC cells to radiotherapy. Mechanically, PGC1α binds to CCAAT/enhancer binding protein β (CEBPB), a member of the transcription factor family of CEBP, to promote CPT1A transcription, resulting in activation of FAO. Our results revealed that the PGC1α/CEBPB/CPT1A/FAO signaling axis promotes radiation resistance of NPC. These findings indicate that the expression of PGC1α could be a prognostic indicator of NPC, and targeting FAO in NPC with high expression of PGC1α might improve the therapeutic efficacy of radiotherapy.
Collapse
Affiliation(s)
- Qianqian Du
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Min Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Ann Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute School of Basic Medicine Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
30
|
Mazibuko-Mbeje SE, Dludla PV, Roux C, Johnson R, Ghoor S, Joubert E, Louw J, Opoku AR, Muller CJF. Aspalathin-Enriched Green Rooibos Extract Reduces Hepatic Insulin Resistance by Modulating PI3K/AKT and AMPK Pathways. Int J Mol Sci 2019; 20:ijms20030633. [PMID: 30717198 PMCID: PMC6387445 DOI: 10.3390/ijms20030633] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that an aspalathin-enriched green rooibos extract (GRE) reversed palmitate-induced insulin resistance in C2C12 skeletal muscle and 3T3-L1 fat cells by modulating key effectors of insulin signalling such as phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK). However, the effect of GRE on hepatic insulin resistance is unknown. The effects of GRE on lipid-induced hepatic insulin resistance using palmitate-exposed C3A liver cells and obese insulin resistant (OBIR) rats were explored. GRE attenuated the palmitate-induced impairment of glucose and lipid metabolism in treated C3A cells and improved insulin sensitivity in OBIR rats. Mechanistically, GRE treatment significantly increased PI3K/AKT and AMPK phosphorylation while concurrently enhancing glucose transporter 2 expression. These findings were further supported by marked stimulation of genes involved in glucose metabolism, such as insulin receptor (Insr) and insulin receptor substrate 1 and 2 (Irs1 and Irs2), as well as those involved in lipid metabolism, including Forkhead box protein O1 (FOXO1) and carnitine palmitoyl transferase 1 (CPT1) following GRE treatment. GRE showed a strong potential to ameliorate hepatic insulin resistance by improving insulin sensitivity through the regulation of PI3K/AKT, FOXO1 and AMPK-mediated pathways.
Collapse
Affiliation(s)
- Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Candice Roux
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
| | - Samira Ghoor
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
31
|
Fan L, Dou M, Wang X, Han Q, Zhao B, Hu J, Yang G, Shi X, Li X. Fermented corn-soybean meal elevated IGF1 levels in grower-finisher pigs. J Anim Sci 2018; 96:5144-5151. [PMID: 30203098 PMCID: PMC6276558 DOI: 10.1093/jas/sky361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Fermentation has attracted increasing attention in pig industry, because of low costs and numerous benefits on pig growth and health as well as environmental improvement, although the mechanisms remain largely unknown. In the present study, fermented corn-soybean meal significantly improved average daily gain and gain:food ratio (P < 0.05). Fermented feed (FF) significantly increased insulin-like growth factor 1 (IGF1) transcription in liver (P < 0.05). Meanwhile, fermented meal significantly enhanced the binding of CCAAT/enhancer-binding protein beta (C/EBPβ) to IGF1 promoter and C/EBPβ expression in liver (both P < 0.05). FF tended to increase IGF1 proteins in liver and serum too (both 0.05 < P < 0.10). Meanwhile, FF slightly but significantly increased hepatic and circulating triglyceride and total cholesterol levels, as well as serum ratio of high-density to low-density cholesterol (all P < 0.05). Our data indicated that FF could significantly augment the binding of C/EBPβ to IGF1 promoter and promote hepatic IGF1 expression and production, thus boost pig growth.
Collapse
Affiliation(s)
- Lujie Fan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Mingle Dou
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Qichun Han
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Bo Zhao
- Tongchuan Yuanheng Ecological Agriculture Co., Ltd., Tongchuan, Shaanxi, P. R. China
| | - Jianhong Hu
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xin’e Shi
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xiao Li
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
32
|
Rial SA, Ravaut G, Malaret TB, Bergeron KF, Mounier C. Hexanoic, Octanoic and Decanoic Acids Promote Basal and Insulin-Induced Phosphorylation of the Akt-mTOR Axis and a Balanced Lipid Metabolism in the HepG2 Hepatoma Cell Line. Molecules 2018; 23:molecules23092315. [PMID: 30208604 PMCID: PMC6225498 DOI: 10.3390/molecules23092315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance.
Collapse
Affiliation(s)
- Sabri Ahmed Rial
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Gaetan Ravaut
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Tommy B Malaret
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Karl-F Bergeron
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Catherine Mounier
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| |
Collapse
|