1
|
Dashti NR, Fadavi D, Rezaei R, Rahgozar S, Moafi A. Circulating lncRNA HOTAIR is a biomarker for pediatric acute lymphoblastic leukemia and mediator of miR-326 exosomal export. Sci Rep 2025; 15:4901. [PMID: 39929912 PMCID: PMC11811015 DOI: 10.1038/s41598-025-87857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the most common cancer in children worldwide. In the present investigation, the circulating RNAs (circRNAs) HOTAIR, NEAT1, H19, PCAT1, and SNHG1 were selected as potential biomarkers for childhood ALL (pALL) based on their predicted interactions with miR-326, a recognized tumor suppressor implicated in pALL, along with comprehensive in silico analyses. Subsequently, the expression levels of the circRNAs were examined in 50 pALL samples and 20 healthy controls using RT-qPCR. Notably, HOTAIR was identified as a 95% specific biomarker of cancer susceptibility, exhibiting a substantial increase in expression within the bone marrow plasma and peripheral blood samples. 22 B-ALL patients with elevated relative expression levels of circHOTAIR (≥ 1.87) were then monitored at three distinct time intervals during chemotherapy. Results demonstrated a significant decrease in HOTAIR expression only among treatment-sensitive patients (P < 0.0001). This finding positions HOTAIR as a novel prognostic factor (AUC = 0.955), which may be used for monitoring the efficacy of chemotherapy in a non-invasive, cost-effective manner. Additionally, the regulatory inter-connection between HOTAIR and miR-326 was investigated by transfecting B-ALL RN-95 cells with exogenous miR-326. Data showed a time-dependent increase in cytoplasmic HOTAIR levels, alongside RAB35, resulting in a corresponding reduction in the cytoplasmic and exosomal miR-326 levels. While the results are preliminary due to the sample size, this study is the first to identify circHOTAIR as both a prognostic and diagnostic biomarker in B-ALL. Furthermore, it elucidates the role of HOTAIR as a sponge for miR-326, orchestrating its efflux from the cell via exosomes through RAB35.
Collapse
Affiliation(s)
- Neda Rahimi Dashti
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Dorsa Fadavi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Razieh Rezaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran.
| | - Alireza Moafi
- Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Gu X, Hu X, Zhang S, Zhang X, Wang Y, Li L. The diagnostic and prognostic significance of HOXC13-AS and its molecular regulatory mechanism in human cancer. Front Mol Biosci 2025; 12:1540048. [PMID: 39981436 PMCID: PMC11839424 DOI: 10.3389/fmolb.2025.1540048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.
Collapse
Affiliation(s)
- Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Yao K, Fan H, Yang T, Yang C, Wang G, Li X, Ji XY, Wang Q, Lv S, Guo S. Identification of MYC and STAT3 for early diagnosis based on the long noncoding RNA-mRNA network and bioinformatics in colorectal cancer. Front Immunol 2025; 15:1497919. [PMID: 39830506 PMCID: PMC11739134 DOI: 10.3389/fimmu.2024.1497919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Background Colorectal cancer (CRC) ranks among the top three cancers globally in both incidence and mortality, posing a significant public health challenge. Most CRC cases are diagnosed at intermediate to advanced stages, and reliable biomarkers for early detection are lacking. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including CRC, playing key roles in tumor development, progression, and prognosis. Methods A comprehensive search of the PubMed database was conducted to identify relevant studies on the early diagnosis of CRC. Bioinformatics analysis was performed to explore lncRNA-mRNA networks, leading to the identification of five potential blood biomarkers. Expression analysis was carried out using the GEPIA and GEO online databases, focusing on MYC and STAT3. Differential expression between normal and CRC tissues was assessed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the diagnostic potential of these markers. Quantitative Real-Time PCR (qRT-PCR) was performed to validate MYC and STAT3 expression levels, and findings were further confirmed using the Human Protein Atlas (HPA) database. Results Database analysis revealed significant differential expression of MYC and STAT3 between normal and CRC tissues. ROC analysis demonstrated the diagnostic potential of these markers. qRT-PCR validation confirmed the differential expression patterns observed in the databases. Validation through the HPA database further supported these findings, confirming the potential of MYC and STAT3 as diagnostic biomarkers for CRC. Conclusion Our results suggest that MYC and STAT3 are promising diagnostic biomarkers for CRC, offering new insights into its pathophysiology and potential for targeted therapies.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Tiancheng Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Can Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Guibin Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Shaojiang Lv
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Shihao Guo
- Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Liu X, Zhang W, Wei S, Liang X, Luo B. Targeting cuproptosis with nano material: new way to enhancing the efficacy of immunotherapy in colorectal cancer. Front Pharmacol 2024; 15:1451067. [PMID: 39691393 PMCID: PMC11649426 DOI: 10.3389/fphar.2024.1451067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Colorectal cancer has emerged as one of the predominant malignant tumors globally. Immunotherapy, as a novel therapeutic methodology, has opened up new possibilities for colorectal cancer patients. However, its actual clinical efficacy requires further enhancement. Copper, as an exceptionally crucial trace element, can influence various signaling pathways, gene expression, and biological metabolic processes in cells, thus playing a critical role in the pathogenesis of colorectal cancer. Recent studies have revealed that cuproptosis, a novel mode of cell death, holds promise to become a potential target to overcome resistance to colorectal cancer immunotherapy. This shows substantial potential in the combination treatment of colorectal cancer. Conveying copper into tumor cells via a nano-drug delivery system to induce cuproptosis of colorectal cancer cells could offer a potential strategy for eliminating drug-resistant colorectal cancer cells and vastly improving the efficacy of immunotherapy while ultimately destroy colorectal tumors. Moreover, combining the cuproptosis induction strategy with other anti-tumor approaches such as photothermal therapy, photodynamic therapy, and chemodynamic therapy could further enhance its therapeutic effect. This review aims to illuminate the practical significance of cuproptosis and cuproptosis-inducing nano-drugs in colorectal cancer immunotherapy, and scrutinize the current challenges and limitations of this methodology, thereby providing innovative thoughts and references for the advancement of cuproptosis-based colorectal cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Wanqiu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Shaozhong Wei
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Abdominal Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| |
Collapse
|
5
|
Arega S, Dey S, Pani S, Dash SR, Budhwar R, Kundu CN, Ganguly N. Determining the effect of long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) on the transcriptome profile in cervical cancer cell lines. Genomics 2024; 116:110957. [PMID: 39510199 DOI: 10.1016/j.ygeno.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the role of the long non-coding RNA Maternally Expressed Gene3 (lncRNA MEG3) gene in cervical cancer, as evidenced by its downregulation in cancerous cell lines. The study demonstrates the effects of the overexpression of lncRNA MEG3 in cervical cancer cell lines, particularly in C33A and CaSki. Through comprehensive analyses, including Next-Generation Sequencing (NGS), alterations in global mRNA expression were analyzed. In C33A cells, 67 genes were upregulated, while 303 genes were downregulated. Similarly, in CaSki cells, 221 genes showed upregulation and 248 genes displayed downregulation. Gene ontology and KEGG pathway analyses were conducted to gain insight into potential mechanisms. Furthermore, the study delves into gene regulatory networks, uncovering intricate interactions among genes. The RNA sequencing data were confirmed for eight genes: PAX3, EGR2, ROR1, NRP1, OAS2, STRA6, CA9, and EDN2 by Real-time PCR. The findings illuminate the complex landscape of gene expression alterations and pathways impacted by the overexpression of lncRNA MEG3. The impact of MEG3 on the overall cervical cancer cells' mRNA profile is reported for the first time. New biomarkers for the prognosis of cervical cancer are also reported in this study. Moreover, identifying specific genes within the regulatory networks provides valuable insights into potential therapeutic targets for managing cervical cancer.
Collapse
Affiliation(s)
- Solomon Arega
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India.
| | - Suchanda Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sunil Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Somya Ranjan Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd, Bangalore 560043, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Niladri Ganguly
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
6
|
Karamzadeh AR, Heidari M, Namazi A, Tabaeian SP, Akbari A. The dysregulation and clinical relevance of lncRNAs MYOSLID and SFTA1P in colorectal cancer patients. Mol Biol Rep 2024; 51:1109. [PMID: 39476151 DOI: 10.1007/s11033-024-10020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a very common cancer worldwide. CRC is characterized by some changes in the expression of oncogenic and tumor suppressor genes. These changes are associated with dysregulation of non-coding RNAs, including long non-coding RNAs (lncRNAs). LncRNAs are heterogeneous non-coding molecules without open reading frames. LncRNAs have been established as regulators in the development of CRC and clinical biomarkers for the CRC detection. In this project, we investigated the expression changes of two new lncRNAs named SFTA1P and MYOSLID in CRC patients. MATERIALS AND METHODS 30 samples of CRC tissue and 30 samples of normal tissue adjacent to the cancer tissue were obtained from patients. RNA extraction from tissue samples was performed using RNAX plus. ExcelRT™ Reverse Transcription Kit (SymBio, Korea) was used for cDNA synthesis. RealQ Plus 2x Master Mix Green Without ROX™ was used to perform a quantitative PCR (qPCR). REST, and SPSS software were used for statistical analysis. RESULT Our result demonstrated that lncRNAs MYOSLID and SFTA1P were significantly up-regulated in tumor tissues compared to healthy tissues with a fold change of 13.43 and 5.33 (P < 0.05) respectively. Based on the analysis of ROC curve, MYOSLID (AUC = 0.946, P < 0.0001, SE =0.0035) and SFTA1P (AUC = 0.800, P < 0.0001, SE = 0.059) were indicated as potential clinical hallmarks for CRC patients. CONCLUSION According to the results obtained from this research, lncRNAs SFTA1P and MYOSLID can be suggested as molecular biomarkers for the CRC diagnosis.
Collapse
Affiliation(s)
- Amir Reza Karamzadeh
- Department of Genetic, Faculty of Sciences, Islamic Azad University of Qom, Qom, Iran
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mansour Heidari
- Department of Genetic, Faculty of Sciences, Islamic Azad University of Qom, Qom, Iran
- Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abolfazl Namazi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
8
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
9
|
Tian J, Cao X, Jiang Z, Wang J, Fan W, Zhang S, Zhao S, Sun J. LncRNA CCAT2 promotes the proliferation and metastasis of colorectal cancer through activation of the ERK and Wnt signaling pathways by regulating GNB2 expression. Cancer Med 2024; 13:e70169. [PMID: 39225546 PMCID: PMC11369988 DOI: 10.1002/cam4.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent and lethal tumor, with metastasis being the leading cause of mortality. Previous research has indicated that the long non-coding RNA (lncRNA) CCAT2 is involved in the regulation of various tumor progression mechanisms. However, the precise role of CCAT2 in CRC proliferation and metastasis remains ambiguous. This study seeks to elucidate the mechanisms through which CCAT2 influences CRC. METHODS High-throughput sequencing and RT-qPCR were used to detect CCAT2 expression in CRC. Functional analyses including CCK8, colony formation, wound healing migration, transwell chamber, and Muse® Cell Analyzer assays were performed to study the effects of CCAT2 gene deletion on CRC cells. RNA-pulldown and protein mass spectrometry were employed to identify the interaction between CCAT2 and GNB2 protein. RESULTS Increased CCAT2 expression was found in CRC, especially in metastatic CRC. Deletion of CCAT2 gene inhibited CRC cell proliferation, migration, and invasion while promoting apoptosis. The interaction between CCAT2 and GNB2 protein was shown to modulate GNB2 protein alterations and affect the ERK and Wnt signaling pathways, thereby promoting CRC proliferation and metastasis. CONCLUSION CCAT2 plays a crucial role in CRC progression by modulating the ERK and Wnt signaling pathways through its interaction with GNB2. These findings highlight the importance of CCAT2 as a key regulatory element in the mechanisms underlying CRC proliferation and metastasis.
Collapse
Affiliation(s)
- Jinhai Tian
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Institute of Medical SciencesGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Xu Cao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Zongying Jiang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Jia Wang
- Institute of Medical SciencesGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Wan Fan
- Clinical Medical College of Ningxia Medical UniversityYinchuanChina
| | - Shaoting Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Sien Zhao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Jianmin Sun
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| |
Collapse
|
10
|
Rocchetti F, Tenore G, Macali F, Vicidomini T, Podda GM, Fantozzi PJ, Silvestri V, Porzio V, Valentini V, Ottini L, Richetta AG, Valentini V, Della Monaca M, Grenga C, Polimeni A, Romeo U. Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers (Basel) 2024; 16:2990. [PMID: 39272848 PMCID: PMC11394426 DOI: 10.3390/cancers16172990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to evaluate the expression of salivary and plasmatic miRNAs as diagnostic biomarkers in patients with oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). A total of 25 patients were divided into three groups, according to their diagnosis: OSCC patients (n = 14); OPMDs patients (n = 6); and healthy controls (n = 5). At the time at diagnosis/enrolment, patients underwent salivary and plasmatic collection. The expression of miRNA -21, -31, -138, -145, -184, and -424 were evaluated by real-time PCR. An F-test and ANOVA test were performed to evaluate the miRNA levels (significance at p < 0.05). By comparing miRNA expression levels from saliva, a statistically significant difference emerged in the expression of miR-138 and miR-424 between the three groups (p < 0.05). In particular, these two miRNAs showed decreased expression levels in saliva samples from OSCC and OPMD patients compared to those from healthy controls. On the other hand, miRNA expression levels in plasma were low in all the groups, and no statistically significant differences were found. Overall, our results showed that liquid biopsy from saliva may be a useful tool for the identification of diagnostic molecular biomarkers in OSCC and OPMDs.
Collapse
Affiliation(s)
- Federica Rocchetti
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Tenore
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Macali
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Teresa Vicidomini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gian Marco Podda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Junior Fantozzi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Giovanni Richetta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentino Valentini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Della Monaca
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Camilla Grenga
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Mishra S, Srivastava P, Pandey A, Agarwal A, Shukla S, Husain N. Panel of serum long non-coding RNAs as potential non-invasive biomarkers for gallbladder carcinoma. Noncoding RNA Res 2024; 9:583-593. [PMID: 38524788 PMCID: PMC10959647 DOI: 10.1016/j.ncrna.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Gallbladder carcinoma (GBC) is a common malignancy and is usually diagnosed in the late stages of the disease. The identification of new effective early diagnostic biomarkers could represent an effective approach in reducing mortality in GBC. Altered expression of long non-coding RNAs (lncRNAs) is believed to be associated with the emergence and development of GBC. Our study aims to identify the expression of a range of circulating lncRNAs, including HOTAIR, ANRIL, H19, CCAT1 and MEG3, in matched serum and tissues of GBC for diagnosis and its association with clinicopathological features. The case and control study included matched serum and tissues from 63 GBC, 19 cholecystitis (CC), and 46 normal controls (NC). RNA extraction and cDNA synthesis from serum and fresh tissue match were performed using commercially available kits. Relative expression was assessed using SYBR Green real-time quantitative polymerase chain reaction. Circulating lncRNA levels including HOTAIR, ANRIL and H19 were upregulated in serum samples, while MEG3 and CCAT1 were downregulated in GBC compared to controls. The trend towards upregulation and downregulation was comparable in the tissue. HOTAIR and MEG3 levels were significantly different between serum CC and early-stage GBC (p = 0.0373, 0.0020), while H19 was significantly upregulated comparing early-stage GBC to advanced-stage GBC (p = 0.018). The expression of ANRIL was significant with M stage (p = 0.0488), H19 with stage (p = 0.009), M stage (p=<0.0001) & stage (0.009) and CCAT1 with M stage (0.044). When distinguishing GBC and NC, AUC for HOTAIR was 0.75, ANRIL 0.78, H19 0.74, CCAT1 0.80 and 0.96 for MEG3. The combination sensitivity for lncRNAs ranged from 84.13% (CI: 72.74-92.12%) to 100.0% (CI: 94.31-100.0%). Significant diagnostic value in discriminating pathologic stage was observed for ANRIL and MEG3 (p = 0.022, p = 0.0005). LncRNA show a significant change in expression in GBC and in discrimination of early stage from late-stage disease. The detection of 2 lncRNAs in panels, in coordination with radiology, could represent a potential serum-based biomarker for early-stage GBC diagnosis.
Collapse
Affiliation(s)
- Sridhar Mishra
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Pallavi Srivastava
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Anshuman Pandey
- Gastrosurgery, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Akash Agarwal
- Surgical Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Saumya Shukla
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| |
Collapse
|
12
|
Jasim SA, Al-Hawary SIS, Hjazi A, Ahmad I, Kaur I, Kadhum WR, Alkhafaji AT, Ghildiyal P, Jawad MA, Alsaadi SB. A comprehensive review of lncRNA CRNDE in cancer progression and pathology, with a specific glance at the epithelial-mesenchymal transition (EMT) process. Pathol Res Pract 2024; 256:155229. [PMID: 38484655 DOI: 10.1016/j.prp.2024.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/14/2024]
Abstract
It has been suggested that the long non-coding RNAs (lncRNAs), such as colorectal neoplasia differentially expressed (CRNDE), may contribute to the formation of human cancer. It is yet unknown, though, what therapeutic significance CRNDE expression has for different forms of cancer. CRNDE has recently been proposed as a possible diagnostic biomarker and prognostic pred for excellent specificity and sensitivity in cancer tissues and plasma. To provide the groundwork for potential future therapeutic uses of CRNDE, we briefly overview its biological action and related cancer-related pathways. Next, we mainly address the impact of CRNDE on the epithelial-mesenchymal transition (EMT). The epithelial-mesenchymal transition, or EMT, is an essential biological mechanism involved in the spread of cancer.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced research center, Kut University College, Kut, Wasit 52001, Iraq
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq
| |
Collapse
|
13
|
Yan X, Zhang N, Wang G, Wang J. The prognostic significance of LncRNA BLACAT1 overexpression in various tumors: a meta-analysis. Front Genet 2024; 15:1362420. [PMID: 38601076 PMCID: PMC11004358 DOI: 10.3389/fgene.2024.1362420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Recent studies have revealed increasing evidence that the long non-coding RNA bladder cancer associated transcript 1 (LncRNA BLACAT1) plays an essential role in the emergence of different malignancies. This meta-analysis aimed to evaluate the prognostic significance of LncRNA BLACAT1 in various cancers. Methods Six electronic databases (PubMed, Embase, Medline, Web of Science, China National Knowledge Infrastructure (CNKI), and the Chinese WanFang database) were comprehensively searched for relevant studies. The analysis of overall survival (OS) and clinicopathological characteristics was conducted. Results Nineteen studies with 1,559 patients were eventually eligible to be included in this meta-analysis. High expression level of LncRNA BLACAT1 was identified to be linked with shorter OS (HR: 2.02, 95% CI: 1.66-2.46, p < 0.001) and PFS (HR: 2.424, 95% CI: 1.827-3.020, p < 0.001) in cancer patients as opposed to low expression levels. Subgroup analysis showed that analysis model (multivariate or univariate), cut-off value (mean or median), sample size (more or fewer than 100), and cancer type had little effect on OS in multiple tumors. Moreover, high LncRNA BLACAT1 expression was associated with positive lymph node metastasis (HR: 2.29, 95% CI: 1.66-3.16, p < 0.00001), advanced clinical stage (HR: 2.29, 95% CI: 1.65-3.19, p < 0.00001) and worse differentiation status (HR: 0.58, 95% CI: 0.37-0.92, p = 0.02), compared to low LncRNA BLACAT1 expression. Conclusion The findings highlight that high LncRNA BLACAT1 expression might be detrimental and induce a worse prognosis for cancer patients.
Collapse
Affiliation(s)
| | | | | | - Jiaheng Wang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
14
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
15
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
16
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
17
|
Li H, Zhang Y, Feng Y, Hu X, Bi L, Zhu H, Wang Y. Predictors based on cuproptosis closely related to angiogenesis predict colorectal cancer recurrence. Front Oncol 2024; 13:1322421. [PMID: 38264748 PMCID: PMC10805227 DOI: 10.3389/fonc.2023.1322421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Up to one-third of colorectal cancer (CRC) patients experience recurrence after radical surgery, and it is still very difficult to assess and predict the risk of recurrence. Angiogenesis is the key factor of recurrence as metastasis of CRC is closely related to copper metabolism. Expression profiling by microarray from two datasets in Gene Expression Omnibus (GEO) was selected for quality control, genome annotation, normalization, etc. The identified angiogenesis-derived and cuproptosis-related Long non-coding RNAs (lncRNAs) and clinical data were screened and used as predictors to construct a Cox regression model. The stability of the model was evaluated, and a nomogram was drawn. The samples were divided into high-risk and low-risk groups according to the linear prediction of the model, and a Kaplan-Meier survival analysis was performed. In this study, a model was established to predict the postoperative recurrence of colon cancer, which exhibits a high prediction accuracy. Furthermore, the negative correlation between cuproptosis and angiogenesis was validated in colorectal cancer cell lines and the expression of lncRNAs in vitro was examined.
Collapse
Affiliation(s)
- Haoran Li
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueqing Hu
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Oncology Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Alshahrani SH, Al-Hadeithi ZSM, Almalki SG, Malviya J, Hjazi A, Mustafa YF, Alawady AHR, Alsaalamy AH, Joshi SK, Alkhafaji AT. LncRNA-miRNA interaction is involved in colorectal cancer pathogenesis by modulating diverse signaling pathways. Pathol Res Pract 2023; 251:154898. [PMID: 37924797 DOI: 10.1016/j.prp.2023.154898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
LncRNAs function as molecular sponges for miRNAs to control their availability for targeting mRNA molecules. This procedure indirectly regulates the expression of cancer-related genes. Some lncRNAs also directly interact with miRNAs, leading to their degradation or sequestration, which can negatively impact gene expression. miRNAs, on the other hand, play a critical role in controlling the expression of genes, including oncogenes and tumor suppressor genes. Multiple types of cancer have been linked to the onset and progression of miRNA dysregulation. Even though there is a lot of potential for treating CRC by targeting the LncRNA-miRNA axis, several challenges remain to be overcome. The specificity of the targeting approach, delivery methods, resistance, safety, and cost-effectiveness are critical research areas that must be addressed to advance this field and improve treatment outcomes for people with CRC.
Collapse
Affiliation(s)
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hussien Radie Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | |
Collapse
|
19
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
20
|
Tariq L, Arafah A, Sehar N, Ali A, Khan A, Rasool I, Rashid SM, Ahmad SB, Beigh S, Dar TUH, Rehman MU. Novel insights on perils and promises of miRNA in understanding colon cancer metastasis and progression. Med Oncol 2023; 40:282. [PMID: 37639075 DOI: 10.1007/s12032-023-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023]
Abstract
Colorectal cancer (CRC) is the third highest frequent malignancy and ultimate critical source of cancer-associated mortality around the world. Regardless of latest advances in molecular and surgical targeted medicines that have increased remedial effects in CRC patients, the 5-year mortality rate for CRC patients remains dismally low. Evidence suggests that microRNAs (miRNAs) execute an essential part in the development and spread of CRC. The miRNAs are a type of short non-coding RNA that exhibited to control the appearance of tumor suppressor genes and oncogenes. miRNA expression profiling is already being utilized in clinical practice as analytical and prognostic biomarkers to evaluate cancer patients' tumor genesis, advancement, and counteraction to drugs. By modulating their target genes, dysregulated miRNAs are linked to malignant characteristics (e.g., improved proliferative and invasive capabilities, cell cycle aberration, evasion of apoptosis, and promotion of angiogenesis). This review presents an updated summary of circulatory miRNAs, tumor-suppressive and oncogenic miRNAs, and the potential reasons for dysregulated miRNAs in CRC. Further we will explore the critical role of miRNAs in CRC drug resistance.
Collapse
Affiliation(s)
- Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Karanagar, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Science, Al Baha University, 65431, Al Baha, Saudi Arabia
| | - Tanveer Ul Hassan Dar
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
22
|
Arriaga-Canon C, Contreras-Espinosa L, Aguilar-Villanueva S, Bargalló-Rocha E, García-Gordillo JA, Cabrera-Galeana P, Castro-Hernández C, Jiménez-Trejo F, Herrera LA. The Clinical Utility of lncRNAs and Their Application as Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087426. [PMID: 37108589 PMCID: PMC10138835 DOI: 10.3390/ijms24087426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Given their tumor-specific and stage-specific gene expression, long non-coding RNAs (lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of this because of their high subtype-specific expression profile in luminal B-like breast cancer. This makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies in breast cancer are limited in sample size and are restricted to the determination of their biological function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility. Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability, sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice to improve patient clinical management and quality of life.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Sergio Aguilar-Villanueva
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Enrique Bargalló-Rocha
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - José Antonio García-Gordillo
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Paula Cabrera-Galeana
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | | | - L A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C.P. 64710, Mexico
| |
Collapse
|
23
|
Tristán AI, González-Flores E, Salmerón ADM, Abreu AC, Caba O, Jiménez-Luna C, Melguizo C, Prados J, Fernández I. Serum nuclear magnetic resonance metabolomics analysis of human metastatic colorectal cancer: Biomarkers and pathway analysis. NMR IN BIOMEDICINE 2023; 36:e4935. [PMID: 36945883 DOI: 10.1002/nbm.4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
We describe the use of nuclear magnetic resonance metabolomics to analyze blood serum samples from healthy individuals (n = 26) and those with metastatic colorectal cancer (CRC; n = 57). The assessment, employing both linear and nonlinear multivariate data analysis techniques, revealed specific metabolite changes associated with metastatic CRC, including increased levels of lactate, glutamate, and pyruvate, and decreased levels of certain amino acids and total fatty acids. Biomarker ratios such as glutamate-to-glutamine and pyruvate-to-alanine were also found to be related to CRC. The study also found that glutamate was linked to progression-free survival and that both glutamate and 3-hydroxybutyrate were risk factors for metastatic CRC. Additionally, gas chromatography coupled to flame-ionization detection was utilized to analyze the fatty acid profile and pathway analysis was performed on the profiled metabolites to understand the metabolic processes involved in CRC. A correlation was also found between the presence of certain metabolites in the blood of CRC patients and certain clinical features.
Collapse
Affiliation(s)
- Ana Isabel Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Encarnación González-Flores
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Ana Del Mar Salmerón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Octavio Caba
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Cristina Jiménez-Luna
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - José Prados
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
24
|
Chen W, Deng J, Zhou Y. The construction of a novel ferroptosis-related lncRNA model to predict prognosis in colorectal cancer patients. Medicine (Baltimore) 2023; 102:e33114. [PMID: 36897681 PMCID: PMC9997773 DOI: 10.1097/md.0000000000033114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal tumor with poor prognosis. Ferroptosis is a pivotal form of programmed iron-dependent cell death different from autophagy and apoptosis, and long noncoding RNA (lncRNA) can influence the prognosis of CRC via regulating ferroptosis. To explore the role and prognostic value of the constructed ferroptosis-related lncRNA model in CRC, a prognostic model was constructed and validated by screening ferroptosis-related lncRNAs associated with prognosis based on the transcriptome data and survival data of CRC patients in The Cancer Genome Atlas database. Regarding the established prognostic models, differences in signaling pathways and immune infiltration, as well as differences in immune function, immune checkpoints, and N6-methyladenosine-related genes were also analyzed. A total of 6 prognostic ferroptosis-related lncRNAs were obtained, including AP003555.1, AC010973.2, LINC01857, AP001469.3, ITGB1-DT and AC129492.1. Univariate independent prognostic analysis, multivariate independent prognostic analysis and receiver operating characteristic curves showed that ferroptosis-related lncRNAs could be recognized as independent prognostic factors. The Kaplan-Meier survival curves and the risk curves showed that the survival time of the high-risk group was shorter. Gene set enrichment analysis enrichment analysis showed that ATP-binding cassette transporters, taste transduction and VEGF signaling pathway were more active in high-risk groups that than in low-risk groups. However, the citrate cycle tricarboxylic acid cycle, fatty acid metabolism and peroxisome were significantly more active in the low-risk group than in the high-risk group. In addition, there were also differences in immune infiltration in the high-low-risk groups based on different methods, including antigen-presenting cell co-stimulation, chemokine receptor, parainflammation, and Type II IFN Response. Further analysis of Immune checkpoints showed that most of the Immune checkpoints such as TNFRSF18, LGALS9 and CTLA4 in the high-risk group were significantly higher than those in the low-risk group, and the expressions of N6-methyladenosine related genes METTL3, YTHDH2 and YTHDC1 were also significantly different in the high-risk group. Ferroptosis-related lncRNAs are closely related to the survival of colorectal cancer patients, which can be used as new biomarkers and potential therapeutic targets for the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Weihong Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jianzhi Deng
- College of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Yuehan Zhou
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
25
|
Islam Khan MZ, Law HKW. Suppression of small nucleolar RNA host gene 8 (SNHG8) inhibits the progression of colorectal cancer cells. Noncoding RNA Res 2023; 8:224-232. [PMID: 36860208 PMCID: PMC9969251 DOI: 10.1016/j.ncrna.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies around the world with high mortality. Accumulating evidences demonstrate that long non-coding RNAs (lncRNAs) play critical roles in CRC tumorigenesis by regulating different pathways of carcinogenesis. SNHG8 (small nucleolar RNA host gene 8), a lncRNA, is highly expressed in several cancers and acts as an oncogene that promotes cancer progression. However, the oncogenic role of SNHG8 in CRC carcinogenesis and the underlying molecular mechanisms remain unknown. In this study, we explored the role of SNHG8 in CRC cell lines by performing a series of functional experiments. Similar to the data reported in the Encyclopedia of RNA Interactome, our RT-qPCR results showed that SNHG8 expression was significantly upregulated in CRC cell lines (DLD-1, HT-29, HCT-116, and SW480) compared to the normal colon cell line (CCD-112CoN). We performed dicer-substrate siRNA transfection to knockdown the expression of SNHG8 in HCT-116 and SW480 cell lines which were expressing high levels of SNHG8. SNHG8 knockdown significantly reduced CRC cell growth and proliferation by inducing autophagy and apoptosis pathways through the AKT/AMPK/mTOR axis. We performed wound healing migration assay and demonstrated that SNHG8 knockdown significantly increased migration index in both cell lines, indicating reduced migration abilities of cells. Further investigation showed that SNHG8 knockdown suppresses epithelial to mesenchymal transition and reduces cellular migratory properties of CRC cells. Taken together, our study suggests that SNHG8 acts as an oncogene in CRC through the mTOR-dependent autophagy, apoptosis, and EMT pathways. Our study provides a better understanding the role of SNHG8 in CRC at molecular level and SNHG8 might be used as novel therapeutic target for CRC management.
Collapse
|
26
|
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, Movahedpour A. Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta 2023; 540:117216. [PMID: 36592922 DOI: 10.1016/j.cca.2022.117216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.
Collapse
Affiliation(s)
- Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
27
|
Machado Carvalho JV, Dutoit V, Corrò C, Koessler T. Promises and Challenges of Predictive Blood Biomarkers for Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Cells 2023; 12:413. [PMID: 36766755 PMCID: PMC9913546 DOI: 10.3390/cells12030413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The treatment of locally advanced rectal cancer (LARC) requires a multimodal approach combining neoadjuvant radiotherapy or chemoradiotherapy (CRT) and surgery. Predicting tumor response to CRT can guide clinical decision making and improve patient care while avoiding unnecessary toxicity and morbidity. Circulating biomarkers offer both the advantage to be easily accessed and followed over time. In recent years, biomarkers such as proteins, blood cells, or nucleic acids have been investigated for their predictive value in oncology. We conducted a comprehensive literature review with the aim to summarize the status of circulating biomarkers predicting response to CRT in LARC. Forty-nine publications, of which forty-seven full-text articles, one review and one systematic review, were retrieved. These studies evaluated circulating markers (CEA and CA 19-9), inflammatory biomarkers (CRP, albumin, and lymphocytes), hematologic markers (hemoglobin and thrombocytes), lipids and circulating nucleic acids (cell-free DNA [cfDNA], circulating tumor DNA [ctDNA], and microRNA [miRNA]). Post-CRT CEA levels had the most consistent association with tumor response, while cfDNA integrity index, MGMT promoter methylation, ERCC-1, miRNAs, and miRNA-related SNPs were identified as potential predictive markers. Although circulating biomarkers hold great promise, inconsistent results, low statistical power, and low specificity and sensibility prevent them from reliably predicting tumor response following CRT. Validation and standardization of methods and technologies are further required to confirm results.
Collapse
Affiliation(s)
- Joao Victor Machado Carvalho
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
| | - Claudia Corrò
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
28
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
29
|
Li C, Guo H, Xiong J, Feng B, Zhu P, Jiang W, Jiang P, Su X, Huang X. Exosomal long noncoding RNAs MAGI2-AS3 and CCDC144NL-AS1 in oral squamous cell carcinoma development via the PI3K-AKT-mTOR signaling pathway. Pathol Res Pract 2022; 240:154219. [DOI: 10.1016/j.prp.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022]
|
30
|
Palaia G, Pippi R, Rocchetti F, Caputo M, Macali F, Mohsen A, Del Vecchio A, Tenore G, Romeo U. Liquid biopsy in the assessment of microRNAs in oral squamous cell carcinoma: A systematic review. J Clin Exp Dent 2022; 14:e875-e884. [PMID: 36320672 PMCID: PMC9617270 DOI: 10.4317/jced.59736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background The identification of non-invasive biomarkers from biological fluids collected by liquid biopsy provides new horizons for individualized therapeutic strategies and improves clinical decision-making in OSCC patients. Circulating microRNAs have emerged as biomarkers that may reflect not only the existence of cancer, but also the dynamic, malignant potential, and drug resistance of tumors. The aim of the systematic review is to evaluate and summarize the results of the published studies regarding the use of microRNAs as biomarkers for OSCC. Material and Methods A literature search was conducted on PubMed, Scopus, Web of Science, and Cochrane databases till November 2020. A total of 34 studies met the inclusion criteria and were therefore subjected to quality assessment. Each study was subjected to data extraction including; patient characteristics, type of fluid sample (whole blood, plasma, serum, or saliva), molecular analysis method, specific dysregulated microRNA, and microRNA expression pattern. Results The analysis showed that 57 microRNAs of liquid biopsy samples of four different fluids (whole blood, serum, plasma, and saliva) were analyzed. The prognostic and therapeutic significance of these microRNAs were suggested by several studies; where 41 microRNAs were upregulated while 16 were downregulated. Conclusions Scientific evidence supports the interest in the use of microRNAs in the diagnosis and prognosis in OSCC patients; however, further studies in a larger cohort of patients are mandatory to introduce liquid biopsy in the routine clinical practice for the OSCC management. Key words:Biomarkers, liquid biopsy, microRNA, oral squamous cell carcinoma, systematic review.
Collapse
Affiliation(s)
- Gaspare Palaia
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Roberto Pippi
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Federica Rocchetti
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Martina Caputo
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Federica Macali
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Ahmed Mohsen
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | | | - Gianluca Tenore
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome
| |
Collapse
|
31
|
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers (Basel) 2022; 14:3712. [PMID: 35954375 PMCID: PMC9367600 DOI: 10.3390/cancers14153712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignant neoplasm worldwide, with more than two million new cases diagnosed yearly. Despite increasing efforts in screening, many cases are still diagnosed at a late stage, when mortality is high. This paper briefly reviews known genetic causes of CRC (distinguishing between sporadic and familial forms) and discusses potential and confirmed nucleic acid biomarkers obtainable from liquid biopsies, classified by their molecular features, focusing on clinical relevance. We comment on advantageous aspects such as better patient compliance due to blood sampling being minimally invasive, the possibility to monitor mutation characteristics of sporadic and hereditary CRC in a disease showing genetic heterogeneity, and using up- or down-regulated circulating RNA markers to reveal metastasis or disease recurrence. Current difficulties and thoughts on some possible future directions are also discussed. We explore current evidence in the field pointing towards the introduction of personalized CRC management.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Ondrej Pös
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Peter Lukasz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Tomáš Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
32
|
Lei T, Zhang Y, Wang X, Liu W, Feng W, Song W. A Diagnostic Model Using Exosomal Genes for Colorectal Cancer. Front Genet 2022; 13:863747. [PMID: 35910195 PMCID: PMC9334773 DOI: 10.3389/fgene.2022.863747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Exosomes have great potential as liquid biopsy specimens due to their presence and stability in body fluids. However, the function and diagnostic values of exosomal genes in CRC are poorly understood. In the present study, exosomal data of CRC and healthy samples from the exoRBase 2.0 and Gene Expression Omnibus (GEO) databases were used, and 38 common exosomal genes were identified. Through the least absolute shrinkage and selection operator (Lasso) analysis, support vector machine recursive feature elimination (SVM-RFE) analysis, and logistic regression analysis, a diagnostic model of the training set was constructed based on 6 exosomal genes. The diagnostic model was internally validated in the test and exoRBase 2.0 database and externally validated in the GEO database. In addition, the co-expression analysis was used to cluster co-expression modules, and the enrichment analysis was performed on module genes. Then a protein–protein interaction and competing endogenous RNA network were constructed and 10 hub genes were identified using module genes. In conclusion, the results provided a comprehensive understanding of the functions of exosomal genes in CRC as well as a diagnostic model related to exosomal genes.
Collapse
Affiliation(s)
- Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wu Song,
| |
Collapse
|
33
|
Overexpression of long non-coding RNA ACTA2-AS1 inhibits the viability, proliferation, migration and invasion of colorectal cancer cells. Tissue Cell 2022; 76:101769. [DOI: 10.1016/j.tice.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
|
34
|
Abbasi-Kolli M, Sadri Nahand J, Kiani SJ, Khanaliha K, Khatami A, Taghizadieh M, Torkamani AR, Babakhaniyan K, Bokharaei-Salim F. The expression patterns of MALAT-1, NEAT-1, THRIL, and miR-155-5p in the acute to the post-acute phase of COVID-19 disease. Braz J Infect Dis 2022; 26:102354. [PMID: 35500644 PMCID: PMC9035361 DOI: 10.1016/j.bjid.2022.102354] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction One of the hallmarks of COVID-19 is overwhelming inflammation, which plays a very important role in the pathogenesis of COVID-19. Thus, identification of inflammatory factors that interact with the SARS-CoV-2 can be very important to control and diagnose the severity of COVID-19. The aim of this study was to investigate the expression patterns of inflammation-related non-coding RNAs (ncRNAs) including MALAT-1, NEAT-1, THRIL, and miR-155-5p from the acute phase to the recovery phase of COVID-19. Methods Total RNA was extracted from Peripheral Blood Mononuclear Cell (PBMC) samples of 20 patients with acute COVID-19 infection and 20 healthy individuals and the expression levels of MALAT-1, NEAT-1, THRIL, and miR-155-5p were evaluated by real-time PCR assay. Besides, in order to monitor the expression pattern of selected ncRNAs from the acute phase to the recovery phase of COVID-19 disease, the levels of ncRNAs were re-measured 6‒7 weeks after the acute phase. Result The mean expression levels of MALAT-1, THRIL, and miR-155-5p were significantly increased in the acute phase of COVID-19 compared with a healthy control group. In addition, the expression levels of MALAT-1 and THRIL in the post-acute phase of COVID-19 were significantly lower than in the acute phase of COVID-19. According to the ROC curve analysis, these ncRNAs could be considered useful biomarkers for COVID-19 diagnosis and for discriminating between acute and post-acute phase of COVID-19. Discussion Inflammation-related ncRNAs (MALAT-1, THRIL, and miR-150-5p) can act as hopeful biomarkers for the monitoring and diagnosis of COVID-19 disease.
Collapse
Affiliation(s)
| | - Javid Sadri Nahand
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran
| | - Seyed Jalal Kiani
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Khadijeh Khanaliha
- University of Medical Sciences, Institute of Immunology and Infectious Diseases, Research Center of Pediatric Infectious Diseases, Tehran, Iran
| | - AliReza Khatami
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Mohammad Taghizadieh
- Tabriz University of Medical Sciences, Center for Women's Health Research Zahra, School of Medicine, Department of Pathology, Tabriz, Iran
| | - Ali Rajabi Torkamani
- Tehran University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Tehran, Iran
| | - Kimiya Babakhaniyan
- Iran University of Medical Sciences, School of Nursing and Midwifery, Department of Medical Surgical Nursing, Tehran, Iran
| | - Farah Bokharaei-Salim
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran.
| |
Collapse
|
35
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
The Mechanisms of lncRNA-Mediated Multidrug Resistance and the Clinical Application Prospects of lncRNAs in Breast Cancer. Cancers (Basel) 2022; 14:cancers14092101. [PMID: 35565231 PMCID: PMC9103444 DOI: 10.3390/cancers14092101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multidrug resistance (MDR) is a major cause of breast cancer (BC) chemotherapy failure. Long noncoding RNAs (lncRNAs) have been shown closely related to the chemoresistance of BC. In this work, the mechanisms of lncRNA-mediated MDR in BC were elaborated from eight sections, including apoptosis, autophagy, DNA repair, cell cycle, drug efflux, epithelial-mesenchymal transition, epigenetic modification and the tumor microenvironment. Additionally, we also discuss the clinical significance of lncRNAs, which may be biomarkers for diagnosis, therapy and prognosis. Abstract Breast cancer (BC) is a highly heterogeneous disease and presents a great threat to female health worldwide. Chemotherapy is one of the predominant strategies for the treatment of BC; however, multidrug resistance (MDR) has seriously affected or hindered the effect of chemotherapy. Recently, a growing number of studies have indicated that lncRNAs play vital and varied roles in BC chemoresistance, including apoptosis, autophagy, DNA repair, cell cycle, drug efflux, epithelial-mesenchymal transition (EMT), epigenetic modification and the tumor microenvironment (TME). Although thousands of lncRNAs have been implicated in the chemoresistance of BC, a systematic review of their regulatory mechanisms remains to be performed. In this review, we systematically summarized the mechanisms of MDR and the functions of lncRNAs mediated in the chemoresistance of BC from the latest literature. These findings significantly enhance the current understanding of lncRNAs and suggest that they may be promising prognostic biomarkers for BC patients receiving chemotherapy, as well as therapeutic targets to prevent or reverse chemoresistance.
Collapse
|
37
|
Roviello G, Lavacchi D, Antonuzzo L, Catalano M, Mini E. Liquid biopsy in colorectal cancer: No longer young, but not yet old. World J Gastroenterol 2022; 28:1503-1507. [PMID: 35582130 PMCID: PMC9048462 DOI: 10.3748/wjg.v28.i15.1503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer-related deaths worldwide. The treatment strategy employed in CRC patients is becoming highly dependent on molecular characteristics present at diagnosis and during treatment. Liquid biopsy is an emerging field in the management of this cancer, and its relevance as a potential diagnostic, prognostic, monitoring, and therapeutic tool makes it a viable strategy in the clinical management of CRC patients. Liquid biopsy also has certain limitations, but these limitations seem to be at the reach of near-future technological development. In this letter, we focus on the clinical perspectives of liquid biopsy in CRC with particular regard to the various biomarkers recently identified that have been shown to be potentially useful in multiple aspects of early stage or metastatic CRC.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze 50139, Italy
| | | | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Florence 50134, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze 50139, Italy
| |
Collapse
|
38
|
Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int J Mol Sci 2022; 23:ijms23084284. [PMID: 35457101 PMCID: PMC9029375 DOI: 10.3390/ijms23084284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited cancer predisposition disorder, which may manifest as colorectal cancer (CRC), endometrial cancer (EC) or other malignancies of the gastrointestinal and genitourinary tract as well as the skin and brain. Its genetic cause is a defect in one of the four key DNA mismatch repair (MMR) loci. Testing of patients at risk is currently based on the absence of MMR protein staining and detection of mutations in cancer tissue and the germline, microsatellite instability (MSI) and the hypermethylated state of the MLH1 promoter. If LS is shown to have caused CRC, lifetime follow-up with regular screening (most importantly, colonoscopy) is required. In recent years, DNA and RNA markers extracted from liquid biopsies have found some use in the clinical diagnosis of LS. They have the potential to greatly enhance the efficiency of the follow-up process by making it minimally invasive, reproducible, and time effective. Here, we review markers reported in the literature and their current clinical applications, and we comment on possible future directions.
Collapse
|
39
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N T Aryee
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Branka Radic-Sarikas
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
40
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
41
|
Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers (Basel) 2022; 14:cancers14051349. [PMID: 35267657 PMCID: PMC8909088 DOI: 10.3390/cancers14051349] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the advancement of artificial intelligence, including machine learning, the field of oncology has seen promising results in cancer detection and classification, epigenetics, drug discovery, and prognostication. In this review, we describe what artificial intelligence is and its function, as well as comprehensively summarize its evolution and role in breast, colorectal, and central nervous system cancers. Understanding the origin and current accomplishments might be essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of artificial intelligence models that can be used in worldwide clinical practice. Students and researchers in the medical field will benefit from a deeper understanding of how to use integrative AI in oncology for innovation and research. Abstract Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mammography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based tumor imaging analysis is independent of the experience level of evaluating physicians, and the results are expected to be more standardized and accurate. One of the biggest challenges is its generalizability worldwide. The current detection and screening methods for colon polyps and breast cancer have a vast amount of data, so they are ideal areas for studying the global standardization of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on current management standards. ML offers the prospect of unraveling undiscovered features from routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, standard management methods may be improved by augmenting personalized/precision medicine. This review aims to provide clinicians and medical researchers with a basic understanding of how ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are crucial in advancing the use of AI in oncology.
Collapse
|
42
|
Elshazly AAA, Desouky MN, Diab IH, Ibrahim AMA, Dwedar FI. Serum Long-Noncoding RNA H19 and β-Catenin as Biomarkers for Early Diagnosis of Colorectal Cancer in Egyptian Patients: A Case Control Study. JOURNAL OF COLOPROCTOLOGY 2022. [DOI: 10.1055/s-0042-1742668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractColorectal cancer (CRC) is the third most prevalent cancer and the second most common cause of cancer death; however, its early detection can improve the survival. Colonic polyps are considered one of the CRC's major risk factors. Throughout many biological processes and malignancies, the non-coding RNAs have essential functions. Certain long noncoding RNAs (lncRNAs), including H19, were supposed to be CRC possible biomarkers. Also, H19 has been reported to play a role in regulating the activity of β-catenin, a protein that regulates cell-to-cell adhesion, as well as gene transcription. The current work aimed to investigate the potential significance of LncRNA H19 relative serum expression level by quantitative polymerase chain reaction (q-PCR) and β-catenin by enzyme-linked immunosorbent assay (ELISA) as noninvasive biomarkers to discriminate between colorectal cancer and colonic polyps. The statistical analysis of the studied factors revealed that the serum expression of H19 and β-catenin in cancer cases were substantially greater than colonic polyp cases and normal control.
Conclusion The relative expressions of H19 and beta-catenin in the serum can significantly discriminate patients with CRC from those with polyp and normal controls, which could help when screening for CRC.
Collapse
Affiliation(s)
| | - Mohammed Nageeb Desouky
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman Hassan Diab
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Fatma Ibrahim Dwedar
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, Luo X, Liu W, Ye F. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther 2022; 30:688-702. [PMID: 34371180 PMCID: PMC8821934 DOI: 10.1016/j.ymthe.2021.08.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.
Collapse
Affiliation(s)
- Xiaoting Lin
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Shiwen Zhuang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Xue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Longhua Zhong
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jiancheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guosheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guohui Tang
- Department of Anus and Bowels, Affiliated Nanhua Hospital, University of South China, Hengyang 421010, China
| | - Xi Luo
- BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China,Corresponding author: Xi Luo, BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China.
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China,Corresponding author: Wen Liu, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China.
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China,Corresponding author: Feng Ye, Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
44
|
Jafari N, Nasiran Najafabadi A, Hamzei B, Ataee N, Ghasemi Z, Sadeghian-Rizi T, Honardoost MA, Zamani A, Dolatabadi NF, Tabatabaeian H. ESRG, LINC00518 and PWRN1 are newly-identified deregulated lncRNAs in colorectal cancer. Exp Mol Pathol 2022; 124:104732. [PMID: 34896077 DOI: 10.1016/j.yexmp.2021.104732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is the 2nd leading cause of death in humans because of cancer. This rank of death could be due to the high rate of incidence from one hand, and the lack of sufficient diagnostic and therapeutic approaches from the other hand. Thus, molecular tools have been emerging as the potential biomarker to improve the early diagnosis and therapeutic management that subsequently could lead to the heightened survival rate of colorectal cancer patients. Long non-coding RNA (lncRNAs) have shown promising capabilities to be used in clinics. The profiling methods could identify novel aberrantly expressed lncRNAs in colorectal cancer. We, thus, performed a comprehensive and unbiased approach to shortlist the dysregulated lncRNAs based on the colon adenocarcinoma TCGA data. An unbiased in silico method was used to rank the yet to profiled lncRNAs in colorectal cancer. qPCR was used to measure the expression level of selected lncRNAs. Our results nominated ESRG, LINC00518, PWRN1, and TTTY14 lncRNAs as the top-hit novel lncRNAs with aberrant expression in colon cancer. The qPCR method was used to profile these lncRNAs that showed the up-regulation of ESRG and LINC00518, and down-regulation of TTTY14 in thirty paired colorectal cancer specimens. The statistical analyses demonstrated that ESRG, LINC00518 and PWRN1 could distinguish the tumor from normal samples. Moreover, ESRG showed a negative correlation with the overall survival of patients. These diagnostic and prognostic results suggest that profiling ESRG, LINC00518 and PWRN1 s may have implications in clinics.
Collapse
Affiliation(s)
- Nasrin Jafari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Arezo Nasiran Najafabadi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Behnaz Hamzei
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | - Nioosha Ataee
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Ghasemi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Tahereh Sadeghian-Rizi
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | | | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| |
Collapse
|
45
|
Cheng Z, Jiang S, Tao R, Ge H, Qin J. Activating transcription factor 3-activated long noncoding RNA forkhead box P4-antisense RNA 1 aggravates colorectal cancer progression by regulating microRNA-423-5p/nucleus accumbens associated 1 axis. Bioengineered 2022; 13:2114-2129. [PMID: 35034547 PMCID: PMC8973600 DOI: 10.1080/21655979.2021.2023798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have vital roles in the progression of colorectal cancer (CRC). Forkhead box P4-antisense RNA 1 (FOXP4-AS1) showed a potential unfavorable prognostic factor for CRC, while its underlying mechanism remains elusive. Thus, the goal of this research is to determine mechanism of FOXP4-AS1 in CRC occurrence and development. Herein, a Dual-luciferase reporter assay was performed to assess the regulation of miR-423-5p to nucleus accumbens-associated protein 1 (NACC1) and activating transcription factor 3 (ATF3) to FOXP4-AS1 promoter. Hematoxylin-eosin (H&E) staining was performed to detect the pathological changes of tumor tissues. Flow cytometry, cell counting kit 8, Transwell, and wound healing assays were conducted to assess apoptosis, proliferation, migration, and invasion of CRC cells, respectively. The results showed that FOXP4-AS1 was highly expressed in CRC cell lines and tissues. CRC progression was promoted by the overexpression of FOXP4-AS1 in HTC116 cells and animal models. Furthermore, FOXP4-AS1 served as a molecular sponge for miR-423-5p, and NACC1 is a direct target of miR-423-5p. MiR-423-5p silencing or overexpression of NACC1 increased proliferation, migration, and invasion of HCT116 cells while suppressing apoptosis. We also found that the upregulation of FOXP4-AS1 was activated by ATF3 in CRC cells. Collectively, our results demonstrated that ATF3-activated FOXP4-AS1 aggravates CRC progression by regulating miR-423-5p/NACC1 axis, indicating a new target for CRC treatment.
Collapse
Affiliation(s)
- Zhouyang Cheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Song Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Haipeng Ge
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| |
Collapse
|
46
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
47
|
Chen Y, Yang L, Yin D, Feng X, Jie J, Yao D, Chen J. Role of Long Noncoding RNA Regulator of Reprogramming in Colon Cancer Progression via Epidermal Growth Factor Receptor Signaling. Technol Cancer Res Treat 2022; 21:15330338221114707. [PMID: 35946134 PMCID: PMC9373180 DOI: 10.1177/15330338221114707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Long intergenic noncoding RNA regulator of reprogramming
(linc-ROR) is a novel long noncoding RNA that exhibits significant effects on
cancer progression. This research presented that linc-ROR had a crucial part in
promoting biological characteristics associated with worse prognosis in colon
cancer. Method: Bioinformatics analysis was performed to predict
signaling pathways related to linc-ROR. In addition, western blot, quantitative
reverse transcription-polymerase chain reaction, RNA-pulldown, cell
proliferation assays, colony formation assays, wound healing assays, and
transwell assays were applied to detect the role and regulation of particular
molecules. Results: Our results showed that the knockdown of
linc-ROR reduced cell invasion, proliferative ability, and migration in colon
cancer. Further evaluation verified that downregulating linc-ROR inhibited the
activation of epidermal growth factor receptor (EGFR) signaling. In addition,
cbl-b, a kind of E3 ubiquitin ligase that increases the degradation of EGFR, was
found to be a potential linc-ROR target. Conclusions: Based on our
findings, it was presented that linc-ROR served a role as a tumor-promoting
factor via repressing the ubiquitination and degradation of EGFR signaling,
which indicated that it could be a possible prognostic marker and therapeutic
target for colon cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Yang
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dian Yin
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiu Feng
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Jie
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - DengFu Yao
- Research Center of Clinical Medicine, 74567The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - JianRong Chen
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
48
|
Zhi J, Jia XJ, Yan J, Wang HC, Feng B, Xing HY, Jia YT. BRAF V600E mutant colorectal cancer cells mediate local immunosuppressive microenvironment through exosomal long noncoding RNAs. World J Gastrointest Oncol 2021; 13:2129-2148. [PMID: 35070047 PMCID: PMC8713331 DOI: 10.4251/wjgo.v13.i12.2129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BRAFV600E mutated colorectal cancer (CRC) is prone to peritoneal and distant lymph node metastasis and this correlates with a poor prognosis. The BRAFV600E mutation is closely related to the formation of an immunosuppressive microenvironment. However, the correlation between BRAFV600E mutation and changes in local immune microenvironment of CRC is not clear.
AIM To explore the effect and mechanism of BRAFV600E mutant on the immune microenvironment of CRC.
METHODS Thirty patients with CRC were included in this study: 20 in a control group and 10 in a treatment group. The density of microvessels and microlymphatic vessels, and M2 subtype macrophages in tumor tissues were detected by immunohistochemistry. Screening and functional analysis of exosomal long noncoding RNAs (lncRNAs) were performed by transcriptomics. The proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human lymphatic endothelial cells (HLECs) were detected by CCK-8 assay and scratch test, respectively. The tube-forming ability of endothelial cells was detected by tube formation assay. The macrophage subtypes were obtained by flow cytometry. The expression of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-β1, VEGF-C, claudin-5, occludin, zonula occludens (ZO)-1, fibroblast activation protein, and α-smooth muscle actin was assessed by western blot analysis. The levels of cytokines interleukin (IL)-6, TGF-β1, and VEGF were assessed by enzyme-linked immunosorbent assay.
RESULTS BRAFV600E mutation was positively correlated with the increase of preoperative serum carbohydrate antigen 19-9 (P < 0.05), and with poor tumor tissue differentiation in CRC (P < 0.01). Microvascular density and microlymphatic vessel density in BRAFV600E mutant CRC tissues were higher than those in BRAF wild-type CRC (P < 0.05). The number of CD163+ M2 macrophages in BRAFV600E mutant CRC tumor tissue was markedly increased (P < 0.05). Compared with exosomes from CRC cells with BRAF gene silencing, the expression of 13 lncRNAs and 192 mRNAs in the exosomes from BRAFV600E mutant CRC cells was upregulated, and the expression of 22 lncRNAs and 236 mRNAs was downregulated (P < 0.05). The biological functions and signaling pathways predicted by differential lncRNA target genes and differential mRNAs were closely related to angiogenesis, tumor cell proliferation, differentiation, metabolism, and changes in the microenvironment. The proliferation, migration, and tube formation ability of HUVECs and HLECs induced by exosomes in the 1627 cell group (HT29 cells with BRAF gene silencing) was greatly reduced compared with the HT29 cell group (P < 0.05). Compared with the HT29 cell group, the expression levels of VEGF-A, bFGF, TGF-β1, and VEGF-C in the exosomes derived from 1627 cells were reduced. The expression of ZO-1 in HUVECs, and claudin-5, occludin, and ZO-1 in HLECs of the 1627 cell group was higher. Compared with the 1627 cell group, the exosomes of the HT29 cell group promoted the expression of CD163 in macrophages (P < 0.05). IL-6 secretion by macrophages in the HT29 cell group was markedly elevated (P < 0.05), whereas TGF-β1 was decreased (P < 0.05). The levels of IL-6, TGF-β1, and VEGF secreted by fibroblasts in the 1627 cell group decreased, compared with the HT29 cell group (P < 0.05).
CONCLUSION BRAFV600E mutant CRC cells can reach the tumor microenvironment by releasing exosomal lncRNAs, and induce the formation of an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Jie Zhi
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xiao-Jing Jia
- Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang 050051, Hebei Province, China
| | - Jing Yan
- Department of Oncology, Puyang People’s Hospital, Puyang 457000, Henan Province, China
| | - Hui-Cong Wang
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Bo Feng
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Han-Ying Xing
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Yi-Tao Jia
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
49
|
Mu W, Guo L, Liu Y, Yang H, Ning S, Lv G. Long Noncoding RNA SNHG1 Regulates LMNB2 Expression by Sponging miR-326 and Promotes Cancer Growth in Hepatocellular Carcinoma. Front Oncol 2021; 11:784067. [PMID: 34917510 PMCID: PMC8670182 DOI: 10.3389/fonc.2021.784067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of the study is to explore the potential competing endogenous RNA (ceRNA) network and investigate the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in hepatocellular carcinoma (HCC) development. METHODS By analyzing the data of HCC in The Cancer Genome Atlas (TCGA) database, we included differentially expressed lncRNA and microRNA (miRNA) profiles and constructed ceRNA networks related to the prognosis of HCC patients. qRT-PCR, Western blotting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell assay, and the nude mouse model were employed to test the effects of SNHG1 and LMNB2 on tumor proliferation and growth in vitro and in vivo. RESULTS In the study, we identified 115 messenger RNAs (mRNAs), 12 lncRNAs, and 37 miRNAs by intersecting differentially expressed genes (DEGs) in TCGA and StarBase databases. Then, SNHG1-miR-326-LMNB2 pathway came into notice after further survival analysis and hub gene screening. Our results showed that SNHG1 expression was upregulated significantly in HCC tissues and cell lines. Downregulation of both LMNB2, the target of miR-326 in HCC, and SNHG1 inhibited tumor proliferation and growth in vitro and in vivo. Furthermore, SNHG1 could regulate LMNB2 expression through binding to miR-326 in HCC cell lines. CONCLUSION SNHG1 is a promising prognostic factor in HCC, and the SNHG1-miR-326-LMNB2 axis may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lingyu Guo
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Taian City Central Hospital of Shandong Province, Tai'an, China
| | - Hui Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shanglei Ning
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Ng CT, Azwar S, Yip WK, Zahari Sham SY, Faisal Jabar M, Sahak NH, Mohtarrudin N, Seow HF. Isolation and Identification of Long Non-Coding RNAs in Exosomes Derived from the Serum of Colorectal Carcinoma Patients. BIOLOGY 2021; 10:biology10090918. [PMID: 34571795 PMCID: PMC8465981 DOI: 10.3390/biology10090918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Treatment regimens for patients with advanced disease are limited and the mortality rate is high in these patients. A better understanding on pathogenesis and progression of cancer is critical for the development of new treatment strategies. In colorectal cancer (CRC), exosomes (secreted vesicles from cells) and long non-coding RNAs (lncRNAs) have been shown to play significant roles in disease development and progression. Long non-coding RNAs (lncRNAs) are present in the exosomes of serum and their profiles may potentially be useful as novel biomarkers for CRC patients and may provide a new insight in the pathogenesis and progression of CRC. Here, we compared the expression profiles of exosomal lncRNAs between non-cancer individuals and patients with colorectal carcinoma. The relative expression level of LINC00152 was found to be significantly lower in exosomes from sera of CRC patients as compared to non-cancer individuals whereas lncRNA H19 was significantly up-regulated in advanced-stages (stage III and IV) of CRC as compared to early-stages (stage I and II). Our data suggest that LINC00152 and H19 may play important roles in pathogenesis and progression of CRC. Abstract Long non-coding RNAs (lncRNAs) are non-coding RNAs consisting of more than 200 nucleotides in length. LncRNAs present in exosomes may play a critical role in the cellular processes involved in cancer pathogenesis and progression including proliferation, invasion, and migration of tumor cells. This paper aims to identify the differential expression of exosomal lncRNAs derived from the sera of non-cancer individuals and patients diagnosed with colorectal carcinoma. These differentially-expressed exosomal serum lncRNAs may provide an insight into the pathogenesis and progression of colorectal cancer (CRC). Serum exosomes and exosomes from SW480-7 cell culture supernatants were isolated and viewed by transmission electron microscope (TEM). The particle size distribution and protein markers of exosomes derived from SW480-7 were further analyzed using the Zetasizer Nano S instrument and western blotting technique. TEM showed that exosomes derived from serum and SW480-7 cells were round vesicles with sizes ranging from 50–200 nm. The exosomes derived from SW480-7 had an average diameter of 274.6 nm and contained the exosomal protein, ALIX/PDCD6IP. In our clinical studies, six lncRNAs, namely GAS5, H19, LINC00152, SNHG16, RMRP, and ZFAS1 were detected in the exosomes from sera of 18 CRC patients. Among these six lncRNAs, the expression level of LINC00152 was found to be significantly lower in CRC patients as compared to non-cancer individuals (p = 0.04) while lncRNA H19 was significantly up-regulated in advanced-stages (stage III and IV) of CRC (p = 0.04) as compared to early-stages (stage I and II). In conclusion, the detection of lower LINC00152 in exosomes of sera from CRC patients versus non-cancer individuals and H19 upregulation in advanced stages suggests that they may play important roles in pathogenesis and progression of CRC.
Collapse
Affiliation(s)
- Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Norren Haneezah Sahak
- Department of Pathology, Hospital Serdang, Jalan Puchong, Kajang 43000, Selangor, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
- Correspondence:
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| |
Collapse
|