1
|
Anunciado-Koza RVP, Guntur AR, Vary CP, Gartner CA, Nowak M, Koza RA. Purification of functional mouse skeletal muscle mitochondria using percoll density gradient centrifugation. BMC Res Notes 2023; 16:243. [PMID: 37777771 PMCID: PMC10544150 DOI: 10.1186/s13104-023-06519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. RESULTS Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 h. Percoll purification from 100 to 200 mg fresh tissue yielded ~ 200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9 to 7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.
Collapse
Affiliation(s)
| | - Anyonya R Guntur
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States of America
| | - Calvin P Vary
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States of America
| | - Carlos A Gartner
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, United States of America
| | - Madeleine Nowak
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| | - Robert A Koza
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, United States of America.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America.
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, United States of America.
| |
Collapse
|
2
|
Anunciado-Koza RVP, Guntur AR, Vary CP, Gartner CA, Nowak M, Koza RA. Purification of functional mouse skeletal muscle mitochondria using Percoll density gradient centrifugation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548594. [PMID: 37503222 PMCID: PMC10369891 DOI: 10.1101/2023.07.11.548594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. Results Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 hours. Percoll purification from 100-200 mg fresh tissue yielded ∼200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9-7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.
Collapse
|
3
|
Nikolic A, Fahlbusch P, Wahlers N, Riffelmann NK, Jacob S, Hartwig S, Kettel U, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress targets mitochondrial respiratory efficiency in the skeletal muscle of C57BL/6 mice. Cell Mol Life Sci 2023; 80:108. [PMID: 36988756 PMCID: PMC10060325 DOI: 10.1007/s00018-023-04761-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany.
| |
Collapse
|
4
|
Meyer MM, Lamont SJ, Bobeck EA. Mitochondrial and Glycolytic Capacity of Peripheral Blood Mononuclear Cells Isolated From Diverse Poultry Genetic Lines: Optimization and Assessment. Front Vet Sci 2022; 8:815878. [PMID: 35155649 PMCID: PMC8831803 DOI: 10.3389/fvets.2021.815878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolic preference is a culmination of environment, nutrition, genetics, and individual variation in poultry. The Seahorse XFe24 analyzer was used to generate foundational immune cellular metabolic data in layer, broiler, and legacy genetic strains using fresh chicken peripheral blood mononuclear cells (PBMCs). Baseline mitochondrial respiration [oxygen consumption rate (OCR)] and glycolytic activity [extracellular acidification rate (ECAR)] were determined in modern commercial laying hen (Bovans White) and broiler (Ross 308) lines, as well as the highly inbred lines of Iowa State University (L8, Fayoumi M-15.2, Spanish, Ghs-6), partially inbred broiler line, and advanced intercrosses of broiler by Fayoumi M-15.2 and broiler by Leghorn lines. Commercial broiler vs. Bovans layer and unvaccinated vs. vaccinated Bovans layer immune cell metabolic potential were compared following an in-assay pathway inhibitor challenge. Titrations consistently showed that optimal PBMC density in laying hens and broilers was 3 million cells per well monolayer. Assay media substrate titrations identified 25 mM glucose, 1 mM glutamine, and 1 mM sodium pyruvate as the optimal concentration for layer PBMCs. Pathway inhibitor injection titrations in Bovans layers and broilers showed that 0.5 μM carbonyl cyanide-4 phenylhydrazone (FCCP) and 1 μM oligomycin were optimal. Baseline OCR and ECAR were significantly affected by genetic line of bird (p < 0.05), with the dual-purpose, L8 inbred line showing the highest OCR (mean 680 pmol/min) and the partially inbred broiler line showing the greatest ECAR (mean 74 mpH/min). ECAR metabolic potential tended to be greater in modern layers than broilers (p < 0.10), indicating increased ability to utilize the glycolytic pathway to produce energy. OCR was significantly higher in vaccinated than unvaccinated hens (p < 0.05), while baseline ECAR values were significantly lower in vaccinated Bovans laying hens, showing increased oxidative capacity in activated immune cells. These baseline data indicate that different genetic strains of birds utilized the mitochondrial respiration pathway differently and that modern commercial lines may have reduced immune cell metabolic capacity compared with legacy lines due to intense selection for production traits. Furthermore, the Seahorse assay demonstrated the ability to detect differences in cellular metabolism between genetic lines and immune status of chickens.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Sitbon YH, Diaz F, Kazmierczak K, Liang J, Wangpaichitr M, Szczesna-Cordary D. Cardiomyopathic mutations in essential light chain reveal mechanisms regulating the super relaxed state of myosin. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212172. [PMID: 34014247 PMCID: PMC8142263 DOI: 10.1085/jgp.202012801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
In this study, we assessed the super relaxed (SRX) state of myosin and sarcomeric protein phosphorylation in two pathological models of cardiomyopathy and in a near-physiological model of cardiac hypertrophy. The cardiomyopathy models differ in disease progression and severity and express the hypertrophic (HCM-A57G) or restrictive (RCM-E143K) mutations in the human ventricular myosin essential light chain (ELC), which is encoded by the MYL3 gene. Their effects were compared with near-physiological heart remodeling, represented by the N-terminally truncated ELC (Δ43 ELC mice), and with nonmutated human ventricular WT-ELC mice. The HCM-A57G and RCM-E143K mutations had antagonistic effects on the ATP-dependent myosin energetic states, with HCM-A57G cross-bridges fostering the disordered relaxed (DRX) state and the RCM-E143K model favoring the energy-conserving SRX state. The HCM-A57G model promoted the switch from the SRX to DRX state and showed an ∼40% increase in myosin regulatory light chain (RLC) phosphorylation compared with the RLC of normal WT-ELC myocardium. On the contrary, the RCM-E143K–associated stabilization of the SRX state was accompanied by an approximately twofold lower level of myosin RLC phosphorylation compared with the RLC of WT-ELC. Upregulation of RLC phosphorylation was also observed in Δ43 versus WT-ELC hearts, and the Δ43 myosin favored the energy-saving SRX conformation. The two disease variants also differently affected the duration of force transients, with shorter (HCM-A57G) or longer (RCM-E143K) transients measured in electrically stimulated papillary muscles from these pathological models, while no changes were displayed by Δ43 fibers. We propose that the N terminus of ELC (N-ELC), which is missing in the hearts of Δ43 mice, works as an energetic switch promoting the SRX-to-DRX transition and contributing to the regulation of myosin RLC phosphorylation in full-length ELC mice by facilitating or sterically blocking RLC phosphorylation in HCM-A57G and RCM-E143K hearts, respectively.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37:101674. [PMID: 32811789 PMCID: PMC7767752 DOI: 10.1016/j.redox.2020.101674] [Citation(s) in RCA: 728] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial electron transport chain utilizes a series of electron transfer reactions to generate cellular ATP through oxidative phosphorylation. A consequence of electron transfer is the generation of reactive oxygen species (ROS), which contributes to both homeostatic signaling as well as oxidative stress during pathology. In this graphical review we provide an overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain. We also outline traditional and novel translational methodology for assessing mitochondrial energetics in health and disease.
Collapse
|
7
|
Abstract
Isolated mitochondria are useful to study fundamental processes including mitochondrial respiration, metabolic activity, protein import, membrane fusion, protein complex assembly, as well as interactions of mitochondria with the cytoskeleton, nuclear encoded mRNAs, and other organelles. In addition, studies of the mitochondrial proteome, phosphoproteome, and lipidome are dependent on preparation of highly purified mitochondria (Boldogh, Vojtov, Karmon, & Pon, 1998; Cui, Conte, Fox, Zara, & Winge, 2014; Marc et al., 2002; Meeusen, McCaffery, & Nunnari, 2004; Reinders et al., 2007; Schneiter et al., 1999; Stuart & Koehler, 2007). Most methods to isolate mitochondria rely on differential centrifugation, a two-step centrifugation carried out at low speed to remove intact cells, cell and tissue debris, and nuclei from whole cell extracts followed by high speed centrifugation to concentrate mitochondria and separate them from other organelles. However, methods to disrupt cells and tissue vary. Moreover, density gradient centrifugation or affinity purification of the organelle are used to further purify mitochondria or to separate different populations of the organelle. Here, we describe protocols to isolate mitochondria from different cells and tissues as well as approaches to assess the purity and integrity of isolated organelles.
Collapse
|
8
|
Salaye L, Bychkova I, Sink S, Kovalic AJ, Bharadwaj MS, Lorenzo F, Jain S, Harrison AV, Davis AT, Turnbull K, Meegalla NT, Lee SH, Cooksey R, Donati GL, Kavanagh K, Bonkovsky HL, McClain DA. A Low Iron Diet Protects from Steatohepatitis in a Mouse Model. Nutrients 2019; 11:nu11092172. [PMID: 31510077 PMCID: PMC6769937 DOI: 10.3390/nu11092172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
High tissue iron levels are a risk factor for multiple chronic diseases including type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). To investigate causal relationships and underlying mechanisms, we used an established NAFLD model-mice fed a high fat diet with supplemental fructose in the water ("fast food", FF). Iron did not affect excess hepatic triglyceride accumulation in the mice on FF, and FF did not affect iron accumulation compared to normal chow. Mice on low iron are protected from worsening of markers for non-alcoholic steatohepatitis (NASH), including serum transaminases and fibrotic gene transcript levels. These occurred prior to the onset of significant insulin resistance or changes in adipokines. Transcriptome sequencing revealed the major effects of iron to be on signaling by the transforming growth factor beta (TGF-β) pathway, a known mechanistic factor in NASH. High iron increased fibrotic gene expression in vitro, demonstrating that the effect of dietary iron on NASH is direct. Conclusion: A lower tissue iron level prevents accelerated progression of NAFLD to NASH, suggesting a possible therapeutic strategy in humans with the disease.
Collapse
Affiliation(s)
- Lipika Salaye
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Ielizaveta Bychkova
- Department of Internal Medicine, University of Utah Medical Center, Salt Lake City, UT 84112, USA
| | - Sandy Sink
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Alexander J Kovalic
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Manish S Bharadwaj
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Agilent Technologies, 121 Hartwell Ave, Lexington, MA 02421, USA
| | - Felipe Lorenzo
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Shalini Jain
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Alexandria V Harrison
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Ashley T Davis
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Katherine Turnbull
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Nuwan T Meegalla
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Soh-Hyun Lee
- Department of Internal Medicine, University of Utah Medical Center, Salt Lake City, UT 84112, USA
| | - Robert Cooksey
- Department of Internal Medicine, University of Utah Medical Center, Salt Lake City, UT 84112, USA
- VA Medical Center, Salt Lake City, UT 84148, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Kylie Kavanagh
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
- Department of Biomedicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Herbert L Bonkovsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Donald A McClain
- Center on Diabetes, Obesity and Metabolism, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA.
- VA Medical Center, Salt Lake City, UT 84148, USA.
- VA Medical Center, Salisbury, NC 28144, USA.
| |
Collapse
|
9
|
Atkins HM, Bharadwaj MS, O’Brien Cox A, Furdui CM, Appt SE, Caudell DL. Endometrium and endometriosis tissue mitochondrial energy metabolism in a nonhuman primate model. Reprod Biol Endocrinol 2019; 17:70. [PMID: 31445519 PMCID: PMC6708555 DOI: 10.1186/s12958-019-0513-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Endometriosis is the growth of uterine lining (endometrium) outside of the uterus. In other chronic inflammatory diseases, mitochondrial dysfunction is suspected of playing a role in disease pathogenesis. However, little is known about endometriosis mitochondrial function or its effects on tissue metabolism. The objectives of this study were to analyze mitochondrial function in nonhuman primate (NHP) endometrium and endometriosis tissue and to identify the metabolic features of these tissues that may contribute to disease. METHODS Mitochondrial function in endometriosis tissue and endometrium was measured using mitochondrial respirometry analysis to determine if changes in oxidative phosphorylation exist in endometrium and endometriosis tissue compared to control endometrium from clinically healthy NHPs. Targeted metabolomics and multidimensional statistical analysis were applied to quantify key metabolites in energy and amino acid biosynthesis pathways. RESULTS Mitochondrial respirometry assays showed endometrium from NHPs with endometriosis had reduced complex II-mediated oxygen consumption rates (OCR) across all energy states (basal, p = 0.01; state 3, p = 0.02; state 3u, p = 0.04; state 4o, p = 0.008) and endometriosis tissue had reduced state 3, complex I-mediated OCR (p = 0.02) and respiratory control rates (p = 0.01) compared to normal endometrium. Targeted metabolomics performed on tissue revealed carnitine (p = 0.001), creatine phosphate (p = 0.01), NADH (p = 0.0001), FAD (p = 0.001), tryptophan (p = 0.0009), and malic acid (p = 0.005) were decreased in endometriosis tissue compared to normal endometrium samples. FAD (p = 0.004), tryptophan (p = 0.0004) and malic acid (p = 0.03) were significantly decreased in endometrium from NHPs with endometriosis compared to normal endometrium. Significant metabolites identified in endometriosis and endometrium samples from animals with endometriosis were part of amino acid biosynthesis or energy metabolism pathways. CONCLUSIONS Here, endometrial mitochondrial energy production and metabolism were decreased in endometrium and endometriosis tissue. Decreased mitochondrial energy production may be due to oxidative stress-induced damage to mitochondrial DNA or membranes, a shift in cell metabolism, or decreased energy substrate; however, the exact cause remains unknown. Additional research is needed to determine the implications of reduced mitochondrial energy production and metabolism on endometriosis and endometrium.
Collapse
Affiliation(s)
- Hannah M. Atkins
- 0000 0001 2185 3318grid.241167.7Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, One Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Manish S. Bharadwaj
- 0000 0001 2107 5309grid.422638.9Agilent Technologies, Cell Analysis Division, Lexington, MA USA
| | - Anderson O’Brien Cox
- 0000 0001 2185 3318grid.241167.7Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Cristina M. Furdui
- 0000 0001 2185 3318grid.241167.7Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Susan E. Appt
- 0000 0001 2185 3318grid.241167.7Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, One Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - David L. Caudell
- 0000 0001 2185 3318grid.241167.7Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, One Medical Center Blvd, Winston-Salem, NC 27157 USA
| |
Collapse
|
10
|
Pritzker KPH, Nieminen HJ. Needle Biopsy Adequacy in the Era of Precision Medicine and Value-Based Health Care. Arch Pathol Lab Med 2019; 143:1399-1415. [PMID: 31100015 DOI: 10.5858/arpa.2018-0463-ra] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT.— Needle biopsy of diseased tissue is an essential diagnostic tool that is becoming even more important as precision medicine develops. However, the capability of this modality to efficiently provide samples adequate for diagnostic and prognostic analysis remains quite limited relative to current diagnostic needs. For physicians and patients, inadequate biopsy frequently leads to diagnostic delay, procedure duplication, or insufficient information about tumor biology leading to delay in treatment; for health systems, this results in substantial incremental costs and inefficient use of scarce specialized diagnostic resources. OBJECTIVE.— To review current needle biopsy technology, devices, and practice with a perspective to identify current limitations and opportunities for improvement in the context of advancing precision medicine. DATA SOURCES.— PubMed searches of fine-needle aspiration and core needle biopsy devices and similar technologies were made generally, by tissue site, and by adequacy as well as by health economics of these technologies. CONCLUSIONS.— Needle biopsy adequacy can be improved by recognizing the importance of this diagnostic tool by promoting common criteria for needle biopsy adequacy; by optimizing needle biopsy procedural technique, technologies, clinical practice, professional education, and quality assurance; and by bundling biopsy procedure costs with downstream diagnostic modalities to provide better accountability and incentives to improve the diagnostic process.
Collapse
Affiliation(s)
- Kenneth P H Pritzker
- From the Departments of Laboratory Medicine and Pathobiology, and Surgery, University of Toronto, Toronto, Ontario, Canada (Dr Pritzker); and the Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (Dr Nieminen)
| | - Heikki J Nieminen
- From the Departments of Laboratory Medicine and Pathobiology, and Surgery, University of Toronto, Toronto, Ontario, Canada (Dr Pritzker); and the Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (Dr Nieminen)
| |
Collapse
|
11
|
Holmila RJ, Vance SA, Chen X, Wu H, Shukla K, Bharadwaj MS, Mims J, Wary Z, Marrs G, Singh R, Molina AJ, Poole LB, King SB, Furdui CM. Mitochondria-targeted Probes for Imaging Protein Sulfenylation. Sci Rep 2018; 8:6635. [PMID: 29703899 PMCID: PMC5923234 DOI: 10.1038/s41598-018-24493-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/27/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) are essential regulators of cellular signaling, metabolism and epigenetics underlying the pathophysiology of numerous diseases. Despite the critical function of redox regulation in mitochondria, currently there are limited methods available to monitor protein oxidation in this key subcellular organelle. Here, we describe compounds for imaging sulfenylated proteins in mitochondria: DCP-NEt2-Coumarin (DCP-NEt2C) and rhodamine-based DCP-Rho1. Side-by-side comparison studies are presented on the reactivity of DCP-NEt2C and DCP-Rho1 with a model protein sulfenic acid (AhpC-SOH) and mitochondrial localization to identify optimized experimental conditions for labeling and visualization of protein sulfenylation that would be independent of mitochondria membrane potential and would not impact mitochondrial function. These probes are applied to image mitochondrial protein sulfenylation under conditions of serum starvation and in a cell culture model of lung cancer exposed to ionizing radiation and silver nanoparticles, agents serving dual functions as environmental stressors and cancer therapeutics.
Collapse
Affiliation(s)
- Reetta J Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Stephen A Vance
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Manish S Bharadwaj
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Zack Wary
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Anthony J Molina
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
12
|
Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Shively C, Andrews RN, Neth B, Keene CD, Mintz A, Craft S, Molina AJA. Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7317251. [PMID: 29098063 PMCID: PMC5643153 DOI: 10.1155/2017/7317251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/09/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022]
Abstract
Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer's disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, and frontal cortex mitochondria. Our data indicate that differences in the maximal respiratory capacity of brain mitochondria are reflected by CD14+ monocyte maximal respiratory capacity and platelet and monocyte bioenergetic health index. A subset of nonhuman primates also underwent [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to assess brain glucose metabolism. Our results indicate that platelet respiratory capacity positively correlates to measures of glucose metabolism in multiple brain regions. Altogether, the results of this study provide early evidence that blood-based bioenergetic profiling is related to brain mitochondrial metabolism. While these measures cannot substitute for direct measures of brain metabolism, provided by measures such as FDG-PET, they may have utility as a metabolic biomarker and screening tool to identify individuals exhibiting systemic bioenergetic decline who may therefore be at risk for the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel J. Tyrrell
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Manish S. Bharadwaj
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J. Jorgensen
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C. Register
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Shively
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Rachel N. Andrews
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Bryan Neth
- Section on Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention & Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Suzanne Craft
- Section on Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention & Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony J. A. Molina
- Section on Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention & Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
13
|
O'Brien LC, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS. Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. Eur J Appl Physiol 2017; 117:2137-2147. [PMID: 28864949 DOI: 10.1007/s00421-017-3687-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Changes in metabolism and body composition after spinal cord injury (SCI) predispose individuals to obesity, type II diabetes, and cardiovascular disease. A link between lean mass and skeletal muscle mitochondrial mass has been reported but it is unknown how skeletal muscle mitochondrial mass and activity impact metabolic health. This study examined the relationship between skeletal muscle mitochondrial mass, activity and metabolic profile in individuals with chronic SCI. METHODS Twenty-two men with motor complete SCI participated in the study. Citrate synthase (CS) and complex III (CIII) activity was measured in vastus lateralis biopsies. Metabolic profile was assessed by intravenous glucose tolerance test, basal metabolic rate (BMR), maximum oxygen uptake (VO2 peak) and blood lipid profile. RESULTS Skeletal muscle CS activity was negatively related to the cholesterol:high density lipoprotein cholesterol (HDL-C) ratio and triglycerides (r = -0.60, p = 0.009; r = -0.64, p = 0.004, respectively). CS activity was positively related to insulin sensitivity and BMR (r = 0.67, p = 0.006; r = 0.64, p = 0.005, respectively). Similar relationships were found for CIII and metabolic profile, but not CIII normalized to CS. Many of the relationships between CS and metabolism remained significant when age, level of injury, or time since injury were accounted for. They also remained significant when CS activity was normalized to total lean mass. CONCLUSIONS These results suggest that an increase in skeletal muscle mitochondrial mass is associated with improved metabolic health independent of age, level of injury, or time since injury in individuals with chronic SCI. This highlights the importance of maintaining and improving mitochondrial health in individuals with SCI.
Collapse
Affiliation(s)
- Laura C O'Brien
- Spinal Cord Injury Research, Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qun Chen
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Savas
- Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
- Medical Services, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury Research, Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
O'Brien LC, Wade RC, Segal L, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS. Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiol Rep 2017; 5:e13080. [PMID: 28193782 PMCID: PMC5309572 DOI: 10.14814/phy2.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) is accompanied by deterioration in body composition and severe muscle atrophy. These changes put individuals at risk for insulin resistance, type II diabetes, and cardiovascular disease. To determine the relationships between skeletal muscle mitochondrial mass, activity, and body composition, 22 men with motor complete SCI were studied. Body composition assessment was performed using dual-energy X-ray absorptiometry and magnetic resonance imaging. Skeletal muscle biopsies were obtained from the vastus lateralis muscle to measure citrate synthase (CS) and complex III (CIII) activity. CS activity was inversely related to %body fat (r = -0.57, P = 0.013), %leg fat (r = -0.52, P = 0.027), %trunk fat (r = -0.54, P = 0.020), and %android fat (r = -0.54, P = 0.017). CIII activity was negatively related to %body fat (r = -0.58, P = 0.022) and %leg fat (r = -0.54, P = 0.037). Increased visceral adipose tissue was associated with decreased CS and CIII activity (r = -0.66, P = 0.004; r = -0.60, P = 0.022). Thigh intramuscular fat was also inversely related to both CS and CIII activity (r = -0.56, P = 0.026; r = -0.60, P = 0.024). Conversely, lean mass (r = 0.75, P = 0.0003; r = 0.65, P = 0.008) and thigh muscle cross-sectional area (CSA; r = 0.82, P = 0.0001; r = 0.84; P = 0.0001) were positively related to mitochondrial parameters. When normalized to thigh muscle CSA, many body composition measurements remained related to CS and CIII activity, suggesting that %fat and lean mass may predict mitochondrial mass and activity independent of muscle size. Finally, individuals with SCI over age 40 had decreased CS and CIII activity (P = 0.009; P = 0.004), suggesting a decrease in mitochondrial health with advanced age. Collectively, these findings suggest that an increase in adipose tissue and decrease in lean mass results in decreased skeletal muscle mitochondrial activity in individuals with chronic SCI.
Collapse
Affiliation(s)
- Laura C O'Brien
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Rodney C Wade
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Liron Segal
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Savas
- Department of Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
- Department of Medicine, Division of Cardiology, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Iuso A, Repp B, Biagosch C, Terrile C, Prokisch H. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer. Methods Mol Biol 2017; 1567:217-230. [PMID: 28276021 DOI: 10.1007/978-1-4939-6824-4_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Working with isolated mitochondria is the gold standard approach to investigate the function of the electron transport chain in tissues, free from the influence of other cellular factors. In this chapter, we outline a detailed protocol to measure the rate of oxygen consumption (OCR) with the high-throughput analyzer Seahorse XF96. More importantly, this protocol wants to provide practical tips for handling many different samples at once, and take a real advantage of using a high-throughput system. As a proof of concept, we have isolated mitochondria from brain, heart, liver, muscle, kidney, and lung of a wild-type mouse, and measured basal respiration (State II), ADP-stimulated respiration (State III), non-ADP-stimulated respiration (State IVo), and FCCP-stimulated respiration (State IIIu) using respiratory substrates specific to the respiratory chain complex I (RCCI) and complex II (RCCII). Mitochondrial purification and Seahorse runs were performed in less than eight working hours.
Collapse
Affiliation(s)
- Arcangela Iuso
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Enviromental Health, 85764, Neuherberg, Germany.
- Institute of Human Genetics, Technische Universität München, Munich, Germany.
| | - Birgit Repp
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Caroline Biagosch
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Enviromental Health, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Caterina Terrile
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Enviromental Health, 85764, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Enviromental Health, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJA. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol 2016; 10:65-77. [PMID: 27693859 PMCID: PMC5045569 DOI: 10.1016/j.redox.2016.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Blood based bioenergetic profiling strategies are emerging as potential reporters of systemic mitochondrial function; however, the extent to which these measures reflect the bioenergetic capacity of other tissues is not known. The premise of this work is that highly metabolically active tissues, such as skeletal and cardiac muscle, are susceptible to differences in systemic bioenergetic capacity. Therefore, we tested whether the respiratory capacity of blood cells, monocytes and platelets, are related to contemporaneous respirometric assessments of skeletal and cardiac muscle mitochondria. 18 female vervet/African green monkeys (Chlorocebus aethiops sabaeus) of varying age and metabolic status were examined for this study. Monocyte and platelet maximal capacity correlated with maximal oxidative phosphorylation capacity of permeabilized skeletal muscle (R=0.75, 95% confidence interval [CI]: 0.38-0.97; R=0.51, 95%CI: 0.05-0.81; respectively), isolated skeletal muscle mitochondrial respiratory control ratio (RCR; R=0.70, 95%CI: 0.35-0.89; R=0.64, 95%CI: 0.23-0.98; respectively), and isolated cardiac muscle mitochondrial RCR (R=0.55, 95%CI: 0.22-0.86; R=0.58, 95%CI: 0.22-0.85; respectively). These results suggest that blood based bioenergetic profiling may be used to report on the bioenergetic capacity of muscle tissues. Blood cell respirometry represents an attractive alternative to tissue based assessments of mitochondrial function in human studies based on ease of access and the minimal participant burden required by these measures.
Collapse
Affiliation(s)
- Daniel J Tyrrell
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Manish S Bharadwaj
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony J A Molina
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
17
|
Rellick SL, Hu H, Simpkins JW, Ren X. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells. J Vis Exp 2016. [PMID: 27911398 PMCID: PMC5226249 DOI: 10.3791/54847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.
Collapse
Affiliation(s)
- Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University; Mitochondrial Evaluation Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University; Experimental Stroke Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - Xuefang Ren
- Department of Physiology and Pharmacology, West Virginia University; Experimental Stroke Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University;
| |
Collapse
|
18
|
O’Brien LC, Gorgey AS. Skeletal muscle mitochondrial health and spinal cord injury. World J Orthop 2016; 7:628-637. [PMID: 27795944 PMCID: PMC5065669 DOI: 10.5312/wjo.v7.i10.628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/18/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.
Collapse
|
19
|
Flack KD, Davy BM, DeBerardinis M, Boutagy NE, McMillan RP, Hulver MW, Frisard MI, Anderson AS, Savla J, Davy KP. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults. Physiol Rep 2016; 4:4/13/e12849. [PMID: 27405968 PMCID: PMC4945835 DOI: 10.14814/phy2.12849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023] Open
Abstract
Whether resistance exercise training (RET) improves skeletal muscle substrate oxidative capacity and reduces mitochondrial production of reactive oxygen species in older adults remains unclear. To address this, 19 older males (≥60 years) were randomized to a RET (n = 11) or to a waitlist control group (n = 8) that remained sedentary for 12 weeks. RET was comprised of three upper body and four lower body movements on resistance machines. One set of 8-12 repetitions to failure of each movement was performed on three nonconsecutive days/week. Improvements in chest press and leg press strength were assessed using a three-repetition maximum (3 RM). Body composition was assessed via dual energy X-ray absorptiometry. Muscle biopsies were obtained from the vastus lateralis muscle at baseline and at both 3 weeks and 12 weeks. Palmitate and pyruvate oxidation rates were measured from the (14)CO2 produced from [1-(14)C] palmitic acid and [U-(14)C] pyruvate, respectively, during incubation of muscle homogenates. PGC-1α, TFAM, and PPARδ levels were quantified using qRT-PCR Citrate synthase (CS) and β-HAD activities were determined spectrophotometrically. Mitochondrial production of reactive oxygen species (ROS) were assessed using the Amplex Red Hydrogen Peroxide/Peroxidase assay. There were no significant changes in body weight or body composition following the intervention. Chest press and leg press strength (3RM) increased ~34% (both P < 0.01) with RET There were no significant changes in pyruvate or fatty acid oxidation or in the expression of target genes with the intervention. There was a modest increase (P < 0.05) in βHAD activity with RET at 12 weeks but the change in CS enzyme activity was not significant. In addition, there were no significant changes in ROS production in either group following RET Taken together, the findings of this study suggest that 12 weeks of low volume RET does not increase skeletal muscle oxidative capacity or reduce ROS production in older adults.
Collapse
Affiliation(s)
- Kyle D Flack
- United Stated Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Center for Gerontology, Virginia Tech, Blacksburg, Virginia
| | - Martin DeBerardinis
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Nabil E Boutagy
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Center for Gerontology, Virginia Tech, Blacksburg, Virginia Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| | - Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Center for Gerontology, Virginia Tech, Blacksburg, Virginia Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| | - Angela S Anderson
- Department of Biology, Pikes Peak Community College, Colorado Springs, Colorado
| | - Jyoti Savla
- Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Center for Gerontology, Virginia Tech, Blacksburg, Virginia Department of Human Development, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia Center for Gerontology, Virginia Tech, Blacksburg, Virginia Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
20
|
Molina AJA, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW. Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients With Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC-HEART FAILURE 2016; 4:636-45. [PMID: 27179829 DOI: 10.1016/j.jchf.2016.03.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to examine skeletal muscle mitochondria content, oxidative capacity, and the expression of key mitochondrial dynamics proteins in patients with heart failure with preserved ejection fraction (HFpEF), as well as to determine potential relationships with measures of exercise performance. BACKGROUND Multiple lines of evidence indicate that severely reduced peak exercise oxygen uptake (peak VO2) in older patients with HFpEF is related to abnormal skeletal muscle oxygen utilization. Mitochondria are key regulators of skeletal muscle metabolism; however, little is known about how these organelles are affected in HFpEF. METHODS Both vastus lateralis skeletal muscle citrate synthase activity and the expression of porin and regulators of mitochondrial fusion were examined in older patients with HFpEF (n = 20) and healthy, age-matched control subjects (n = 17). RESULTS Compared with age-matched healthy control subjects, mitochondrial content assessed by porin expression was 46% lower (p = 0.01), citrate synthase activity was 29% lower (p = 0.01), and Mfn2 (mitofusin 2) expression was 54% lower (p <0.001) in patients with HFpEF. Expression of porin was significantly positively correlated with both peak VO2 and 6-min walk distance (r = 0.48, p = 0.003 and r = 0.33, p = 0.05, respectively). Expression of Mfn2 was also significantly positively correlated with both peak VO2 and 6-min walk distance (r = 0.40, p = 0.02 and r = 0.37, p = 0.03 respectively). CONCLUSIONS These findings suggest that skeletal muscle oxidative capacity, mitochondrial content, and mitochondrial fusion are abnormal in older patients with HFpEF and might contribute to their severe exercise intolerance.
Collapse
Affiliation(s)
- Anthony J A Molina
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Manish S Bharadwaj
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia Van Horn
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J Nicklas
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary F Lyles
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joel Eggebeen
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark J Haykowsky
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Peter H Brubaker
- Department of Exercise and Health Science, Wake Forest University, Winston-Salem, North Carolina
| | - Dalane W Kitzman
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
21
|
Bharadwaj MS, Tyrrell DJ, Leng I, Demons JL, Lyles MF, Carr JJ, Nicklas BJ, Molina AJA. Relationships between mitochondrial content and bioenergetics with obesity, body composition and fat distribution in healthy older adults. BMC OBESITY 2015; 2:40. [PMID: 26448868 PMCID: PMC4594906 DOI: 10.1186/s40608-015-0070-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Background Mitochondrial function declines with age; however, the relationship between adiposity and mitochondrial function among older adults is unclear. This study examined relationships between skeletal muscle mitochondrial content and electron transport chain complex 2 driven respiration with whole body and thigh composition, body fat distribution, and insulin sensitivity in older adults. Methods 25 healthy, sedentary, weight-stable men (N = 13) and women (N = 12) >65 years of age, with a BMI range of 18-35 kg/m2, participated in this study. Vastus lateralis biopsies were analyzed for citrate synthase (CS) activity and succinate mediated respiration of isolated mitochondria. Whole body and thigh composition were measured by DXA and CT. HOMA-IR was calculated using fasting glucose and insulin as an estimate of insulin sensitivity. Results Similar to reports in middle-aged adults, skeletal muscle CS activity was negatively correlated with BMI (R = −0.43) in our cohort of older adults. Higher total and thigh adiposity were correlated with lower CS activity independent of BMI (R = −0.50 and −0.71 respectively). Maximal complex 2 driven mitochondrial respiration was negatively correlated with lower body adiposity in males (R = −0.66). In this cohort of non-diabetic older adults, both HOMA-IR and insulin were positively correlated with CS activity when controlling for BMI (R = 0.57 and 0.66 respectively). Conclusions Adiposity and body composition are correlated with skeletal muscle mitochondrial content and electron transport chain function in healthy, sedentary, community dwelling, older adults. Specific relationships of mitochondrial bioenergetics with gender and insulin sensitivity are also apparent. Trial registration ClinicalTrials.gov identifier NCT01049698 Electronic supplementary material The online version of this article (doi:10.1186/s40608-015-0070-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish S Bharadwaj
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Daniel J Tyrrell
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Iris Leng
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Jamehl L Demons
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Mary F Lyles
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - J Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Barbara J Nicklas
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Anthony J A Molina
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|