1
|
Bento GFC, Richardson L, da Silva MG, Tantengco OAG, Menon R. Modeling an ascending infection by Ureaplasma parvum and its cell signaling and inflammatory response at the feto-maternal interface. Am J Reprod Immunol 2023; 90:e13770. [PMID: 37766409 PMCID: PMC10571092 DOI: 10.1111/aji.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.
Collapse
Affiliation(s)
- Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, São Paulo State University, São Paulo, Brazil
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | | | - Ourlad Alzeus G. Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| |
Collapse
|
2
|
Collier ARY, Modest AM, Aguayo RA, Bondzie EA, Patel S, Hacker MR, Barouch DH. Altered Cytokine Production in Human Intervillous Blood T Cells in Preeclampsia. Reprod Sci 2023; 30:2655-2664. [PMID: 36749459 PMCID: PMC10404629 DOI: 10.1007/s43032-023-01165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023]
Abstract
Conventional and regulatory T cells (Treg) are dynamic mediators of maternal immune tolerance to the developing feto-placental unit. Functional evaluation of T cells at the maternal-fetal interface is crucial to elucidate the immunologic basis of obstetric complications. Our objective was to define the T cell phenotype and function of uterine intervillous blood (IVB) in pregnancy with and without preeclampsia. We hypothesize that preeclampsia is associated with impaired immune tolerance and a pro-inflammatory uterine T cell microenvironment. In this cross-sectional study, maternal peripheral blood (PB) and uterine IVB (obtained from the surgical sponge used to clean the placental bed during cesarean delivery) were collected from participants with and without preeclampsia. Proportion, activation, and cytokine production of T cell subsets were quantified by flow cytometry. T cell parameters were compared by tissue source and by preeclampsia status. Sixty participants, 26 with preeclampsia, were included. Induced Treg made up a greater proportion of IVB T cells compared to PB and had greater cytokine-producing capacity. Preeclampsia was associated with increased ratio of pro-inflammatory IL-17α to suppressive IL-10 cytokine production by CD4 T cell subsets in IVB, but not in PB. Human uterine IVB is composed of activated, cytokine-producing T cell subsets distinct from maternal PB. Preeclampsia is associated with a pro-inflammatory IVB profile, with increased IL-17α /IL-10 ratio in all CD4 T cell subsets. IVB sampling is a useful tool for investigating human T cell biology at the maternal-fetal interface that may inform immunotherapeutic strategies for preeclampsia.
Collapse
Affiliation(s)
- Ai-Ris Y Collier
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Obstetrics and Gynecology, Kirstein 3rd floor, Boston, MA, 02215, USA.
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Anna M Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Obstetrics and Gynecology, Kirstein 3rd floor, Boston, MA, 02215, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Ricardo A Aguayo
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Obstetrics and Gynecology, Kirstein 3rd floor, Boston, MA, 02215, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michele R Hacker
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Obstetrics and Gynecology, Kirstein 3rd floor, Boston, MA, 02215, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Chasman DA, Welch Schwartz R, Vazquez J, Chavarria M, Jenkins ET, Lopez GE, Tyler CT, Stanic AK, Ong IM. Proteogenomic and V(D)J Analysis of Human Decidual T Cells Highlights Unique Transcriptional Programming and Clonal Distribution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:154-162. [PMID: 37195197 PMCID: PMC10330249 DOI: 10.4049/jimmunol.2200061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Immunological tolerance toward the semiallogeneic fetus is one of many maternal adaptations required for a successful pregnancy. T cells are major players of the adaptive immune system and balance tolerance and protection at the maternal-fetal interface; however, their repertoire and subset programming are still poorly understood. Using emerging single-cell RNA sequencing technologies, we simultaneously obtained transcript, limited protein, and receptor repertoire at the single-cell level, from decidual and matched maternal peripheral human T cells. The decidua maintains a tissue-specific distribution of T cell subsets compared with the periphery. We find that decidual T cells maintain a unique transcriptome programming, characterized by restraint of inflammatory pathways by overexpression of negative regulators (DUSP, TNFAIP3, ZFP36) and expression of PD-1, CTLA-4, TIGIT, and LAG3 in some CD8 clusters. Finally, analyzing TCR clonotypes demonstrated decreased diversity in specific decidual T cell populations. Overall, our data demonstrate the power of multiomics analysis in revealing regulation of fetal-maternal immune coexistence.
Collapse
Affiliation(s)
- Deborah A. Chasman
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jessica Vazquez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Eryne T. Jenkins
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Chanel T. Tyler
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Irene M. Ong
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
4
|
Garcia-Flores V, Xu Y, Pusod E, Romero R, Pique-Regi R, Gomez-Lopez N. Preparation of single-cell suspensions from the human placenta. Nat Protoc 2023; 18:732-754. [PMID: 36451054 PMCID: PMC10355223 DOI: 10.1038/s41596-022-00772-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) allows the characterization of cellular composition and interactions in complex tissues. An essential prerequisite for scRNA-seq is the preparation of high-quality single-cell suspensions. So far, no protocols have been described for preparing such suspensions from the placenta, an essential organ for fetal development and a site of maternal-fetal immune interaction. Here we describe a protocol for the preparation of high-quality single-cell suspensions from human placental tissues-namely, the basal plate, placental villi and chorioamniotic membranes. The protocol outlines the collection of tissues from the placenta, tailored dissociation procedures for each tissue, and the cryopreservation of single-cell suspensions for multiplex sequencing library preparation. The protocol can be performed by a qualified investigator with basic working knowledge of placental structure. Moreover, the single-cell suspensions generated by using this protocol are compatible with droplet-based scRNA-seq technology, such as the 10x Genomics Chromium system. This protocol reliably produces single-cell suspensions from the placental tissues with high yield and viability for scRNA-seq. This protocol takes ~6 h to complete from tissue collection to cryopreservation of single-cell suspensions, and an additional 2 h for thawing of cryopreserved single cells.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
5
|
Zha Y, Liu H, Lin X, Yu L, Gao P, Li Y, Wu M, Gong X, Bian X, Kang Q, Zhi P, Dang X, Wang J, Feng L, Qiao F, Huang Y, Zeng W. Immune Deviation in the Decidua During Term and Preterm Labor. Front Immunol 2022; 13:877314. [PMID: 35757768 PMCID: PMC9226582 DOI: 10.3389/fimmu.2022.877314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal-fetal immune disorder is considered to be an important factor of preterm birth (PTB); however, the underlying mechanism is still not fully understood. This study was designed to explore the innate and adaptive immune features in the decidua during term and preterm labor. Women delivered at term or preterm were classified into four groups: term not in labor (TNL, N=19), term in labor (TL, N=17), preterm not in labor (PNL, N=10), and preterm in labor (PIL, N=10). Decidua basalis and parietalis were collected and analyzed for macrophage subtypes (M1 and M2) as well as T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells by flow cytometry and immunohistochemistry. Our results demonstrated significantly decreased frequencies of M2 cells and elevated M1/M2 ratio in the PIL group compared to that in the PNL group in both decidua basalis and parietalis, whereas no significant differences were found between the above two groups in both sites in terms of the polarization status of Th cells. On the contrary, macrophage subsets were comparable in the TL and TNL groups, whereas elevated Th1 percentages and Th1/Th2 ratio were observed in TL women compared to that in TNL women in the decidua. Interestingly, although the frequencies and ratios of Th17 and Treg were comparable among the four groups, the Th17/Treg ratios of these groups were significantly increased in decidua basalis than that in decidua parietalis. Collectively, the M1/M2 imbalance is associated with the breakdown of maternal-fetal immune tolerance during PTB, whereas the aberrant Th1/Th2 profile plays an important role in immune disorder during term labor. Moreover, Th17/Treg deviation is more remarkable in decidua basalis than in decidua parietalis.
Collapse
Affiliation(s)
- Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohe Dang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Juttukonda LJ, Wachman EM, Boateng J, Jain M, Benarroch Y, Taglauer ES. Decidual immune response following COVID-19 during pregnancy varies by timing of maternal SARS-CoV-2 infection. J Reprod Immunol 2022; 151:103501. [PMID: 35231754 PMCID: PMC8867981 DOI: 10.1016/j.jri.2022.103501] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
While COVID-19 infection during pregnancy is common, fetal transmission is rare, suggesting that intrauterine mechanisms form an effective blockade against SARS-CoV-2. Key among these is the decidual immune environment of the placenta. We hypothesize that decidual leukocytes are altered by maternal SARS-CoV-2 infection in pregnancy and that this decidual immune response is shaped by the timing of infection during gestation. To address this hypothesis, we collected decidua basalis tissues at delivery from women with symptomatic COVID-19 during second (2nd Tri COVID, n = 8) or third trimester (3rd Tri COVID, n = 8) and SARS-CoV-2-negative controls (Control, n = 8). Decidual natural killer (NK) cells, macrophages and T cells were evaluated using quantitative microscopy, and pro- and anti-inflammatory cytokine mRNA expression was evaluated using quantitative reverse transcriptase PCR (qRT-PCR). When compared with the Control group, decidual tissues from 3rd Tri COVID exhibited significantly increased macrophages, NK cells and T cells, whereas 2nd Tri COVID only had significantly increased T cells. In evaluating decidual cytokine expression, we noted that IL-6, IL-8, IL-10 and TNF-α were significantly correlated with macrophage cell abundance. However, in 2nd Tri COVID tissues, there was significant downregulation of IL-6, IL-8, IL-10, and TNF-α. Taken together, these results suggest innate and adaptive immune responses are present at the maternal-fetal interface in maternal SARS-CoV-2 infections late in pregnancy, and that infections earlier in pregnancy show evidence of a resolving immune response. Further studies are warranted to characterize the full scope of intrauterine immune responses in pregnancies affected by maternal COVID-19.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Boston Combined Residency Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Jeffery Boateng
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Mayuri Jain
- Boston University School of Public Health, 715 Albany Street, Boston, MA 02119, USA.
| | - Yoel Benarroch
- Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Elizabeth S Taglauer
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| |
Collapse
|
7
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
8
|
Turk G, Seiger K, Lian X, Sun W, Parsons EM, Gao C, Rassadkina Y, Polo ML, Czernikier A, Ghiglione Y, Vellicce A, Varriale J, Lai J, Yuki Y, Martin M, Rhodes A, Lewin SR, Walker BD, Carrington M, Siliciano R, Siliciano J, Lichterfeld M, Laufer N, Yu XG. A Possible Sterilizing Cure of HIV-1 Infection Without Stem Cell Transplantation. Ann Intern Med 2022; 175:95-100. [PMID: 34781719 PMCID: PMC9215120 DOI: 10.7326/l21-0297] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A sterilizing cure of HIV-1 infection has been reported in 2 persons living with HIV-1 who underwent allogeneic hematopoietic stem cell transplantations from donors who were homozygous for the CCR5Δ32 gene polymorphism. However, this has been considered elusive during natural infection. OBJECTIVE To evaluate persistent HIV-1 reservoir cells in an elite controller with undetectable HIV-1 viremia for more than 8 years in the absence of antiretroviral therapy. DESIGN Detailed investigation of virologic and immunologic characteristics. SETTING Tertiary care centers in Buenos Aires, Argentina, and Boston, Massachusetts. PATIENT A patient with HIV-1 infection and durable drug-free suppression of HIV-1 replication. MEASUREMENTS Analysis of genome-intact and replication-competent HIV-1 using near-full-length individual proviral sequencing and viral outgrowth assays, respectively; analysis of HIV-1 plasma RNA by ultrasensitive HIV-1 viral load testing. RESULTS No genome-intact HIV-1 proviruses were detected in analysis of a total of 1.188 billion peripheral blood mononuclear cells and 503 million mononuclear cells from placental tissues. Seven defective proviruses, some of them derived from clonally expanded cells, were detected. A viral outgrowth assay failed to retrieve replication-competent HIV-1 from 150 million resting CD4+ T cells. No HIV-1 RNA was detected in 4.5 mL of plasma. LIMITATIONS Absence of evidence for intact HIV-1 proviruses in large numbers of cells is not evidence of absence of intact HIV-1 proviruses. A sterilizing cure of HIV-1 can never be empirically proved. CONCLUSION Genome-intact and replication-competent HIV-1 were not detected in an elite controller despite analysis of massive numbers of cells from blood and tissues, suggesting that this patient may have naturally achieved a sterilizing cure of HIV-1 infection. These observations raise the possibility that a sterilizing cure may be an extremely rare but possible outcome of HIV-1 infection. PRIMARY FUNDING SOURCE National Institutes of Health and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kyra Seiger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elizabeth M. Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Maria Laura Polo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Czernikier
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Vellicce
- Department of Hematology, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ajantha Rhodes
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, and Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland; and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Robert Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Leimert KB, Xu W, Princ MM, Chemtob S, Olson DM. Inflammatory Amplification: A Central Tenet of Uterine Transition for Labor. Front Cell Infect Microbiol 2021; 11:660983. [PMID: 34490133 PMCID: PMC8417473 DOI: 10.3389/fcimb.2021.660983] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In preparation for delivery, the uterus transitions from actively maintaining quiescence during pregnancy to an active parturient state. This transition occurs as a result of the accumulation of pro-inflammatory signals which are amplified by positive feedback interactions involving paracrine and autocrine signaling at the level of each intrauterine cell and tissue. The amplification events occur in parallel until they reach a certain threshold, ‘tipping the scale’ and contributing to processes of uterine activation and functional progesterone withdrawal. The described signaling interactions all occur upstream from the presentation of clinical labor symptoms. In this review, we will: 1) describe the different physiological processes involved in uterine transition for each intrauterine tissue; 2) compare and contrast the current models of labor initiation; 3) introduce innovative models for measuring paracrine inflammatory interactions; and 4) discuss the therapeutic value in identifying and targeting key players in this crucial event for preterm birth.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Magdalena M Princ
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CB, Lu-Culligan WJ, Campbell KH, Casanovas-Massana A, Bermejo S, Toothaker JM, Lee HJ, Liu F, Schulz W, Fournier J, Muenker MC, Moore AJ, Konnikova L, Neugebauer KM, Ring A, Grubaugh ND, Ko AI, Morotti R, Guller S, Kliman HJ, Iwasaki A, Farhadian SF. SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.25.21250452. [PMID: 33532791 PMCID: PMC7852242 DOI: 10.1101/2021.01.25.21250452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pregnant women appear to be at increased risk for severe outcomes associated with COVID-19, but the pathophysiology underlying this increased morbidity and its potential impact on the developing fetus is not well understood. In this study of pregnant women with and without COVID-19, we assessed viral and immune dynamics at the placenta during maternal SARS-CoV-2 infection. Amongst uninfected women, ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term. Term placentas from women infected with SARS-CoV-2, however, displayed a significant increase in ACE2 levels. Using immortalized cell lines and primary isolated placental cells, we determined the vulnerability of various placental cell types to direct infection by SARS-CoV-2 in vitro. Yet, despite the susceptibility of placental cells to SARS-CoV-2 infection, viral RNA was detected in the placentas of only a subset (~13%) of women in this cohort. Through single cell transcriptomic analyses, we found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited markers associated with pregnancy complications, such as preeclampsia, and robust immune responses, including increased activation of placental NK and T cells and increased expression of interferon-related genes. Overall, this study suggests that SARS-CoV-2 is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. While this likely represents a protective mechanism shielding the placenta from infection, inflammatory changes in the placenta may also contribute to poor pregnancy outcomes and thus warrant further investigation.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Arun R. Chavan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pavithra Vijayakumar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lina Irshaid
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Edward M. Courchaine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Kristin M. Milano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Scott D. Pope
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - William J. Lu-Culligan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Katherine H. Campbell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Santos Bermejo
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jessica M. Toothaker
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah J. Lee
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Wade Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - John Fournier
- Section of Infectious Diseases, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - M. Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Adam J. Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Liza Konnikova
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Raffaella Morotti
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shelli F. Farhadian
- Section of Infectious Diseases, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
van der Zwan A, van Unen V, Beyrend G, Laban S, van der Keur C, Kapsenberg HJM, Höllt T, Chuva de Sousa Lopes SM, van der Hoorn MLP, Koning F, Claas FHJ, Eikmans M, Heidt S. Visualizing Dynamic Changes at the Maternal-Fetal Interface Throughout Human Pregnancy by Mass Cytometry. Front Immunol 2020; 11:571300. [PMID: 33193353 PMCID: PMC7649376 DOI: 10.3389/fimmu.2020.571300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
During healthy pregnancy, a balanced microenvironment at the maternal-fetal interface with coordinated interaction between various immune cells is necessary to maintain immunological tolerance. While specific decidual immune cell subsets have been investigated, a system-wide unbiased approach is lacking. Here, mass cytometry was applied for data-driven, in-depth immune profiling of the total leukocyte population isolated from first, second, and third trimester decidua, as well as maternal peripheral blood at time of delivery. The maternal-fetal interface showed a unique composition of immune cells, different from peripheral blood, with significant differences between early and term pregnancy samples. Profiling revealed substantial heterogeneity in the decidual lymphoid and myeloid cell lineages that shape gestational-specific immune networks and putative differentiation trajectories over time during gestation. Uncovering the overall complexity at the maternal-fetal interface throughout pregnancy resulted in a human atlas that may serve as a foundation upon which comprehension of the immune microenvironment and alterations thereof in pregnancy complications can be built.
Collapse
Affiliation(s)
- Anita van der Zwan
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillaume Beyrend
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra Laban
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
| | | | | | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H. J. Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Pique-Regi R, Romero R, Tarca AL, Luca F, Xu Y, Alazizi A, Leng Y, Hsu CD, Gomez-Lopez N. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? eLife 2020; 9:e58716. [PMID: 32662421 PMCID: PMC7367681 DOI: 10.7554/elife.58716] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 exists. The novel coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single-cell study (Pique-Regi et al., 2019), another study, and new single-cell/nuclei RNA-sequencing data, we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy in the placenta as well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and TMPRSS2 is negligible in the placenta, thus not a likely path of vertical transmission for SARS-CoV-2. By contrast, receptors for Zika virus and cytomegalovirus, which cause congenital infections, are highly expressed by placental cell types. These data show that the placenta minimally expresses the canonical cell-entry mediators for SARS-CoV-2.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
- Detroit Medical CenterDetroitUnited States
- Department of Obstetrics and Gynecology, Florida International UniversityMiamiUnited States
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
13
|
Gomez-Lopez N, Arenas-Hernandez M, Romero R, Miller D, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Hassan SS, Hsu CD, Tse H, Sanchez-Torres C, Done B, Tarca AL. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep 2020; 32:107874. [PMID: 32640239 PMCID: PMC7396155 DOI: 10.1016/j.celrep.2020.107874] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Harley Tse
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Balduit A, Mangogna A, Agostinis C, Zito G, Romano F, Ricci G, Bulla R. Zinc Oxide Exerts Anti-Inflammatory Properties on Human Placental Cells. Nutrients 2020; 12:nu12061822. [PMID: 32570911 PMCID: PMC7353449 DOI: 10.3390/nu12061822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: An aberrant and persistent inflammatory state at the fetal-maternal interface is considered as a key contributor in compromised pregnancies. Decidual endothelial cells (DECs) play a pivotal role in the control of the local decidual inflammation. The aim of the current study was to determine whether dietary supplement with zinc oxide (ZnO), due to its very low adverse effects, may be useful for modulating the inflammatory response in the first trimester of pregnancy. Methods: The anti-inflammatory properties of ZnO in pregnancy were evaluated by in vitro tests on endothelial cells isolated from normal deciduas and on a trophoblast cell line (HTR8/Svneo). The effects of this treatment were analyzed in terms of adhesion molecule expression and inflammatory cytokine secretion, by real time-quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Our data showed that ZnO was able to reduce the inflammatory response of DECs, in terms of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-8, IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) expression induced by TNF-α stimulation. This compound exerted no effect on intracellular adhesion molecule-1 (ICAM-1) exocytosis induced by TNF-α on stimulated trophoblast cells, but significantly reduced their IL-6 expression. Conclusion: According to these results, it can be suggested that the ZnO supplement, through its modulation of the pro-inflammatory response of DECs, can be used in pregnancy for the prevention of local decidual inflammation.
Collapse
Affiliation(s)
- Andrea Balduit
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Correspondence: ; Tel.: +39-04055-88646
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| |
Collapse
|
15
|
Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, Leng Y, Luca F, Hassan SS, Gomez-Lopez N. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 2019; 8:52004. [PMID: 31829938 PMCID: PMC6949028 DOI: 10.7554/elife.52004] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, United States.,Detroit Medical Center, Detroit, United States
| | - Adi L Tarca
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Computer Science, College of Engineering, Wayne State University, Detroit, United States
| | - Edward D Sendler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
| | - Yi Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Yaozhu Leng
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, United States
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, United States
| |
Collapse
|
16
|
Gomez-Lopez N, Romero R, Tarca AL, Miller D, Panaitescu B, Schwenkel G, Gudicha DW, Hassan SS, Pacora P, Jung E, Hsu CD. Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intra-amniotic inflammation or intra-amniotic infection. Am J Reprod Immunol 2019; 82:e13184. [PMID: 31461796 DOI: 10.1111/aji.13184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Pyroptosis, inflammatory programmed cell death, is initiated through the inflammasome and relies on the pore-forming actions of the effector molecule gasdermin D. Herein, we investigated whether gasdermin D is detectable in women with spontaneous preterm labor and sterile intra-amniotic inflammation or intra-amniotic infection. METHOD OF STUDY Amniotic fluid samples (n = 124) from women with spontaneous preterm labor were subdivided into the following groups: (a) those who delivered at term (n = 32); and those who delivered preterm (b) without intra-amniotic inflammation (n = 41), (c) with sterile intra-amniotic inflammation (n = 32), or (d) with intra-amniotic infection (n = 19), based on amniotic fluid IL-6 concentrations and the microbiological status of amniotic fluid (culture and PCR/ESI-MS). Gasdermin D concentrations were measured using an ELISA kit. Multiplex immunofluorescence staining was also performed to determine the expression of gasdermin D, caspase-1, and interleukin-1β in the chorioamniotic membranes. Flow cytometry was used to detect pyroptosis (active caspase-1) in decidual cells from women with preterm labor and birth. RESULTS (a) Gasdermin D was detected in the amniotic fluid and chorioamniotic membranes from women who underwent spontaneous preterm labor/birth with either sterile intra-amniotic inflammation or intra-amniotic infection, but was rarely detected in those without intra-amniotic inflammation. (b) Amniotic fluid concentrations of gasdermin D were higher in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation, and its expression in the chorioamniotic membranes was associated with caspase-1 and IL-1β (inflammasome mediators). (c) Decidual stromal cells and leukocytes isolated from women with preterm labor and birth are capable of undergoing pyroptosis given their expression of active caspase-1. CONCLUSION Pyroptosis can occur in the context of sterile intra-amniotic inflammation and intra-amniotic infection in patients with spontaneous preterm labor and birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
17
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|
18
|
Gill N, Leng Y, Romero R, Xu Y, Panaitescu B, Miller D, Arif A, Mumuni S, Qureshi F, Hsu CD, Hassan SS, Staff AC, Gomez-Lopez N. The immunophenotype of decidual macrophages in acute atherosis. Am J Reprod Immunol 2019; 81:e13098. [PMID: 30734977 PMCID: PMC6556389 DOI: 10.1111/aji.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Acute atherosis is a uteroplacental arterial lesion that is associated with pregnancy complications such as preeclampsia and preterm birth, the latter being the leading cause of perinatal morbidity and mortality worldwide. However, the immunobiology of acute atherosis is poorly understood. METHOD OF STUDY Placental basal plate samples were collected from women who delivered with (n = 11) and without (n = 31) decidua basalis lesions of acute atherosis. Multicolor flow cytometry was used to quantify M1- and M2-like macrophage subsets and the expression of iNOS and IL-12 by decidual macrophages. Multiplex fluorescence staining and phenoptics were performed to localize M1-, MOX-, and Mhem-like macrophages in the decidual basalis. RESULTS Macrophages displayed diverse phenotypes in the decidua basalis with acute atherosis. M2-like macrophages were the most abundant subset in the decidua; yet, this macrophage subset did not change with the presence of acute atherosis. Decidual M1-like macrophages were increased in acute atherosis, and such macrophages displayed a pro-inflammatory phenotype, as indicated by the expression of iNOS and IL-12. Decidual M1-like pro-inflammatory macrophages were localized near both transformed and non-transformed vessels in the decidua basalis with acute atherosis. MOX and Mhem macrophages were also identified near transformed vessels in the decidua basalis with acute atherosis. Finally, monocyte-like cells were present on the vessel wall of non-transformed decidual vessels, indicating a possible intravascular source for macrophages in acute atherosis. CONCLUSION Decidual macrophages display different phenotypes, namely M1-like, M2-like, MOX, and Mhem subsets. Yet, pro-inflammatory macrophages are enriched in the decidua basalis with acute atherosis. These findings provide a molecular foundation for future mechanistic inquiries about the role of pro-inflammatory macrophages in the pathogenesis of acute atherosis.
Collapse
Affiliation(s)
- Navleen Gill
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Salma Mumuni
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Division of Obstetrics and Gynecology, Oslo University Hospital, Norway
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
19
|
Leng Y, Romero R, Xu Y, Galaz J, Slutsky R, Arenas-Hernandez M, Garcia-Flores V, Motomura K, Hassan SS, Reboldi A, Gomez-Lopez N. Are B cells altered in the decidua of women with preterm or term labor? Am J Reprod Immunol 2019; 81:e13102. [PMID: 30768818 DOI: 10.1111/aji.13102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The immunophenotype of B cells at the maternal-fetal interface (decidua) in labor at term and preterm labor is poorly understood. METHOD OF STUDY Decidual tissues were obtained from women with preterm or term labor and from non-labor gestational age-matched controls. Immunophenotyping of decidual B cells was performed using multicolor flow cytometry. RESULTS (a) In the absence of acute or chronic chorioamnionitis, total B cells were more abundant in the decidua parietalis of women who delivered preterm than in those who delivered at term, regardless of the presence of labor; (b) decidual transitional and naïve B cells were the most abundant B-cell subsets; (c) decidual B1 B cells were increased in women with either labor at term or preterm labor and chronic chorioamnionitis compared to those without this placental lesion; (d) decidual transitional B cells were reduced in women with preterm labor compared to those without labor; (e) naïve, class-switched, and non-class-switched B cells in the decidual tissues underwent mild alterations with the process of preterm labor; (f) decidual plasmablasts seemed to increase in women with either labor at term or preterm labor with chronic chorioamnionitis; and (g) decidual B cells expressed high levels of interleukin (IL)-12, IL-6, and/or IL-35. CONCLUSION Total B cells are not increased with the presence of preterm or term labor; yet, specific subsets (B1 and plasmablasts) undergo alterations in women with chronic chorioamnionitis. Therefore, B cells are solely implicated in the pathological process of preterm labor in a subset of women with chronic inflammation of the placenta. These findings provide insight into the immunology of the maternal-fetal interface in preterm and term labor.
Collapse
Affiliation(s)
- Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
20
|
Arenas-Hernandez M, Romero R, Xu Y, Panaitescu B, Garcia-Flores V, Miller D, Ahn H, Done B, Hassan SS, Hsu CD, Tarca AL, Sanchez-Torres C, Gomez-Lopez N. Effector and Activated T Cells Induce Preterm Labor and Birth That Is Prevented by Treatment with Progesterone. THE JOURNAL OF IMMUNOLOGY 2019; 202:2585-2608. [PMID: 30918041 DOI: 10.4049/jimmunol.1801350] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Preterm labor commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. Most research has focused on establishing a causal link between innate immune activation and pathological inflammation leading to preterm labor and birth. However, the role of maternal effector/activated T cells in the pathogenesis of preterm labor/birth is poorly understood. In this study, we first demonstrated that effector memory and activated maternal T cells expressing granzyme B and perforin are enriched at the maternal-fetal interface (decidua) of women with spontaneous preterm labor. Next, using a murine model, we reported that prior to inducing preterm birth, in vivo T cell activation caused maternal hypothermia, bradycardia, systemic inflammation, cervical dilation, intra-amniotic inflammation, and fetal growth restriction, all of which are clinical signs associated with preterm labor. In vivo T cell activation also induced B cell cytokine responses, a proinflammatory macrophage polarization, and other inflammatory responses at the maternal-fetal interface and myometrium in the absence of an increased influx of neutrophils. Finally, we showed that treatment with progesterone can serve as a strategy to prevent preterm labor/birth and adverse neonatal outcomes by attenuating the proinflammatory responses at the maternal-fetal interface and cervix induced by T cell activation. Collectively, these findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes. Such adverse effects can be prevented by treatment with progesterone, a clinically approved strategy.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824.,Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bogdan Panaitescu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Hyunyoung Ahn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bogdan Done
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202; and
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201; .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
21
|
Vazquez J, Chasman DA, Lopez GE, Tyler CT, Ong IM, Stanic AK. Transcriptional and Functional Programming of Decidual Innate Lymphoid Cells. Front Immunol 2019; 10:3065. [PMID: 32038619 PMCID: PMC6992589 DOI: 10.3389/fimmu.2019.03065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
A successful pregnancy requires many physiological adaptations from the mother, including the establishment of tolerance toward the semiallogeneic fetus. Innate lymphoid cells (ILCs) have arisen as important players in immune regulation and tissue homeostasis at mucosal and barrier surfaces. Dimensionality reduction and transcriptomic analysis revealed the presence of two novel CD56Bright decidual ILCs that express low T-bet and divergent Eomes levels. Transcriptional correlation with recently identified first trimester decidual dNKs suggests that these novel decidual ILCs might be present throughout pregnancy. Functional testing with permutation analysis revealed production of multiple factors by individual cells, with a preference for IFNγ and VEGF. Overall, our data suggests continuity of a unique decidual innate lymphocytes across pregnancy with a polyfunctional functional profile conducive for pregnancy.
Collapse
Affiliation(s)
- Jessica Vazquez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Deborah A. Chasman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Gladys E. Lopez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Chanel T. Tyler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Irene M. Ong
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Aleksandar K. Stanic
| |
Collapse
|
22
|
MacDonald-Ramos K, Arenas-Hernandez M, Mancilla-Herrera I, Rangel-Escareño C, Vega-Sanchez R. A trypsin-based method for isolating leukocytes from human choriodecidua suitable for immunophenotyping and transcriptome studies. Immunobiology 2018; 224:177-181. [PMID: 30269980 DOI: 10.1016/j.imbio.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Leukocytes found at the human maternal-fetal interface participate in the inflammatory process associated with both preterm and term labor; therein, effective methods for their isolation that allow further phenotypic and functional analyses are necessary. Leukocyte isolation is usually carried out through scraping or enzyme digestion of the choriodecidua, however both methods usually limit the use of downstream immunophenotyping or transcriptomic techniques. Here we describe an isolation method based on gentle trypsin digestion that yields a leukocyte-enriched cell mixture with high lymphocyte viability, although less viable myeloid cells. We show that the method does not compromise cell surface markers since isolated leukocytes are suitable for flow cytometry; and that high quality RNA can be obtained from these cells for qRT-PCR and microarray analyses.
Collapse
Affiliation(s)
- Karla MacDonald-Ramos
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas Virreyes, 11000 Mexico City, Mexico.
| | - Marcia Arenas-Hernandez
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas Virreyes, 11000 Mexico City, Mexico; Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional Av Instituto Politécnico Nacional 2508, La Laguna Ticoman, 07360 Mexico City, Mexico.
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas Virreyes, 11000 Mexico City, Mexico.
| | - Claudia Rangel-Escareño
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610 Mexico City, Mexico.
| | - Rodrigo Vega-Sanchez
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas Virreyes, 11000 Mexico City, Mexico.
| |
Collapse
|
23
|
Xu Y, Romero R, Miller D, Silva P, Panaitescu B, Theis KR, Arif A, Hassan SS, Gomez-Lopez N. Innate lymphoid cells at the human maternal-fetal interface in spontaneous preterm labor. Am J Reprod Immunol 2018; 79:e12820. [PMID: 29457302 PMCID: PMC5948134 DOI: 10.1111/aji.12820] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Pathological inflammation is causally linked to preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Our aims were to investigate whether (i) the newly described family of innate lymphoid cells (ILCs) was present at the human maternal-fetal interface and (ii) ILC inflammatory subsets were associated with the pathological process of preterm labor. METHODS OF STUDY Decidual leukocytes were isolated from women with preterm or term labor as well as from gestational age-matched non-labor controls. ILCs (CD15- CD14- CD3- CD19- CD56- CD11b- CD127+ cells) and their subsets (ILC1, T-bet+ ILCs; ILC2, GATA3+ ILCs; and ILC3, RORγt+ ILCs) and cytokine expression were identified in the decidual tissues using immunophenotyping. RESULTS (i) The proportion of total ILCs was increased in the decidua parietalis of women with preterm labor; (ii) ILC1s were a minor subset of decidual ILCs during preterm and term gestations; (iii) ILC2s were the most abundant ILC subset in the decidua during preterm and term gestations; (iv) the proportion of ILC2s was increased in the decidua basalis of women with preterm labor; (v) the proportion of ILC3s was increased in the decidua parietalis of women with preterm labor; and (vi) during preterm labor, ILC3s had higher expression of IL-22, IL-17A, IL-13, and IFN-γ compared to ILC2s in the decidua. CONCLUSION ILC2s were the most abundant ILC subset at the human maternal-fetal interface during preterm and term gestations. Yet, during preterm labor, an increase in ILC2s and ILC3s was observed in the decidua basalis and decidua parietalis, respectively. These findings provide evidence demonstrating a role for ILCs at the maternal-fetal interface during the pathological process of preterm labor.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pablo Silva
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Farine T, Parsons M, Lye S, Shynlova O. Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae. J Vis Exp 2018. [PMID: 29757275 DOI: 10.3791/57443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The decidua, also known as the pregnant endometrium, is a critically important reproductive tissue. Decidual cells, comprised mainly of decidualized stromal cells and immune cells, are responsible for the secretion of hormonal and inflammatory factors which are critical for successful blastocyst implantation, placental development and play a role in the initiation of labor at term and preterm. Many pregnancy complications can arise from perturbations of a fine balance of different cell populations comprising decidua. Alterations in the proportion of specific decidual cell types may disrupt these crucial processes and increase the risk of developing serious complications of pregnancy, such as embryo implantation failure, intrauterine growth restriction, preeclampsia and preterm labor. The protocol outlined here demonstrates a cost and time effective method for the isolation of primary human decidual cells collected from the fetal membranes of term placentae. By combining enzymatic digestion and gentle mechanical disruption of the decidual tissue, a high yield of decidual cells was obtained with virtually no chorion contamination. Importantly, isolated decidual cells were characterized (stromal cells (55-60%), leukocytes (35%), epithelial (1%) or trophoblast (0.01%) cells) and maintained high viability (80%) which was confirmed by multicolor imaging flow cytometry assay. This protocol is specific to the decidua parietalis and can be adapted to first and second trimester placentae. Once isolated, decidual cells can be used for a multitude of experimental applications aiming to understand the role of different decidual cell sub-populations in pregnancy complications.
Collapse
Affiliation(s)
- Tali Farine
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System
| | | | - Stephen Lye
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System; Department of Obstetrics and Gynecology, University of Toronto
| | - Oksana Shynlova
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System; Department of Obstetrics and Gynecology, University of Toronto;
| |
Collapse
|
25
|
Choriodecidual leukocytes display a unique gene expression signature in spontaneous labor at term. Genes Immun 2018; 20:56-68. [PMID: 29362510 PMCID: PMC6358585 DOI: 10.1038/s41435-017-0010-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Prior to and during the process of human labor, maternal circulating leukocytes infiltrate the maternal-fetal interface (choriodecidua) and become activated resembling choriodecidual leukocytes. Since, there is no evidence comparing maternal circulating and choriodecidual leukocytes, herein, we characterized their transcriptome and explored the biological processes enriched in choriodecidual leukocytes. From women undergoing spontaneous term labor we isolated circulating and choriodecidual leukocytes, performed microarray analysis (n = 5) and qRT-PCR validation (n = 9) and interaction network analysis with up-regulated genes. We found 270 genes up-regulated and only 17 genes down-regulated in choriodecidual leukocytes compared to maternal circulating leukocytes. The most up-regulated genes were CCL18, GPNMB, SEPP1, FN1, RNASE1, SPP1, C1QC, and PLTP. The biological processes enriched in choriodecidual leukocytes were cell migration and regulation of immune response, chemotaxis, and humoral immune responses. Our results show striking differences between the transcriptome of choriodecidual and maternal circulating leukocytes. Choriodecidual leukocytes are enriched in immune mediators implicated in the spontaneous process of labor at term.
Collapse
|
26
|
Panaitescu B, Romero R, Gomez-Lopez N, Xu Y, Leng Y, Maymon E, Pacora P, Erez O, Yeo L, Hassan SS, Hsu CD. In vivo evidence of inflammasome activation during spontaneous labor at term. J Matern Fetal Neonatal Med 2018; 32:1978-1991. [PMID: 29295667 DOI: 10.1080/14767058.2017.1422714] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Upon inflammasome activation, the adaptor protein of the inflammasome ASC (apoptosis-associated speck-like protein containing a CARD) forms intracellular specks, which can be released into the extracellular space. The objectives of this study were to investigate whether (1) extracellular ASC is present in the amniotic fluid of women who delivered at term; (2) amniotic fluid ASC concentrations are greater in women who underwent spontaneous labor at term than in those who delivered at term in the absence of labor; and (3) amniotic epithelial and mesenchymal cells can form intracellular ASC specks in vitro. METHODS This retrospective cross-sectional study included amniotic fluid samples from 41 women who delivered at term in the absence of labor (n = 24) or underwent spontaneous labor at term (n = 17). Amniotic epithelial and mesenchymal cells were also isolated from the chorioamniotic membranes obtained from a separate group of women who delivered at term (n = 3), in which ASC speck formation was assessed by confocal microscopy. Monocytes from healthy individuals were used as positive controls for ASC speck formation (n = 3). RESULTS (1) The adaptor protein of the inflammasome ASC is detectable in the amniotic fluid of women who delivered at term; (2) amniotic fluid ASC concentration was higher in women who underwent spontaneous labor at term than in those who delivered at term without labor; and (3) amniotic epithelial and mesenchymal cells are capable of forming ASC specks and/or filaments in vitro. CONCLUSION Amniotic fluid ASC concentrations are increased in women who undergo spontaneous labor at term. Amniotic epithelial and mesenchymal cells are capable of forming ASC specks, suggesting that these cells are a source of extracellular ASC in the amniotic fluid. These findings provide in vivo evidence that there is inflammasome activation in the amniotic cavity during the physiological process of labor at term.
Collapse
Affiliation(s)
- Bogdan Panaitescu
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Roberto Romero
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,c Department of Obstetrics & Gynecology , University of Michigan , Ann Arbor , MI , USA.,d Department of Epidemiology & Biostatistics , Michigan State University , East Lansing , MI , USA.,e Center for Molecular Medicine & Genetics , Wayne State University , Detroit , MI , USA
| | - Nardhy Gomez-Lopez
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Immunology, Microbiology & Biochemistry , Wayne State University School of Medicine , Detroit , MI , USA
| | - Yi Xu
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Yaozhu Leng
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Eli Maymon
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,g Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Percy Pacora
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Offer Erez
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,g Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Lami Yeo
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Sonia S Hassan
- a Perinatology Research Branch, NICHD/NIH/DHHS , Detroit , MI , USA.,b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,h Department of Physiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Chaur-Dong Hsu
- b Department of Obstetrics & Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
27
|
Vazquez J, Chavarria M, Li Y, Lopez GE, Stanic AK. Computational flow cytometry analysis reveals a unique immune signature of the human maternal-fetal interface. Am J Reprod Immunol 2018; 79:10.1111/aji.12774. [PMID: 29030900 PMCID: PMC5725254 DOI: 10.1111/aji.12774] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Decidual immune dysregulation is thought to underlie major pregnancy disorders; however, incomplete understanding of the decidual immune interface has hampered the mechanistic investigation. METHOD OF STUDY Human term decidua was collected, and single-cell phenotypic information was acquired by highly polychromatic flow cytometry. Cellular identity analysis was performed with t-distributed stochastic neighbor embedding, DensVM clustering, and matched to CellOntology database. RESULTS Traditional analytical methods validated known cellular T and dendritic cell subsets in human term decidua. Computational analysis revealed a complex and tissue-specific decidual immune signature in both the innate and adaptive immune compartments. CONCLUSION Polychromatic flow cytometry with a streamlined computational analysis pipeline is a feasible approach to comprehensive immunome mapping of human term decidua. As an unbiased, standardized method of investigation, computational flow cytometry promises to unravel the immune pathology of pregnancy disorders.
Collapse
Affiliation(s)
- Jessica Vazquez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Yan Li
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
28
|
Martinez-Varea A, Romero R, Xu Y, Miller D, Ahmed AI, Chaemsaithong P, Chaiyasit N, Yeo L, Shaman M, Lannaman K, Cher B, Hassan SS, Gomez-Lopez N. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med 2017; 45:523-538. [PMID: 27763883 PMCID: PMC5624709 DOI: 10.1515/jpm-2016-0225] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES 1) To characterize the cellular composition of the amniotic fluid of patients diagnosed with clinical chorioamnionitis at term, as a function of the presence or absence of microorganisms determined by cultivation techniques, and 2) to characterize the cytokine production by white blood cells present in the amniotic fluid using flow cytometry-based techniques. MATERIALS AND METHODS Amniotic fluid samples from 20 women who had the diagnosis of clinical chorioamnionitis at term were analyzed using cultivation techniques (for aerobic and anaerobic bacteria as well as genital Mycoplasmas). Amniotic fluid IL-6 concentrations were determined by an enzyme-linked immunosorbent assay. Amniotic fluid leukocytes were visualized by using hematoxylin and eosin staining and immunofluorescence. Immunophenotyping of surface markers and cytokines was performed in amniotic fluid leukocytes using flow cytometry. RESULTS 1) Neutrophils (CD45+CD15+ cells) were the most common leukocyte subset found in the amniotic fluid, followed by monocytes (CD45+CD14+ cells); other white blood cells (such as lymphocytes and natural killer cells) were scarce in the amniotic fluid; 2) the absolute counts of neutrophils and monocytes were significantly higher in patients with microorganisms found in the amniotic fluid than in those without detectable microorganisms, using cultivation techniques; 3) there was a significant correlation between the absolute counts of neutrophils and monocytes determined by flow cytometry (Spearman's correlation=0.97; P<0.001); 4) there was a significant correlation between the absolute white blood cell count determined with a hemocytometer chamber and by flow cytometric analysis (Spearman's correlation=0.88; P<0.001); and 5) the profile of cytokine expression differed between monocytes and neutrophils; while neutrophils predominantly produced TNF-α and MIP-1β, monocytes expressed higher levels of IL-1β and IL-1α. CONCLUSION Flow cytometry analysis of the amniotic fluid of patients with intra-amniotic infection and clinical chorioamnionitis at term demonstrated that neutrophils and monocytes are the most common cells participating in the inflammatory process. We have characterized, for the first time, the differential cytokine expression by these cells in this important complication of pregnancy.
Collapse
Affiliation(s)
- Alicia Martinez-Varea
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Majid Shaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kia Lannaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Benjamin Cher
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
29
|
Gomez-Lopez N, Romero R, Xu Y, Garcia-Flores V, Leng Y, Panaitescu B, Miller D, Abrahams VM, Hassan SS. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term. Am J Reprod Immunol 2017; 77:10.1111/aji.12648. [PMID: 28233423 PMCID: PMC5429868 DOI: 10.1111/aji.12648] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. METHOD OF STUDY Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10-11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9-12 each). RESULTS (i) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; (ii) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; (iii) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; (iv) ASC speck formation was detected in the choriodecidual leukocytes; and (v) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. CONCLUSION There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Yaozhu Leng
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Derek Miller
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| |
Collapse
|
30
|
IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep 2017; 7:39904. [PMID: 28057926 PMCID: PMC5216379 DOI: 10.1038/srep39904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers’ children exhibit higher BAFF levels in cord blood than non-farmers’ children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy.
Collapse
|
31
|
Qin CM, Tian FJ, Liu XR, Wu F, Ma XL, Lin Y. CpG Oligodeoxynucleotides Downregulate Placental Adiponectin and Increase Embryo Loss in Non-Obese Diabetic Mice. Am J Reprod Immunol 2016; 76:38-49. [PMID: 27094728 PMCID: PMC5074278 DOI: 10.1111/aji.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 12/29/2022] Open
Abstract
PROBLEM CpG oligodeoxynucleotides (ODNs) can induce immunological changes in non-obese diabetic (NOD) mice and increase embryo loss, but little is known about the mechanism. This study aimed to determine the role of adiponectin in CpG ODN-induced pregnancy failure. METHOD OF STUDY Oligodeoxynucleotide 1826 was intraperitoneally injected to NOD mice, and ODN 2216, ODN 2006, and ODN 2395 were used to stimulate human trophoblast cell lines to investigate adiponectin expression patterns and its possible effects on trophoblast function. RESULTS CpG ODNs downregulated adiponectin via the cJun N-terminal kinase signaling pathway and led to increased embryo loss (from 6.9 to 33.3%). ODN 2006 impaired human trophoblast cell migration, which was successfully rescued by adiponectin treatment. CONCLUSION CpG ODNs decreased placental adiponectin expression in NOD mice and impaired human trophoblast function and was associated with increased embryo loss. Adiponectin may therefore play an important protective role in the prevention of bacteria-induced pregnancy failure.
Collapse
Affiliation(s)
- Chuan-Mei Qin
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wu
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Ma
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, Garcia-Flores V, Hassan SS, Xu Z, Tarca AL, Drewlo S, Gomez-Lopez N. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2476-2491. [PMID: 26889045 PMCID: PMC4779725 DOI: 10.4049/jimmunol.1502055] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tara N. Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Olesya Plazyo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
33
|
St Louis D, Romero R, Plazyo O, Arenas-Hernandez M, Panaitescu B, Xu Y, Milovic T, Xu Z, Bhatti G, Mi QS, Drewlo S, Tarca AL, Hassan SS, Gomez-Lopez N. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:1044-59. [PMID: 26740111 PMCID: PMC4724534 DOI: 10.4049/jimmunol.1501962] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator-activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4(+) T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for prevention of this syndrome.
Collapse
Affiliation(s)
- Derek St Louis
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48825; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Olesya Plazyo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Marcia Arenas-Hernandez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Bogdan Panaitescu
- Department of Pediatrics, Neonatology Division, Wayne State University School of Medicine, Detroit, MI 48201
| | - Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Tatjana Milovic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Zhonghui Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Gaurav Bhatti
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Qing-Sheng Mi
- Immunology Program, Henry Ford Health System, Detroit, MI 48202; Department of Dermatology, Henry Ford Health System, Detroit, MI 48202; and Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Adi L Tarca
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|