1
|
Wang Q, Cun D, Xu D, Lin L, Jiao J, Zhang L, Xi C, Li W, Chen P, Hu M. Myd88 knockdown with RNA interference induces in vitro immune hyporesponsiveness in dendritic cells from rhesus monkeys. Immunogenetics 2022; 74:303-312. [PMID: 35303127 DOI: 10.1007/s00251-022-01260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
Immature dendritic cells (imDCs) are activated and mature to initiate an adaptive immune response, resulting in allograft rejection and transplantation failure. Myeloid differentiation factor 88 (Myd88) is a key factor in the Toll-like receptor (TLR) signaling pathway. Here, we investigated the effect of Myd88 silencing on DC function and immune response. CD34 + cells were isolated from the bone marrow of rhesus monkeys by the immunomagnetic bead method and then infected with an adenovirus expressing Myd88-specific short hairpin RNA (sh-Myd88). sh-NC (nontargeting negative control)- or sh-Myd88-infected DCs were treated with lipopolysaccharide (LPS) for another 48 h to induce DCS maturation. The maturation of DCs was identified by immunofluorescence staining for MHCII, CD80, and CD86. DC apoptosis was examined using Annexin V/PI staining. DC-related cytokine levels (IFN-γ and IL-12) were assessed by ELISA. A mixed lymphocyte reaction (MLR) was performed to test the effect of Myd88-silenced DCs on T lymphocytes in vitro. The results showed that compared with control or sh-NC-infected DCs, Myd88-silenced DCs had lower MHCII, CD80, CD86, and DC-related cytokine (IFN-γ and IL-12) levels. Myd88 did not affect the apoptosis of DCs. MLR demonstrated that Myd88 silencing could effectively block LPS-activated T cell proliferation in vitro. These data were consistent with the characteristics of tolerogenic DCs. In conclusion, our data indicated that Myd88 silencing could inhibit the maturation of imDCs and alleviate immune rejection, which provides a reference for immune tolerance in clinical liver transplantation.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 112, Kunrui Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Dongyun Cun
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 112, Kunrui Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Desong Xu
- Department of General Surgery, The First People's Hospital of Qujing City, Yunnan Province, Qujing City, 655000, People's Republic of China
| | - Liang Lin
- Department of Hepatobiliary Surgery, Fujian Province, The First Hospital of Putian City, No.389 Longdejing Street, Putian, 351100, People's Republic of China
| | - Jian Jiao
- Department of Gastrointestinal Surgery, Handan Central Hospital, Handan, 056001, Hebei Province, People's Republic of China
| | - Li Zhang
- Department of Hepatopancreatobiliary, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology Kunming, Yunnan Province, Kunming, People's Republic of China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People's Republic of China
| | - Wei Li
- Emergency Department, The Central People's Hospital of Yichang City, Hubei Province, Yichang, 443000, People's Republic of China
| | - Peng Chen
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 112, Kunrui Road, Kunming, 650101, Yunnan, People's Republic of China.
| | - Mingdao Hu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 112, Kunrui Road, Kunming, 650101, Yunnan, People's Republic of China.
| |
Collapse
|
2
|
Hangartner L, Beauparlant D, Rakasz E, Nedellec R, Hozé N, McKenney K, Martins MA, Seabright GE, Allen JD, Weiler AM, Friedrich TC, Regoes RR, Crispin M, Burton DR. Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Sci Transl Med 2021; 13:13/585/eabe3349. [PMID: 33731434 DOI: 10.1126/scitranslmed.abe3349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
Protection from immunodeficiency virus challenge in nonhuman primates (NHPs) by a first-generation HIV broadly neutralizing antibody (bnAb) b12 has previously been shown to benefit from interaction between the bnAb and Fcγ receptors (FcγRs) on immune cells. To investigate the mechanism of protection for a more potent second-generation bnAb currently in clinical trials, PGT121, we carried out a series of NHP studies. These studies included treating with PGT121 at a concentration at which only half of the animals were protected to avoid potential masking of FcγR effector function benefits by dominant neutralization and using a new variant that more completely eliminated all rhesus FcγR binding than earlier variants. In contrast to b12, which required FcγR binding for optimal protection, we concluded that PGT121-mediated protection is not augmented by FcγR interaction. Thus, for HIV-passive antibody prophylaxis, these results, together with existing literature, emphasize the importance of neutralization potency for clinical antibodies, with effector function requiring evaluation for individual antibodies.
Collapse
Affiliation(s)
- Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nathanaël Hozé
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH Zentrum, CHN H76.2, Universitätstrasse 16, 8092 Zurich, Switzerland.,Theoretical Biology, ETH Zurich, ETH Zentrum, CHN K12.2, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mauricio A Martins
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Roland R Regoes
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH Zentrum, CHN H76.2, Universitätstrasse 16, 8092 Zurich, Switzerland.,Theoretical Biology, ETH Zurich, ETH Zentrum, CHN K12.2, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Castro IM, Ricciardi MJ, Gonzalez-Nieto L, Rakasz EG, Lifson JD, Desrosiers RC, Watkins DI, Martins MA. Recombinant Herpesvirus Vectors: Durable Immune Responses and Durable Protection against Simian Immunodeficiency Virus SIVmac239 Acquisition. J Virol 2021; 95:e0033021. [PMID: 33910957 PMCID: PMC8223948 DOI: 10.1128/jvi.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 01/29/2023] Open
Abstract
A prophylactic vaccine that confers durable protection against human immunodeficiency virus (HIV) would provide a valuable tool to prevent new HIV/AIDS cases. As herpesviruses establish lifelong infections that remain largely subclinical, the use of persistent herpesvirus vectors to deliver HIV antigens may facilitate the induction of long-term anti-HIV immunity. We previously developed recombinant (r) forms of the gamma-herpesvirus rhesus monkey rhadinovirus (rRRV) expressing a replication-incompetent, near-full-length simian immunodeficiency virus (SIVnfl) genome. We recently showed that 8/16 rhesus macaques (RMs) vaccinated with a rDNA/rRRV-SIVnfl regimen were significantly protected against intrarectal (i.r.) challenge with SIVmac239. Here we investigated the longevity of this vaccine-mediated protection. Despite receiving no additional booster immunizations, the protected rDNA/rRRV-SIVnfl vaccinees maintained detectable cellular and humoral anti-SIV immune responses for more than 1.5 years after the rRRV boost. To assess if these responses were still protective, the rDNA/rRRV-SIVnfl vaccinees were subjected to a second round of marginal-dose i.r. SIVmac239 challenges, with eight SIV-naive RMs serving as concurrent controls. After three SIV exposures, 8/8 control animals became infected, compared to 3/8 vaccinees. This difference in SIV acquisition was statistically significant (P = 0.0035). The three vaccinated monkeys that became infected exhibited significantly lower viral loads than those in unvaccinated controls. Collectively, these data illustrate the ability of rDNA/rRRV-SIVnfl vaccination to provide long-term immunity against stringent mucosal challenges with SIVmac239. Future work is needed to identify the critical components of this vaccine-mediated protection and the extent to which it can tolerate sequence mismatches in the challenge virus. IMPORTANCE We report on the long-term follow-up of a group of rhesus macaques (RMs) that received an AIDS vaccine regimen and were subsequently protected against rectal acquisition of simian immunodeficiency virus (SIV) infection. The vaccination regimen employed included a live recombinant herpesvirus vector that establishes persistent infection in RMs. Consistent with the recurrent SIV antigen expression afforded by this herpesvirus vector, vaccinees maintained detectable SIV-specific immune responses for more than 1.5 years after the last vaccination. Importantly, these vaccinated RMs were significantly protected against a second round of rectal SIV exposures performed 1 year after the first SIV challenge phase. These results are relevant for HIV vaccine development because they show the potential of herpesvirus-based vectors to maintain functional antiretroviral immunity without the need for repeated boosting.
Collapse
Affiliation(s)
| | | | | | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, Scripps Research, Jupiter, Florida, USA
| |
Collapse
|
4
|
Martins MA, Gonzalez-Nieto L, Ricciardi MJ, Bailey VK, Dang CM, Bischof GF, Pedreño-Lopez N, Pauthner MG, Burton DR, Parks CL, Earl P, Moss B, Rakasz EG, Lifson JD, Desrosiers RC, Watkins DI. Rectal Acquisition of Simian Immunodeficiency Virus (SIV) SIVmac239 Infection despite Vaccine-Induced Immune Responses against the Entire SIV Proteome. J Virol 2020; 94:e00979-20. [PMID: 33028714 PMCID: PMC7925177 DOI: 10.1128/jvi.00979-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Given the complex biology of human immunodeficiency virus (HIV) and its remarkable capacity to evade host immune responses, HIV vaccine efficacy may benefit from the induction of both humoral and cellular immune responses of maximal breadth, potency, and longevity. Guided by this rationale, we set out to develop an immunization protocol aimed at maximizing the induction of anti-Envelope (anti-Env) antibodies and CD8+ T cells targeting non-Env epitopes in rhesus macaques (RMs). Our approach was to deliver the entire simian immunodeficiency virus (SIV) proteome by serial vaccinations. To that end, 12 RMs were vaccinated over 81 weeks with DNA, modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), adenovirus type 5 (Ad5), rhesus monkey rhadinovirus (RRV), and DNA again. Both the RRV and the final DNA boosters delivered a near-full-length SIVmac239 genome capable of assembling noninfectious SIV particles and inducing T-cell responses against all nine SIV proteins. Compared to previous SIV vaccine trials, the present DNA-MVA-VSV-Ad5-RRV-DNA regimen resulted in comparable levels of Env-binding antibodies and SIV-specific CD8+ T-cells. Interestingly, one vaccinee developed low titers of neutralizing antibodies (NAbs) against SIVmac239, a tier 3 virus. Following repeated intrarectal marginal-dose challenges with SIVmac239, vaccinees were not protected from SIV acquisition but manifested partial control of viremia. Strikingly, the animal with the low-titer vaccine-induced anti-SIVmac239 NAb response acquired infection after the first SIVmac239 exposure. Collectively, these results highlight the difficulties in eliciting protective immunity against immunodeficiency virus infection.IMPORTANCE Our results are relevant to HIV vaccine development efforts because they suggest that increasing the number of booster immunizations or delivering additional viral antigens may not necessarily improve vaccine efficacy against immunodeficiency virus infection.
Collapse
Affiliation(s)
| | | | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Christine M Dang
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Georg F Bischof
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | - Matthias G Pauthner
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Patricia Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
A Recombinant Rhesus Monkey Rhadinovirus Deleted of Glycoprotein L Establishes Persistent Infection of Rhesus Macaques and Elicits Conventional T Cell Responses. J Virol 2020; 94:JVI.01093-19. [PMID: 31645449 DOI: 10.1128/jvi.01093-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01 + RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.
Collapse
|
6
|
Gonzalez-Nieto L, Castro IM, Bischof GF, Shin YC, Ricciardi MJ, Bailey VK, Dang CM, Pedreño-Lopez N, Magnani DM, Ejima K, Allison DB, Gil HM, Evans DT, Rakasz EG, Lifson JD, Desrosiers RC, Martins MA. Vaccine protection against rectal acquisition of SIVmac239 in rhesus macaques. PLoS Pathog 2019; 15:e1008015. [PMID: 31568531 PMCID: PMC6791558 DOI: 10.1371/journal.ppat.1008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.
Collapse
Affiliation(s)
- Lucas Gonzalez-Nieto
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Isabelle M. Castro
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Georg F. Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Michael J. Ricciardi
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Varian K. Bailey
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Christine M. Dang
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mauricio A. Martins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
7
|
Abdulreda MH, Berman DM, Shishido A, Martin C, Hossameldin M, Tschiggfrie A, Hernandez LF, Hernandez A, Ricordi C, Parel JM, Jankowska-Gan E, Burlingham WJ, Arrieta-Quintero EA, Perez VL, Kenyon NS, Berggren PO. Operational immune tolerance towards transplanted allogeneic pancreatic islets in mice and a non-human primate. Diabetologia 2019; 62:811-821. [PMID: 30701283 PMCID: PMC6451664 DOI: 10.1007/s00125-019-4814-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Patients with autoimmune type 1 diabetes transplanted with pancreatic islets to their liver experience significant improvement in quality of life through better control of blood sugar and enhanced awareness of hypoglycaemia. However, long-term survival and efficacy of the intrahepatic islet transplant are limited owing to liver-specific complications, such as immediate blood-mediated immune reaction, hypoxia, a highly enzymatic and inflammatory environment and locally elevated levels of drugs including immunosuppressive agents, all of which are injurious to islets. This has spurred a search for new islet transplant sites and for innovative ways to achieve long-term graft survival and efficacy without life-long systemic immunosuppression and its complications. METHODS We used our previously established approach of islet transplant in the anterior chamber of the eye in allogeneic recipient mouse models and a baboon model of diabetes, which were treated transiently with anti-CD154/CD40L blocking antibody in the peri-transplant period. Survival of the intraocular islet allografts was assessed by direct visualisation in the eye and metabolic variables (blood glucose and C-peptide measurements). We evaluated longitudinally the cytokine profile in the local microenvironment of the intraocular islet allografts, represented in aqueous humour, under conditions of immune rejection vs tolerance. We also evaluated the recall response in the periphery of the baboon recipient using delayed-type hypersensitivity (DTH) assay, and in mice after repeat transplant in the kidney following initial transplant with allogeneic islets in the eye or kidney. RESULTS Results in mice showed >300 days immunosuppression-free survival of allogeneic islets transplanted in the eye or kidney. Notably, >70% of tolerant mice, initially transplanted in the eye, exhibited >400 days of graft survival after re-transplant in the kidney without immunosuppression compared with ~30% in mice that were initially transplanted in the kidney. Cytokine and DTH data provided evidence of T helper 2-driven local and peripheral immune regulatory mechanisms in support of operational immune tolerance towards the islet allografts in both models. CONCLUSIONS/INTERPRETATION We are currently evaluating the safety and efficacy of intraocular islet transplantation in a phase 1 clinical trial. In this study, we demonstrate immunosuppression-free long-term survival of intraocular islet allografts in mice and in a baboon using transient peri-transplant immune intervention. These results highlight the potential for inducing islet transplant immune tolerance through the intraocular route. Therefore, the current findings are conceptually significant and may impact markedly on clinical islet transplantation in the treatment of diabetes.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Dora M Berman
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander Shishido
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Christopher Martin
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Maged Hossameldin
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ashley Tschiggfrie
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Luis F Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ana Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute Federation, Hollywood, FL, USA
| | - Jean-Marie Parel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ewa Jankowska-Gan
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - William J Burlingham
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Victor L Perez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Duke Ophthalmology, Duke University, Durham, NC, USA
| | - Norma S Kenyon
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Per-Olof Berggren
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Martins MA, Gonzalez-Nieto L, Shin YC, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Pedreño-Lopez N, Bailey VK, Altman JD, Parks CL, Allison DB, Ejima K, Rakasz EG, Capuano S, Desrosiers RC, Lifson JD, Watkins DI. The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in Mamu-B*08+ Rhesus Macaques. J Virol 2019; 93:e01626-18. [PMID: 30541854 PMCID: PMC6384082 DOI: 10.1128/jvi.01626-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) allele Mamu-B*08 spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+ T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+ ) RMs. Here we evaluated if robust vaccine-elicited CD8+ T-cell responses against Vif and Nef can prevent systemic infection in Mamu-B*08+ RMs following mucosal SIV challenges. Ten Mamu-B*08+ RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+ T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCE It is generally accepted that the antiviral effects of vaccine-induced classical CD8+ T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+ T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.
Collapse
Affiliation(s)
| | | | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - David B Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Martins MA, Bischof GF, Shin YC, Lauer WA, Gonzalez-Nieto L, Watkins DI, Rakasz EG, Lifson JD, Desrosiers RC. Vaccine protection against SIVmac239 acquisition. Proc Natl Acad Sci U S A 2019; 116:1739-1744. [PMID: 30642966 PMCID: PMC6358712 DOI: 10.1073/pnas.1814584116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The biological characteristics of HIV pose serious difficulties for the success of a preventive vaccine. Molecularly cloned SIVmac239 is difficult for antibodies to neutralize, and a variety of vaccine approaches have had great difficulty achieving protective immunity against it in rhesus monkey models. Here we report significant protection against i.v. acquisition of SIVmac239 using a long-lasting approach to vaccination. The vaccine regimen includes a replication-competent herpesvirus engineered to contain a near-full-length SIV genome that expresses all nine SIV gene products, assembles noninfectious SIV virion particles, and is capable of eliciting long-lasting effector-memory cellular immune responses to all nine SIV gene products. Vaccinated monkeys were significantly protected against acquisition of SIVmac239 following repeated marginal dose i.v. challenges over a 4-month period. Further work is needed to define the critical components necessary for eliciting this protective immunity, evaluate the breadth of the protection against a variety of strains, and explore how this approach may be extended to human use.
Collapse
Affiliation(s)
- Mauricio A Martins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Georg F Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Young C Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - William A Lauer
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Lucas Gonzalez-Nieto
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - David I Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136;
| |
Collapse
|
10
|
Martins MA, Tully DC, Pedreño-Lopez N, von Bredow B, Pauthner MG, Shin YC, Yuan M, Lima NS, Bean DJ, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Bailey VK, Altman JD, Burton DR, Ejima K, Allison DB, Evans DT, Rakasz EG, Parks CL, Bonaldo MC, Capuano S, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Mamu-B*17+ Rhesus Macaques Vaccinated with env, vif, and nef Manifest Early Control of SIVmac239 Replication. J Virol 2018; 92:e00690-18. [PMID: 29875239 PMCID: PMC6069176 DOI: 10.1128/jvi.00690-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.
Collapse
Affiliation(s)
| | - Damien C Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - David J Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Dolton G, Zervoudi E, Rius C, Wall A, Thomas HL, Fuller A, Yeo L, Legut M, Wheeler S, Attaf M, Chudakov DM, Choy E, Peakman M, Sewell AK. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol 2018; 9:1378. [PMID: 30008714 PMCID: PMC6034003 DOI: 10.3389/fimmu.2018.01378] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide–MHC (pMHC) multimers have become the “gold standard” for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-β chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah L Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sophie Wheeler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ernest Choy
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Shin YC, Bischof GF, Lauer WA, Gonzalez-Nieto L, Rakasz EG, Hendricks GM, Watkins DI, Martins MA, Desrosiers RC. A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products. PLoS Pathog 2018; 14:e1007143. [PMID: 29912986 PMCID: PMC6023237 DOI: 10.1371/journal.ppat.1007143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/28/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV's own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein (>150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; >95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted.
Collapse
Affiliation(s)
- Young C. Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Georg F. Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William A. Lauer
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Hendricks
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David I. Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mauricio A. Martins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
13
|
Martins MA, Tully DC, Shin YC, Gonzalez-Nieto L, Weisgrau KL, Bean DJ, Gadgil R, Gutman MJ, Domingues A, Maxwell HS, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Cruz MA, Lima NS, Bonaldo MC, Altman JD, Rakasz E, Capuano S, Reimann KA, Piatak M, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Res Hum Retroviruses 2017; 33:843-858. [PMID: 28503929 DOI: 10.1089/aid.2017.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Effector memory T cell (TEM) responses display potent antiviral properties and have been linked to stringent control of simian immunodeficiency virus (SIV) replication. Since recurrent antigen stimulation drives the differentiation of CD8+ T cells toward the TEM phenotype, in this study we incorporated a persistent herpesviral vector into a heterologous prime/boost/boost vaccine approach to maximize the induction of TEM responses. This new regimen resulted in CD8+ TEM-biased responses in four rhesus macaques, three of which controlled viral replication to <1,000 viral RNA copies/ml of plasma for more than 6 months after infection with SIVmac239. Over the course of this study, we made a series of interesting observations in one of these successful controller animals. Indeed, in vivo elimination of CD8αβ+ T cells using a new CD8β-depleting antibody did not abrogate virologic control in this monkey. Only after its CD8α+ lymphocytes were depleted did SIV rebound, suggesting that CD8αα+ but not CD8αβ+ cells were controlling viral replication. By 2 weeks postinfection (PI), the only SIV sequences that could be detected in this animal harbored a small in-frame deletion in nef affecting six amino acids. Deep sequencing of the SIVmac239 challenge stock revealed no evidence of this polymorphism. However, sequencing of the rebound virus following CD8α depletion at week 38.4 PI again revealed only the six-amino acid deletion in nef. While any role for immunological pressure on the selection of this deleted variant remains uncertain, our data provide anecdotal evidence that control of SIV replication can be maintained without an intact CD8αβ+ T cell compartment.
Collapse
Affiliation(s)
| | - Damien C. Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida
| | | | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida
| | | | | | | | | | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida
| | - Michael A. Cruz
- Department of Pathology, University of Miami, Miami, Florida
| | - Noemia S. Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
14
|
Martins MA, Shin YC, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Castro I, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Betancourt D, Altman JD, Pauthner M, Burton DR, von Bredow B, Evans DT, Yuan M, Parks CL, Ejima K, Allison DB, Rakasz E, Barber GN, Capuano S, Lifson JD, Desrosiers RC, Watkins DI. Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathog 2017; 13:e1006529. [PMID: 28732035 PMCID: PMC5540612 DOI: 10.1371/journal.ppat.1006529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023] Open
Abstract
The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.
Collapse
Affiliation(s)
- Mauricio A. Martins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Iris Castro
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Michael Ricciardi
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Dillon Betancourt
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Matthias Pauthner
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David B. Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| |
Collapse
|