1
|
Lin H, Wang X, Chung M, Cai S, Pan Y. Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis. J Transl Med 2025; 23:240. [PMID: 40016790 PMCID: PMC11869441 DOI: 10.1186/s12967-024-06060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 03/01/2025] Open
Abstract
Direct reprogramming has garnered considerable attention due to its capacity to directly convert differentiated cells into desired cells. Fibroblasts are frequently employed in reprogramming studies due to their abundance and accessibility. However, they are also the key drivers in the progression of fibrosis, a pathological condition characterized by excessive extracellular matrix deposition and tissue scarring. Furthermore, the initial stage of reprogramming typically involves deactivating fibrotic pathways. Hence, direct reprogramming offers a valuable method to regenerate target cells for tissue repair while simultaneously reducing fibrotic tendencies. Understanding the link between reprogramming and fibrosis could help develop effective strategies to treat damaged tissue with a potential risk of fibrosis. This review summarizes the advances in direct reprogramming and reveals their anti-fibrosis effects in various organs such as the heart, liver, and skin. Furthermore, we dissect the mechanisms of reprogramming influenced by fibrotic molecules including TGF-β signaling, mechanical signaling, inflammation signaling, epigenetic modifiers, and metabolic regulators. Innovative methods for fibroblast reprogramming like small molecules, CRISPRa, modified mRNA, and the challenges of cellular heterogeneity and senescence faced by in vivo direct reprogramming, are also discussed.
Collapse
Affiliation(s)
- Haohui Lin
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Cai
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Yu Pan
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Patel K, Barter M, Soul J, Clark P, Proctor C, Clark I, Young D, Shanley DP. Systems analysis of miR-199a/b-5p and multiple miR-199a/b-5p targets during chondrogenesis. eLife 2024; 12:RP89701. [PMID: 39401064 PMCID: PMC11473111 DOI: 10.7554/elife.89701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Changes in chondrocyte gene expression can contribute to the development of osteoarthritis (OA), and so recognition of the regulative processes during chondrogenesis can lead to a better understanding of OA. microRNAs (miRNAs) are key regulators of gene expression in chondrocytes/OA, and we have used a combined experimental, bioinformatic, and systems biology approach to explore the multiple miRNA-mRNA interactions that regulate chondrogenesis. A longitudinal chondrogenesis bioinformatic analysis identified paralogues miR-199a-5p and miR-199b-5p as pro-chondrogenic regulators. Experimental work in human cells demonstrated alteration of miR-199a-5p or miR-199b-5p expression led to significant inverse modulation of key chondrogenic genes and extracellular matrix production. miR-199a/b-5p targets FZD6, ITGA3 and CAV1 were identified by inhibition experiments and verified as direct targets by luciferase assay. The experimental work was used to generate and parameterise a multi-miRNA 14-day chondrogenesis kinetic model to be used as a repository for the experimental work and as a resource for further investigation of this system. This is the first multi-miRNA model of a chondrogenesis-based system, and highlights the complex relationships between regulatory miRNAs, and their target mRNAs.
Collapse
Affiliation(s)
- Krutik Patel
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Matt Barter
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jamie Soul
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Computational Biology Facility, Faculty of Health and Life Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Peter Clark
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Carole Proctor
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Ian Clark
- School of Biological Sciences, University of East AngliaNorwichUnited Kingdom
| | - David Young
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Daryl P Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| |
Collapse
|
3
|
Goloe D, Gildor T, Ben-Tabou de-Leon S. Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis. Genesis 2024; 62:e23614. [PMID: 39139086 DOI: 10.1002/dvg.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-β) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-β in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-βRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-βRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-βRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-β targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-β in biomineralization in these two phyla results from convergent evolution.
Collapse
Affiliation(s)
- Daniel Goloe
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Melzer M, Niebert S, Heimann M, Ullm F, Pompe T, Scheiner-Bobis G, Burk J. Differential Smad2/3 linker phosphorylation is a crosstalk mechanism of Rho/ROCK and canonical TGF-β3 signaling in tenogenic differentiation. Sci Rep 2024; 14:10393. [PMID: 38710741 PMCID: PMC11074336 DOI: 10.1038/s41598-024-60717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
The transforming growth factor (TGF)-β3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-β3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-β3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-β3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-β3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-β3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-β3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.
Collapse
Affiliation(s)
- Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Faculty of Veterinary Medicine, Justus-Liebig-University, 35392, Giessen, Germany
| | - Sabine Niebert
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Manuela Heimann
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392, Giessen, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, 04103, Leipzig, Germany
- FILK Freiberg Institute GmbH, 09599, Freiberg, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, 04103, Leipzig, Germany
| | - Georgios Scheiner-Bobis
- Institute of Biochemistry and Endocrinology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392, Giessen, Germany
| | - Janina Burk
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Kuroda K, Kiya K, Matsuzaki S, Takamura H, Otani N, Tomita K, Kawai K, Fujiwara T, Nakai K, Onishi A, Katayama T, Kubo T. Altered actin dynamics is possibly implicated in the inhibition of mechanical stimulation-induced dermal fibroblast differentiation into myofibroblasts. Exp Dermatol 2023; 32:2012-2022. [PMID: 37724850 DOI: 10.1111/exd.14933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The formation of hypertrophic scars and keloids is strongly associated with mechanical stimulation, and myofibroblasts are known to play a major role in abnormal scar formation. Wounds in patients with neurofibromatosis type 1 (NF1) become inconspicuous and lack the tendency to form abnormal scars. We hypothesized that there would be a unique response to mechanical stimulation and subsequent scar formation in NF1. To test this hypothesis, we investigated the molecular mechanisms of differentiation into myofibroblasts in NF1-derived fibroblasts and neurofibromin-depleted fibroblasts and examined actin dynamics, which is involved in fibroblast differentiation, with a focus on the pathway linking LIMK2/cofilin to actin dynamics. In normal fibroblasts, expression of α-smooth muscle actin (α-SMA), a marker of myofibroblasts, significantly increased after mechanical stimulation, whereas in NF1-derived and neurofibromin-depleted fibroblasts, α-SMA expression did not change. Phosphorylation of cofilin and subsequent actin polymerization did not increase in NF1-derived and neurofibromin-depleted fibroblasts after mechanical stimulation. Finally, in normal fibroblasts treated with Jasplakinolide, an actin stabilizer, α-SMA expression did not change after mechanical stimulation. Therefore, when neurofibromin was dysfunctional or depleted, subsequent actin polymerization did not occur in response to mechanical stimulation, which may have led to the unchanged expression of α-SMA. We believe this molecular pathway can be a potential therapeutic target for the treatment of abnormal scars.
Collapse
Affiliation(s)
- Kazuya Kuroda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Naoya Otani
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kunihiro Nakai
- Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, Fukui, Japan
| | - Ayako Onishi
- Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Kim HJ, Hwang JS, Noh KB, Oh SH, Park JB, Shin YJ. A p-Tyr42 RhoA Inhibitor Promotes the Regeneration of Human Corneal Endothelial Cells by Ameliorating Cellular Senescence. Antioxidants (Basel) 2023; 12:1186. [PMID: 37371916 DOI: 10.3390/antiox12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The development of treatment strategies for human corneal endothelial cells (hCECs) disease is necessary because hCECs do not regenerate in vivo due to the properties that are similar to senescence. This study is performed to investigate the role of a p-Tyr42 RhoA inhibitor (MH4, ELMED Inc., Chuncheon) in transforming growth factor-beta (TGF-β)- or H2O2-induced cellular senescence of hCECs. Cultured hCECs were treated with MH4. The cell shape, proliferation rate, and cell cycle phases were analyzed. Moreover, cell adhesion assays and immunofluorescence staining for F-actin, Ki-67, and E-cadherin were performed. Additionally, the cells were treated with TGF-β or H2O2 to induce senescence, and mitochondrial oxidative reactive oxygen species (ROS) levels, mitochondrial membrane potential, and NF-κB translocation were evaluated. LC3II/LC3I levels were determined using Western blotting to analyze autophagy. MH4 promotes hCEC proliferation, shifts the cell cycle, attenuates actin distribution, and increases E-cadherin expression. TGF-β and H2O2 induce senescence by increasing mitochondrial ROS levels and NF-κB translocation into the nucleus; however, this effect is attenuated by MH4. Moreover, TGF-β and H2O2 decrease the mitochondrial membrane potential and induce autophagy, while MH4 reverses these effects. In conclusion, MH4, a p-Tyr42 RhoA inhibitor, promotes the regeneration of hCECs and protects hCECs against TGF-β- and H2O2-induced senescence via the ROS/NF-κB/mitochondrial pathway.
Collapse
Affiliation(s)
- Hyeon Jung Kim
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| |
Collapse
|
8
|
Xie Y, Yue L, Shi Y, Su X, Gan C, Liu H, Xue T, Ye T. Application and Study of ROCK Inhibitors in Pulmonary Fibrosis: Recent Developments and Future Perspectives. J Med Chem 2023; 66:4342-4360. [PMID: 36940432 DOI: 10.1021/acs.jmedchem.2c01753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Rho-associated coiled-coil-containing kinases (ROCKs), serine/threonine protein kinases, were initially identified as downstream targets of the small GTP-binding protein Rho. Pulmonary fibrosis (PF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Interestingly, ROCK activation has been demonstrated in PF patients and in animal PF models, making it a promising target for PF treatment. Many ROCK inhibitors have been discovered, and four of these have been approved for clinical use; however, no ROCK inhibitors are approved for the treatment of PF patients. In this article, we describe ROCK signaling pathways and the structure-activity relationship, potency, selectivity, binding modes, pharmacokinetics (PKs), biological functions, and recently reported inhibitors of ROCKs in the context of PF. We will also focus our attention on the challenges to be addressed when targeting ROCKs and discuss the strategy of ROCK inhibitor use in the treatment of PF.
Collapse
Affiliation(s)
- Yuting Xie
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaojie Shi
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taixiong Xue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
da Silva ZA, Melo WWP, Ferreira HHN, Lima RR, Souza-Rodrigues RD. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J Funct Biomater 2023; 14:103. [PMID: 36826902 PMCID: PMC9965396 DOI: 10.3390/jfb14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Temporomandibular disorder (TMD) is an umbrella term used to describe various conditions that affect temporomandibular joints, masticatory muscles, and associated structures. Although the most conservative and least invasive treatment is preferable, more invasive therapies should be employed to refractory patients. Tissue engineering has been presented as a promising therapy. Our study aimed to investigate trends and point out future research directions on TMD and stem cells. A comprehensive search was carried out in the Web of Science Core Collection (WoS-CC) in October 2022. The bibliometric parameters were analyzed through descriptive statistics and graphical mapping. Thus, 125 papers, published between 1992 and 2022 in 65 journals, were selected. The period with the highest number of publications and citations was between 2012 and 2022. China has produced the most publications on the subject. The most frequently used keywords were "cartilage", "temporomandibular joint", "mesenchymal stem cells", and "osteoarthritis". Moreover, the primary type of study was in vivo. It was noticed that using stem cells to improve temporomandibular joint repair and regeneration is a significant subject of investigation. Nonetheless, a greater understanding of the biological interaction and the benefits of using these cells in patients with TMD is required.
Collapse
Affiliation(s)
| | | | | | | | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
10
|
Kim KW, Shin YJ, Lee SCS. Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells. Int J Mol Sci 2022; 23:ijms232314690. [PMID: 36499014 PMCID: PMC9740482 DOI: 10.3390/ijms232314690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to regenerate the CEnCs has been increased due to the global shortage of donor corneas. The aim of the study is to investigate whether novel Rho-kinase (ROCK) inhibitors can induce the cultivation and regeneration of hCEnCs. Cultured hCEnCs were treated with Y-27632, sovesudil, or PHP-0961 for 24 h. Cellular responses, including cell viability, cytotoxicity, proliferation, and Ki67 expression with ROCK inhibitors were evaluated. We also evaluated wound healing and cell adhesion assays. Porcine corneas were used ex vivo to evaluate the effects of Y-27632, sovesudil, and PHP-0961 on wound healing and regeneration. We performed live/dead cell assays and immunofluorescence staining for SRY (sex determining region Y)-box 2 (SOX2), β-catenin, and ZO-1 on porcine corneas after ROCK inhibitor treatments. Cell viability, cell proliferation rate, and the number of Ki67-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated cells compared to the control. There was no difference in LDH cytotoxicity test between any groups. Cells treated with Y-27632, sovesudil and PHP-0961 showed faster migration, wound healing, and cell adhesion. In the porcine ex vivo experiments, wound healing, the number of live cells, and SOX2-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated corneas. In all experiments, sovesudil and PHP-0961, the novel ROCK inhibitors, were equal or superior to the results of the ROCK inhibitor positive control, Y-27632. In conclusion, sovesudil and PHP-0961, novel ROCK inhibitors have the capacity to regenerate hCEnCs by enhancing cell proliferation and adhesion between cells.
Collapse
Affiliation(s)
- Kyung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Correspondence: ; Tel.: +82-2-6960-1240
| | - Sammy Chi Sam Lee
- pH Pharma Co., Ltd., B-1009, U-Space, 670 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13494, Republic of Korea
| |
Collapse
|
11
|
Liu Q, Li HY, Wang SJ, Huang SQ, Yue Y, Maihemuti A, Zhang Y, Huang L, Luo L, Feng KN, Wu ZK. Belumosudil, ROCK2-Specific Inhibitor, alleviates cardiac fibrosis by inhibiting cardiac fibroblasts activation. Am J Physiol Heart Circ Physiol 2022; 323:H235-H247. [PMID: 35657612 DOI: 10.1152/ajpheart.00014.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is thought to be the hallmark of pathological hypertrophic remodeling, of which the myofibroblasts transdifferentiation is the key cell biological event. However, there is still no specific and effective therapeutic agent approved for cardiac fibrosis. To investigate the effects of Belumosudil, the first ROCK2-specific inhibitor, on cardiac hypertrophy, fibrosis and dysfunction induced by pressure overload, the transverse aortic constriction (TAC) or sham operation was carried out on wild-type C57BL/6 mice (male, 6-8 week old) under pentobarbital anesthesia. After that, mice were randomly divided into three groups: sham operation + vehicle, TAC + vehicle, TAC + 50 mg·kg-1·d-1 Belumosudil. We found that Belumosudil effectively ameliorated cardiac hypertrophy, fibrosis and dysfunction in TAC mice. To elucidate the underlying mechanism, we inhibited the expression of ROCK2 in vitro by either Belumosudil or siRNA. We showed that the inhibition of ROCK2 by either Belumosudil or knockdown suppressed cardiac fibroblasts activation and proliferation significantly induced by Transforming Growth Factor-β1 (TGF-β1). Furthermore, our study confirmed ROCK2 mediates cardiac fibrosis by interacting with Transforming Growth Factor-β1 (TGF-β1)/mothers against decapentaplegic homolog (Smad2) pathway. Taken together, we demonstrated that Belumosudil ameliorates cardiac hypertrophy and fibrosis induced by TAC via inhibiting cardiac fibroblasts activation. In conclusion, Belumosudil may be a promising therapeutic drug for cardiac hypertrophy and fibrosis induced by myocardial pressure overload.
Collapse
Affiliation(s)
- Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Hua-Yang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shun-Jun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sui-Qing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yuan Yue
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Adilai Maihemuti
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yi Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Lin Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Kang-Ni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhong-Kai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Pillai VV, Kei TG, Gurung S, Das M, Siqueira LGB, Cheong SH, Hansen PJ, Selvaraj V. RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regulates preimplantation embryo size and differentiation. Development 2022; 149:274909. [DOI: 10.1242/dev.200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Exponential proliferation of trophoblast stem cells (TSC) is crucial in Ruminantia to maximize numerical access to caruncles, the restricted uterine sites that permit implantation. When translating systems biology of the undifferentiated bovine trophectoderm, we uncovered that inhibition of RhoA/Rock promoted self-renewing proliferation and substantially increased blastocyst size. Analysis of transcripts suppressed by Rock inhibition revealed transforming growth factor β1 (TGFβ1) as a primary upstream effector. TGFβ1 treatment induced changes consistent with differentiation in bTSCs, a response that could be replicated by induced expression of the bovine ROCK2 transgene. Rocki could partially antagonize TGFβ1 effects, and TGFβ receptor inhibition promoted proliferation identical to Rocki, indicating an all-encompassing upstream regulation. Morphological differentiation included formation of binucleate cells and infrequent multinucleate syncytia, features we also localize in the in vivo bovine placenta. Collectively, we demonstrate a central role for TGFβ1, RhoA and Rock in inducing bTSC differentiation, attenuation of which is sufficient to sustain self-renewal and proliferation linked to blastocyst size and preimplantation development. Unraveling these mechanisms augments evolutionary/comparative physiology of the trophoblast cell lineage and placental development in eutherians.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G. Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G. B. Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Embrapa Gado de Leite, Juiz de Fora, MG 36038-330, Brazil
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J. Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Li J, Sun Z, Lv Z, Jiang H, Liu A, Wang M, Tan G, Guo H, Sun H, Wu R, Xu X, Yan W, Jiang Q, Ikegawa S, Shi D. Microtubule Stabilization Enhances the Chondrogenesis of Synovial Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:748804. [PMID: 34746145 PMCID: PMC8564364 DOI: 10.3389/fcell.2021.748804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential and are widely applied in cartilage and bone disease. Synovial mesenchymal stem cells (SMSCs) exhibit a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential. Microtubule (MT) plays a key role in various cellular processes. Perturbation of MT stability and their associated proteins is an underlying cause for diseases. Little is known about the role of MT stabilization in the differentiation and homeostasis of SMSCs. In this study, we demonstrated that MT stabilization via docetaxel treatment had a significant effect on enhancing the chondrogenic differentiation of SMSCs. MT stabilization inhibited the expression of Yes-associated proteins (YAP) and the formation of primary cilia in SMSCs to drive chondrogenesis. This finding suggested that MT stabilization might be a promising therapeutic target of cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Anlong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Heng Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Rho/ROCK Inhibition Promotes TGF- β3-Induced Tenogenic Differentiation in Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:8284690. [PMID: 34659420 PMCID: PMC8519677 DOI: 10.1155/2021/8284690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising therapeutic tool for tendon regeneration. Their tenogenic differentiation is crucial for tissue engineering approaches and may support their beneficial effects after cell transplantation in vivo. The transforming growth factor (TGF)-β, signalling via intracellular Smad molecules, is a potent paracrine mediator of tenogenic induction. Moreover, scaffold topography or tendon matrix components induced tenogenesis via activation of the Rho/ROCK cascade, which, however, is also involved in pathological adaptations in extracellular matrix pathologies. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-β3/Smad signalling in tenogenic differentiation in both human and equine MSC. Primary equine and human MSC isolated from adipose tissue were cultured as monolayers or on tendon-derived decellularized scaffolds to evaluate the influence of the ROCK inhibitor Y-27632 on TGF-β3-induced tenogenic differentiation. The MSC were incubated with and without TGF-β3 (10 ng/ml), Y-27632 (10 μM), or both. On day 1 and day 3, the signalling pathway of TGF-β and the actin cytoskeleton were visualized by Smad 2/3 and phalloidin staining, and gene expression of signalling molecules and tendon markers was assessed. ROCK inhibition was confirmed by disruption of the actin cytoskeleton. Activation of Smad 2/3 with nuclear translocation was evident upon TGF-β3 stimulation. Interestingly, this effect was most pronounced with additional ROCK inhibition in both species (p < 0.05 in equine MSC). In line with that, the tendon marker scleraxis showed the strongest upregulation when TGF-β3 and ROCK inhibition were combined (p < 0.05 in human MSC). The regulation pattern of tendon extracellular matrix components and the signalling molecules TGF-β3 and Smad 8 showed differences between human and equine MSC. The obtained results showed that ROCK inhibition promotes the TGF-β3/Smad 2/3 axis, with possible implications for future MSC priming regimes in tendon therapy.
Collapse
|
15
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
16
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
17
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
18
|
Activin A and Cell-Surface GRP78 Are Novel Targetable RhoA Activators for Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22062839. [PMID: 33799579 PMCID: PMC8000060 DOI: 10.3390/ijms22062839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure. RhoA/Rho-associated protein kinase (ROCK) signaling is a recognized mediator of its pathogenesis, largely through mediating the profibrotic response. While RhoA activation is not feasible due to the central role it plays in normal physiology, ROCK inhibition has been found to be effective in attenuating DKD in preclinical models. However, this has not been evaluated in clinical studies as of yet. Alternate means of inhibiting RhoA/ROCK signaling involve the identification of disease-specific activators. This report presents evidence showing the activation of RhoA/ROCK signaling both in vitro in glomerular mesangial cells and in vivo in diabetic kidneys by two recently described novel pathogenic mediators of fibrosis in DKD, activins and cell-surface GRP78. Neither are present in normal kidneys. Activin inhibition with follistatin and neutralization of cell-surface GRP78 using a specific antibody blocked RhoA activation in mesangial cells and in diabetic kidneys. These data identify two novel RhoA/ROCK activators in diabetic kidneys that can be evaluated for their efficacy in inhibiting the progression of DKD.
Collapse
|
19
|
Luo Y, Wang AT, Zhang QF, Liu RM, Xiao JH. RASL11B gene enhances hyaluronic acid-mediated chondrogenic differentiation in human amniotic mesenchymal stem cells via the activation of Sox9/ERK/smad signals. Exp Biol Med (Maywood) 2020; 245:1708-1721. [PMID: 32878463 PMCID: PMC7802383 DOI: 10.1177/1535370220944375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to elucidate the molecular mechanisms, whereby hyaluronic acid, a main extracellular matrix component of articular cartilage, promotes the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). Our previous findings indicated that hyaluronic acid combined with hAMSCs showed a marked therapeutic effect against rat osteoarthritis. In the present study, hyaluronic acid markedly enhanced the expression of chondrocyte-specific markers including Col2α1, Acan, and Sox9 in hAMSCs, with strong synergistic effects on chondrogenic differentiation, in combination with the commonly used inducer, transforming growth factor β3 (TGF-β3). Microarray analysis showed that Ras-like protein family member 11B (RASL11B) played a pivotal role in the process of hyaluronic acid-mediated chondrogenesis of hAMSCs. This directional differentiation was significantly inhibited by RASL11B knockdown, but RASL11B overexpression dramatically promoted the expression of Sox9, a master chondrogenesis transcriptional factor, at the levels of transcription and translation. Increased Sox9 expression subsequently resulted in high expression levels of Col2α1 and Acan and the accumulation of cartilage-specific matrix components, such as type 2 collagen and glycosaminoglycans. Moreover, we observed that RASL11B activated the signal molecules such as ERK1/2, and Smad2/3 in the presence of hyaluronic acid during TGF-β3-induced chondrogenesis of hAMSCs. Taken together, these findings suggest that hyaluronic acid activates the RASL11B gene to potentiate the chondrogenic differentiation of hAMSCs via the activation of Sox9 and ERK/Smad signaling, thus providing a new strategy for cartilage defect repairing by hyaluronic acid-based stem cell therapy.
Collapse
Affiliation(s)
- Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ai-Tong Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Qing-Fang Zhang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ru-Ming Liu
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
20
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
21
|
Li W, Zhao J, Wang J, Sun L, Xu H, Sun W, Pan Y, Wang H, Zhang WB. ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells. J Cell Physiol 2020; 235:5972-5984. [PMID: 31970784 DOI: 10.1002/jcp.29522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Mechanical force across sutures is able to promote suture osteogenesis. Orthodontic clinics often use this biological characteristic of sutures to treat congenital cranio-maxillofacial malformations. However, the underlying mechanisms still remain poorly understood. Craniofacial sutures provide a special growth source and support primary sites of osteogenesis. Here, we isolated rat sagittal suture cells (rSAGs), which had mesenchymal stem cell characteristics and differentiating abilities. Cells were then subjected to mechanical tension (5% elongation, 0.5 Hz; sinusoidal waveforms) showing that mechanical tension could enhance osteogenic differentiation but hardly affect proliferation of rSAGs. Besides, mechanical tension could increase Rho-associated kinase (ROCK) expression and enhance transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation. Inhibiting ROCK expression could suppress tension-induced osteogenesis and block tension-induced upregulation of nuclear TAZ. In addition, our results indicated that TAZ had direct combination sites with runt-related transcription factor 2 (Runx2) in rSAGs, and knock-downed TAZ simultaneously decreased the expression of Runx2 no matter with or without mechanical tension. In summary, our findings demonstrated that the multipotency of rSAGs in vitro could give rise to early osteogenic differentiation under mechanical tension, which was mediated by ROCK-TAZ signal axis.
Collapse
Affiliation(s)
- Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jialu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wei-Bing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Gegg C, Yang F. The Effects of ROCK Inhibition on Mesenchymal Stem Cell Chondrogenesis Are Culture Model Dependent. Tissue Eng Part A 2019; 26:130-139. [PMID: 31411113 DOI: 10.1089/ten.tea.2019.0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rho-associated protein kinase (ROCK) signaling correlates with cell shape, with decreased cell spreading accompanied by decreased ROCK activity. However, how cell shape and ROCK activity impact the chondrogenesis of mesenchymal stem cells (MSCs) remains inconclusive. Here we examine the effects of ROCK inhibition on human MSC chondrogenesis in four different culture models, including three-dimensional (3D) microribbon (μRB) scaffolds, two-dimensional hydrogel (2D-HG) substrates, 3D hydrogels (3D-HGs), and pellet. For each culture model involving biomaterials, four polymers were compared, including gelatin, chondroitin sulfate, hyaluronic acid, and polyethylene glycol. ROCK inhibition decreased MSC chondrogenesis in μRB model, enhanced chondrogenesis in pellet, and had minimal effect in 2D-HG or 3D-HG models. Furthermore, we demonstrate that MSC chondrogenesis cannot be predicted using ROCK signaling alone. While varying biomaterial compositions can impact the amount or phenotype of resulting cartilage, varying biomaterials did not change the chondrogenic response to ROCK inhibition within each culture model. Regardless of culture model or ROCK expression, increased cartilage formation was always accompanied by enhanced N-cadherin expression and production, suggesting that N-cadherin is a robust marker to select culture conditions that promote chondrogenesis. Together, the results from this study may be used to enhance MSC-based cartilage regeneration in different culture models. Impact Statement Here we assessed the effects of Rho-associated protein kinase (ROCK) inhibition on mesenchymal stem cell (MSC) chondrogenesis in different culture models, including three-dimensional (3D) microribbon scaffolds, two-dimensional hydrogel substrates, 3D hydrogels, and pellet culture. Our results demonstrate that effects of ROCK inhibition on MSC chondrogenesis differ substantially depending on culture models. Furthermore, MSC chondrogenesis cannot be predicted using ROCK signaling alone. The results from this study fill in a gap of knowledge in the correlation between ROCK signaling and MSC chondrogenesis, which may be used to enhance MSC-based cartilage regeneration in different culture models.
Collapse
Affiliation(s)
- Courtney Gegg
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Fan Yang
- Department of Bioengineering and Orthopedic Surgery, Stanford University Schools of Engineering and Medicine, Stanford, California
| |
Collapse
|
24
|
Yao B, Liu J, Xu D, Pan D, Zhang M, Zhao D, Leng X. Dissection of the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. Chin Med 2019; 14:29. [PMID: 31485261 PMCID: PMC6712859 DOI: 10.1186/s13020-019-0252-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background Guzhi Zengsheng Zhitongwan (GZZSZTW) is an effective formula of traditional Chinese herbal medicine and has been widely applied in the treatment of joint diseases for many years. The aim of this study was to dissect the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. Methods The Chinese herbs of GZZSZTW were immersed in 5 l distilled water and boiled with reflux extraction method. The extract was filtered, concentrated and freeze-dried. The chemical profile of GZZSZTW extract was determined by high-performance lipid chromatography (HPLC). The 7-week old Sprague-Dawley (SD) rats in GZZSZTW groups were received oral administration at doses of 0.8, 1.05, and 1.3 g/kg per day and the rats in blank group were fed with drinking water. Serum samples were collected from the jugular veins. Primary chondrocyte viability was evaluated by CCK-8 assay. A full spectrum of the molecular targets and signaling pathways of GZZSZTW were investigated by isobaric tags for relative and absolute quantitation (iTRAQ) analysis and a systematic bioinformatics analysis accompanied with parallel reaction monitoring (PRM) and siRNA validation. Results GZZSZTW regulated a series of functional proteins and signaling pathways responsible for cartilage development, growth and repair. Functional classification analysis indicated that these proteins were mainly involved in the process of cell surface dynamics. Pathway analysis mapped these proteins into several signalling pathways involved in chondrogenesis, chondrocyte proliferation and differentiation, and cartilage repair, including hippo signaling pathway, cGMP-PKG signaling pathway, cell cycle and calcium signaling pathway. Protein–protein interaction analysis and siRNA knockdown assay identified an interaction network consisting of TGFB1, RHO GTPases, ILK, FLNA, LYN, DHX15, PKM, RAB15, RAB1B and GIPC1. Conclusions Our results suggest that the effects of GZZSZTW on treating joint diseases might be achieved through the TGFB1/RHO interaction network coupled with other proteins and signaling pathways responsible for cartilage development, growth and repair. Therefore, the present study has greatly expanded our knowledge and provided scientific support for the underlying therapeutic mechanisms of GZZSZTW on treating joint diseases. It also provided possible alternative strategies for the prevention and treatment for joint diseases by using traditional Chinese herbal formulas.
Collapse
Affiliation(s)
- Baojin Yao
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Jia Liu
- 2College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Duoduo Xu
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daian Pan
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Mei Zhang
- 3Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daqing Zhao
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xiangyang Leng
- 4The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| |
Collapse
|
25
|
Ogawa Y, Takahashi N, Takemoto T, Nishiume T, Suzuki M, Ishiguro N, Kojima T. Hyaluronan promotes TRPV4-induced chondrogenesis in ATDC5 cells. PLoS One 2019; 14:e0219492. [PMID: 31393869 PMCID: PMC6687147 DOI: 10.1371/journal.pone.0219492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan essential for the homeostasis of cartilage-related tissues. Intracellular adhesion molecule-1 (ICAM-1) and CD44 have been identified as receptors for HA. Recently, transient receptor potential vanilloid 4 (TRPV4) has emerged as a potential research target in several areas of physiology. TRPV4 is a Ca2+-permeable, non-selective cation channel that appears to have mechanosensory or osmosensory roles in several musculoskeletal tissues. HA and TRPV4 play key roles in chondrogenesis; however, it has remained unclear whether they have interactive effects on chondrogenesis and, if so, how do they interact with each other? This study investigated the relationship between HA, its receptors ICAM-1 and CD44, and TRPV4 in the chondrogenic pathway using the ATDC5 cell line. It was found that the presence of HA is required for TRPV4-induced chondrogenesis. Loss of HA suppressed TRPV4-induced expression of the chondrogenic markers, SOX9 and Aggrecan. Moreover, HA affects TRPV4-induced chondrogenic development via each of ICAM-1 and CD44 partially. In conclusion, for the first time, the existence of an interaction between HA, its receptor ICAM-1 and CD44, and TRPV4-activity in chondrogenesis in the ATDC5 cell line was reported. TRPV4 is known to function as a mechanosensory channel in several musculoskeletal tissues. Therefore, findings of this study may suggest the existence of a molecular mechanism that underlies the interactive effects of HA and mechanical loading on joint chondrogenesis.
Collapse
Affiliation(s)
- Yoshikazu Ogawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Nobunori Takahashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
- * E-mail:
| | - Toki Takemoto
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Tsuyoshi Nishiume
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Mochihito Suzuki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Toshihisa Kojima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| |
Collapse
|
26
|
Nagai Y, Matoba K, Kawanami D, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K, Nishimura R. ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. Am J Physiol Renal Physiol 2019; 317:F839-F851. [PMID: 31364374 DOI: 10.1152/ajprenal.00596.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small GTPase Rho and its effector Rho kinase (ROCK) are involved in the pathogenesis of diabetic kidney disease. Rho kinase has two isoforms: ROCK1 and ROCK2. However, it remains unclear which is mainly involved in the progression of diabetic glomerulosclerosis and the regulation of profibrotic mediators. Glomeruli isolated from type 2 diabetic db/db mice demonstrated increased gene expression of transforming growth factor (TGF)-β and its downstream profibrotic mediators. Chemical inhibition of ROCK suppressed the expression of profibrotic mediators in both isolated glomeruli and cultured mesangial cells. An investigation of mechanisms underlying this observation revealed activated ROCK functions through the phosphorylation of JNK and Erk and the nuclear translocation of NF-κB via actin dynamics. Knockdown by siRNA against ROCK1 and ROCK2 showed that ROCK2 but not ROCK1 controls this fibrotic machinery. Further in vivo experiments showed that ROCK2 activity in the renal cortex of db/db mice was elevated compared with control db/m mice. Importantly, oral administration of ROCK2 inhibitor attenuated renal ROCK2 activity, albuminuria, and glomerular fibrosis in db/db mice. These observations indicate that ROCK2 is a key player in the development of diabetic renal injury. Glomerular ROCK2 may be a potential therapeutic target for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyo Akamine
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Ishizawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Li G, Song X, Li R, Sun L, Gong X, Chen C, Yang L. Zyxin-involved actin regulation is essential in the maintenance of vinculin focal adhesion and chondrocyte differentiation status. Cell Prolif 2018; 52:e12532. [PMID: 30328655 PMCID: PMC6430480 DOI: 10.1111/cpr.12532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives To investigate the role of zyxin‐involved actin regulation in expression level of vinculin focal adhesion and collagen production of chondrocyte and its possible underlying mechanism. Materials and methods Chondrocytes obtained from rabbit articular cartilage were used in this study. The expression of zyxin, actin and vinculin, as well as the extracellular matrix (ECM) protein collagen type I, II and X (COL I, II and X) of chondrocytes were compared between zyxin‐knockdown group and negative control group, and between transforming growth factor‐β1 (TGF‐β1) treatment group and non‐treatment group, respectively. Results Knockdown of zyxin increased the ratio of globular actin (G‐actin) to filamentous actin (F‐actin) of chondrocyte, which further inhibited expression of vinculin and chondrogenic marker COL II as well as hypertrophy marker COL X. On the other hand, chondrocytes treated with TGF‐β1 showed an enhanced expression of F‐actin, and a lower expression of zyxin compared to non‐treatment group. In response to TGF‐β1‐induced actin polymerization, expression of vinculin and COL I was increased, while expression of COL II and aggrecan was decreased. Conclusions These results demonstrate supporting evidence that in chondrocytes the level of zyxin is closely associated with the state of actin polymerization. In particular, the change of zyxin and F‐actin parallels with the change of COL II and vinculin, respectively, indicating a major role of zyxin‐actin interaction in the synthesis of collagen ECM and the remodelling of cytoskeleton‐ECM adhesion.
Collapse
Affiliation(s)
- Gaoming Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China.,Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
28
|
Wang KC, Egelhoff TT, Caplan AI, Welter JF, Baskaran H. ROCK Inhibition Promotes the Development of Chondrogenic Tissue by Improved Mass Transport. Tissue Eng Part A 2018; 24:1218-1227. [PMID: 29397789 DOI: 10.1089/ten.tea.2017.0438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cell (hMSC)-based chondrogenesis is a key process used to develop tissue engineered cartilage constructs from stem cells, but the resulting constructs have inferior biochemical and biomechanical properties compared to native articular cartilage. Transforming growth factor β containing medium is commonly applied to cell layers of hMSCs, which aggregate upon centrifugation to form 3-D constructs. The aggregation process leads to a high cell density condition, which can cause nutrient limitations during long-term culture and, subsequently, inferior quality of tissue engineered constructs. Our objective is to modulate the aggregation process by targeting RhoA/ROCK signaling pathway, the chief modulator of actomyosin contractility, to enhance the end quality of the engineered constructs. Through ROCK inhibition, repression of cytoskeletal tension in chondrogenic hMSCs was achieved along with less dense aggregates with enhanced transport properties. ROCK inhibition also led to significantly increased cartilaginous extracellular matrix accumulation. These findings can be used to create an improved microenvironment for hMSC-derived tissue engineered cartilage culture. We expect that these findings will ultimately lead to improved cartilaginous tissue development from hMSCs.
Collapse
Affiliation(s)
- Kuo-Chen Wang
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Thomas T Egelhoff
- 3 Department of Cellular and Molecular Medicine, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Jean F Welter
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Harihara Baskaran
- 2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,4 Department of Chemical and Biomolecular Engineering, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
29
|
Ji Y, Cao M, Liu J, Chen Y, Li X, Zhao J, Qu C. Rock signaling control PPARγ expression and actin polymerization during adipogenesis. Saudi J Biol Sci 2018; 24:1866-1870. [PMID: 29551937 PMCID: PMC5851925 DOI: 10.1016/j.sjbs.2017.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
Aim: Adipogenesis is characterized by a strong interdependence between cell shape, cytoskeletal organization, and the onset of adipogenic gene expression. Here we investigated the role of the RhoA/ROCK pathway in adipogenesis. Result: High RhoA activity in the cell line C3H10T1/2 were generated (Named RhoA14V cells). Treatment of RhoA14V cells with Shield 1 following their differentiation into adipocytes resulted in the appearance of thick cortical actin filaments, and increased mRNA expression levels of RhoA, ROCK, p-MYPT1 and p-MLC, while PPARγ mRNA decreased. This resulted in decreased triglyceride synthesis and reduced expression of the adipogenic transcription factor PPARγ. These molecular changes were accompanied by reorganization of the actin cytoskeleton, during which ROCK signaling suppressed actin polymerization. Conclusion: ROCK signaling suppresses adipogenesis by controlling PPARγ expression and actin organization in adipocytes.
Collapse
Affiliation(s)
- Yuntao Ji
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Meixia Cao
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Jia Liu
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Yanfei Chen
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Xiaoli Li
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Jing Zhao
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| | - Changqing Qu
- School of Biology and Food Engineering, FuYang Normal University, Fuyang, Anhui 236041, China
| |
Collapse
|
30
|
Feng ZH, Zhang XH, Zhao JQ, Ma JZ. Involvement of Rho-associated coiled-coil kinase signaling inhibition in TGF-β1/Smad2, 3 signal transduction in vitro. Int J Ophthalmol 2017; 10:1805-1811. [PMID: 29259896 DOI: 10.18240/ijo.2017.12.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
AIM To research the effect of Y-27632, a selective Rho-associated coiled-coil kinase (ROCK) inhibitor, on TGF-β1/Smad2, 3 signal transduction in ocular Tenon's capsule fibroblasts (OTFs). METHODS Primary ocular Tenon's capsule fibroblasts had been cultured in vitro. The effect of Y27632 on proliferation of OTF stimulated by lysophosphatidic acid (LPA) was evaluated by MTT colorimetric assay so as to sift out the proper concentrations range of Y-27632 for the next experiment. Real time-polymerase chain reactor (RT-PCR) was to analyze the changes of Smad2 and Smad3 genes of cells affected by Y-27632, though unaffected by transforming growth factor-beta1 (TGF-β1). Proteins of Smad2, Smad3, phosphorylated Smad2 (Ser245/250/255), and phosphorylated Smad3 (Ser423/425/203) were respectively quantified by Western blot after OTFs were successively incubated by TGF-β1 and Y-27632. Meanwhile, α-smooth muscular actin (α-SMA) protein was also quantified after the small intervening gene fragments of human Smad2 and Smad3 were designed, synthesized, and then transfected to OTFs. RESULTS Y-27632 significantly inhibited OTFs proliferation stimulated by LPA. Also Y-27632 significantly suppressed the expressions of Smad2 mRNA, Smad2, 3 proteins expressions, Smad3 phosphorylation at the carboxylic terminals of Ser423/425/203 which had been radically promoted by TGF-β1. SiRNA-Smad2, 3 suppressed α-SMA expressions, but less effectively than Y-27632. CONCLUSION The inhibition of ROCK signaling may be a potential therapeutic candidate for the treatment of the filtration channel fibrosis.
Collapse
Affiliation(s)
- Zhao-Hui Feng
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Xiao-Hui Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Jia-Qi Zhao
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Jun-Ze Ma
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
31
|
Öztürk E, Despot-Slade E, Pichler M, Zenobi-Wong M. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway. Exp Cell Res 2017; 360:113-124. [PMID: 28865751 DOI: 10.1016/j.yexcr.2017.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches.
Collapse
Affiliation(s)
- Ece Öztürk
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Evelin Despot-Slade
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Michael Pichler
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Hu B, Xu C, Cao P, Tian Y, Zhang Y, Shi C, Xu J, Yuan W, Chen H. TGF-β Stimulates Expression of Chondroitin Polymerizing Factor in Nucleus Pulposus Cells Through the Smad3, RhoA/ROCK1, and MAPK Signaling Pathways. J Cell Biochem 2017; 119:566-579. [PMID: 28608941 DOI: 10.1002/jcb.26215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023]
Abstract
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF-β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF-β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF-β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF-β in a Smad3-independent manner. Collectively, our data suggest that TGF-β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566-579, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo Hu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Peng Cao
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ye Tian
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ying Zhang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Changgui Shi
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jun Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province, 150086, China
| | - Wen Yuan
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
33
|
Koh RH, Jin Y, Kang BJ, Hwang NS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater 2017; 53:318-328. [PMID: 28161573 DOI: 10.1016/j.actbio.2017.01.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3. In vitro results indicate that CM-expanded cells followed by TGF-β3 exposure stimulated the expression of fibrocartilage-related genes (COL2, SOX9, ACAN, COL1) and production of extracellular matrix components. Histological assessment of in vitro and subcutaneously implanted in vivo constructs demonstrated that CM-expanded cells followed by TGF-β3 exposure resulted in highest cell proliferation, GAG accumulation, and collagen deposition. Furthermore, when implanted into meniscus defect model, CM treatment amplified the potential of TGF-β3 and induced complete regeneration. STATEMENT OF SIGNIFICANCE Conditioned medium derived from chondrocytes have been reported to effectively prime mesenchymal stem cells toward chondrogenic lineage. Type I collagen is the main component of meniscus extracellular matrix and hyaluronic acid is known to promote meniscus regeneration. In this manuscript, we investigated the effects of conditioned medium (CM) and transforming growth factor-β3 (TGF-β3) on tonsil-derived mesenchymal stem cells (T-MSCs) encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogel. We employed a novel source of conditioned medium, derived from meniscal fibrochondrocytes. Our in vitro and in vivo results collectively illustrate that CM-expanded cells followed by TGF-β3 exposure have the best potential for meniscus regeneration. This manuscript highlights a novel stem cell commitment strategy combined with biomaterials designs for meniscus regeneration.
Collapse
|
34
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
35
|
Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 2017; 16:33-44. [PMID: 27463232 PMCID: PMC5270533 DOI: 10.1080/15384101.2016.1211215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population, which contain several cell phenotypes: mesenchymal stem cells, progenitor cells, fibroblasts and other type of cells. Previously, we identified unique stem cells that we named multilineage-differentiating stress enduring (Muse) cells as one to several percent of MSCs of the bone marrow, adipose tissue and dermis. Among different cell populations in MSCs, Muse cells, positive for pluripotent surface marker SSEA-3, may represent cells responsible for pluripotent-like property of MSCs, since they express pluripotency genes, able to differentiated into triploblastic cells from a single cells and are self-renewable. MSCs release biologically active factors that have profound effects on local cellular dynamics. A thorough examination of MSC secretome seems essential for understanding the physiological functions exerted by these cells in our organism and also for rational cellular therapy design. In this setting, studies on secretome of Muse cells may shed light on pathways that are associated with their specific features. Our findings evidenced that secretomes of MSCs and Muse cells contain factors that regulate extracellular matrix remodeling, ox-redox activities and immune system. Muse cells appear to secrete factors that may preserve their stem cell features, allow survival under stress conditions and may contribute to their immunomodulation capacity. In detail, the proteins belonging to protein kinase A signaling, FXR/RXR activation and LXR/RXR activation pathways may play a role in regulation of Muse stem cell features. These last 2 pathways together with proteins associated with antigen presentation pathway and coagulation system may play a role in immunomodulation.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Graduate School of Health Sciences, Erciyes Universty, Kayseri, Turkey
| | - Kazuki Tatsumi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Laboratory Non-clinical Research Division, Clio, Inc., Sendai, Japan
| | - Ayşegül Murat
- Graduate School of Health Sciences, Erciyes Universty, Kayseri, Turkey
| | | | - Mari Dezawa
- Tohoku Laboratory Non-clinical Research Division, Clio, Inc., Sendai, Japan
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Wang W, Li J, Wang K, Zhang Z, Zhang W, Zhou G, Cao Y, Ye M, Zou H, Liu W. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape. Am J Physiol Cell Physiol 2015; 310:C357-72. [PMID: 26632599 DOI: 10.1152/ajpcell.00300.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyun Wang
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Mingliang Ye
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Hanfa Zou
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China;
| |
Collapse
|
37
|
Ray P, Chapman SC. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. PLoS One 2015; 10:e0134702. [PMID: 26237312 PMCID: PMC4523177 DOI: 10.1371/journal.pone.0134702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Collapse
Affiliation(s)
- Poulomi Ray
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
38
|
p38 MAP kinase inhibitor suppresses transforming growth factor-β2-induced type 1 collagen production in trabecular meshwork cells. PLoS One 2015; 10:e0120774. [PMID: 25799097 PMCID: PMC4370581 DOI: 10.1371/journal.pone.0120774] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Glaucoma is an age-related neurodegenerative disease of retinal ganglion cells, and appropriate turnover of the extracellular matrix in the trabecular meshwork is important in its pathology. Here, we report the effects of Rho-associated kinase (ROCK) and p38 MAP kinase on transforming growth factor (TGF)-β2–induced type I collagen production in human trabecular meshwork cells. TGF-β2 increased RhoA activity, actin polymerization, and myosin light chain 2 phosphorylation. These effects were significantly inhibited by Y-27632, but not SB203580. TGF-β2 also increased promoter activity, mRNA synthesis, and protein expression of COL1A2. These effects were significantly inhibited by SB203580, but not Y-27632. Additionally, Y-27632 did not significantly inhibit TGF-β2–induced promoter activation, or phosphorylation or nuclear translocation of Smad2/3, whereas SB203580 partially suppressed these processes. Collectively, TGF-β2–induced production of type 1 collagen is suppressed by p38 inhibition and accompanied by partial inactivation of Smad2/3, in human trabecular meshwork cells.
Collapse
|
39
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
40
|
Menon MC, Chuang PY, Li Z, Wei C, Zhang W, Luan Y, Yi Z, Xiong H, Woytovich C, Greene I, Overbey J, Rosales I, Bagiella E, Chen R, Ma M, Li L, Ding W, Djamali A, Saminego M, O'Connell PJ, Gallon L, Colvin R, Schroppel B, He JC, Murphy B. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J Clin Invest 2014; 125:208-21. [PMID: 25437874 DOI: 10.1172/jci76902] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/31/2014] [Indexed: 01/01/2023] Open
Abstract
Fibrosis underlies the loss of renal function in patients with chronic kidney disease (CKD) and in kidney transplant recipients with chronic allograft nephropathy (CAN). Here, we studied the effect of an intronic SNP in SHROOM3, which has previously been linked to CKD, on the development of CAN in a prospective cohort of renal allograft recipients. The presence of the rs17319721 allele at the SHROOM3 locus in the donor correlated with increased SHROOM3 expression in the allograft. In vitro, we determined that the sequence containing the risk allele at rs17319721 is a transcription factor 7-like 2-dependent (TCF7L2-dependent) enhancer element that functions to increase SHROOM3 transcription. In renal tubular cells, TGF-β1 administration upregulated SHROOM3 expression in a β-catenin/TCF7L2-mediated manner, while SHROOM3 in turn facilitated canonical TGF-β1 signaling and increased α1 collagen (COL1A1) expression. Inducible and tubular cell-specific knockdown of Shroom3 markedly abrogated interstitial fibrosis in mice with unilateral ureteric obstruction. Moreover, SHROOM3 expression in allografts at 3 months after transplant and the presence of the SHROOM3 risk allele in the donor correlated with increased allograft fibrosis and with reduced estimated glomerular filtration rate at 12 months after transplant. Our findings suggest that rs17319721 functions as a cis-acting expression quantitative trait locus of SHROOM3 that facilitates TGF-β1 signaling and contributes to allograft injury.
Collapse
|
41
|
Warnock JJ, Bobe G, Duesterdieck-Zellmer KF. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs. PeerJ 2014; 2:e581. [PMID: 25289180 PMCID: PMC4183955 DOI: 10.7717/peerj.581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Meniscal tears are a common cause of stifle lameness in dogs. Use of autologous synoviocytes from the affected stifle is an attractive cell source for tissue engineering replacement fibrocartilage. However, the diseased state of these cells may impede in vitro fibrocartilage formation. Synoviocytes from 12 osteoarthritic (“oaTSB”) and 6 normal joints (“nTSB”) were cultured as tensioned bioscaffolds and compared for their ability to synthesize fibrocartilage sheets. Gene expression of collagens type I and II were higher and expression of interleukin-6 was lower in oaTSB versus nTSB. Compared with nTSB, oaTSB had more glycosaminoglycan and alpha smooth muscle staining and less collagen I and II staining on histologic analysis, whereas collagen and glycosaminoglycan quantities were similar. In conclusion, osteoarthritic joint—origin synoviocytes can produce extracellular matrix components of meniscal fibrocartilage at similar levels to normal joint—origin synoviocytes, which makes them a potential cell source for canine meniscal tissue engineering.
Collapse
Affiliation(s)
- Jennifer J Warnock
- College of Veterinary Medicine, Oregon State University , Corvallis, OR , United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University , Corvallis, OR , United States
| | | |
Collapse
|
42
|
Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X, Wu Q. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res 2014; 29:1575-85. [PMID: 24347469 DOI: 10.1002/jbmr.2163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/04/2023]
Abstract
Chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors and signal pathways, including transcription factors such as Sox9 and microRNAs. MiR-335-5p has been previously reported to regulate osteogenic and adipogenic differentiations of MSCs, but its role in chondrogenic differentiation of MSC remains unknown. In this study, we found that miR-335-5p and its host gene Mest are co-expressed and greatly upregulated during mouse MSCs (mMSCs) chondrogenesis. Overexpression of miR-335-5p in mMSCs increased expression of chondrogenic marker genes. Molecular mechanism explorations revealed that miR-335-5p targets Daam1 and ROCK1, a set of negative regulators of Sox9; Sox9 downregulates the expression of miR-29a and 29b, both negative regulators of Mest expression, thus forming a positive loop from miR-335-5p to Sox9 to Mest/miR-335-5p. In addition, miR-335-5p targets DKK1 during mMSC chondrogenic differentiation to increase β-catenin/TCF activity, which leads to increased level of Mest transcription. These data showed miR-335-5p positively regulates MSC chondrogenesis, and two positive feedback loops are identified for the expression of miR-335-5p and its host gene Mest during the early phase of mMSC chondrogenic differentiation.
Collapse
Affiliation(s)
- Xiao Lin
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|
44
|
Zhou J, Chen Y, Cao C, Chen X, Gao W, Zhang L. Inactivation of glycogen synthase kinase-3β up-regulates β-catenin and promotes chondrogenesis. Cell Tissue Bank 2014; 16:135-42. [PMID: 24760579 DOI: 10.1007/s10561-014-9449-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/14/2014] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate whether inhibition of glycogen synthase kinase-3β (GSK-3β) could promote chondrocytes proliferation. The expression pattern of GSK-3β was firstly determined by immunohistochemistry (IHC) in normal mouse. Tibias were then isolated and cultured for 6 days. The tibias were treated with dimethylsulfoxide (control) or GSK-3 inhibitor SB415286 (SB86). Length of tibias was measured until 6 days after treatment. These bones were either stained with alcian blue/alizarin red or analyzed by IHC. In addition, GSK-3β and β-catenin were analyzed by Western blot. Finally, cartilage-specific GSK-3β deletion mice (KO) were generated. Efficiency of GSK-3β deletion was determined through Western blot and IHC. After treated by inhibitor SB86, the overall length of growth plate was not changed. However, growth of tibia in SB86 group was increased by 31 %, the length of resting and proliferating was increased 13 % (P < 0.01), whereas the length of hypertrophic was decreased by 57 % (P < 0.01). Besides, the mineralized length was found to be significant longer than the control group (P < 0.05). In KO mice, growth plate and calvaria tissue both exhibit significant reduction of GSK-3β (P < 0.05) whereas the lengths of tibias in KO were almost same compared with control mice. Finally, an increase amount of β-catenin protein was observed in SB86 (P < 0.05). In addition, significantly increased β-catenin was also found in the growth plate of KO mice (P < 0.05). Inhibition of GSK-3 could promote longitudinal growth of bone through increasing bone formation. Besides, the inactivation of GSK-3β could lead to enhancing β-catenin, therefore promote chondrocytes proliferation.
Collapse
Affiliation(s)
- Junjie Zhou
- Orthopedic Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, LanXi Road, Shanghai, 200062, China,
| | | | | | | | | | | |
Collapse
|
45
|
Grzanka D, Gagat M, Izdebska M. Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death. Int J Mol Med 2014; 33:1441-50. [PMID: 24676287 PMCID: PMC4055304 DOI: 10.3892/ijmm.2014.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues.
Collapse
Affiliation(s)
- Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|