1
|
Chhabra KH, Shoemaker R, Herath CB, Thomas MC, Filipeanu CM, Lazartigues E. Molecular dissection of the role of ACE2 in glucose homeostasis. Physiol Rev 2025; 105:935-973. [PMID: 39918873 PMCID: PMC12124467 DOI: 10.1152/physrev.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) was discovered 25 years ago as a negative regulator of the renin-angiotensin system, opposing the effects of angiotensin II. Beyond its well-demonstrated roles in cardiovascular regulation and COVID-19 pathology, ACE2 is involved in a plethora of physiopathological processes. In this review, we summarize the latest discoveries on the role of ACE2 in glucose homeostasis and regulation of metabolism. In the endocrine pancreas, ACE2 is expressed at low levels in β-cells, but loss of its expression inhibits glucose-stimulated insulin secretion and impairs glucose tolerance. Conversely, overexpression of ACE2 improved glycemia, suggesting that recombinant ACE2 might be a future therapy for diabetes. In the skeletal muscle of ACE2-deficient mice a progressive triglyceride accumulation was observed, whereas in diabetic kidney the initial increase in ACE2 is followed by a chronic reduction of expression in kidney tubules and impairment of glucose metabolism. At the intestinal level dysregulation of the enzyme alters the amino acid absorption and intestinal microbiome, whereas at the hepatic level ACE2 protects against diabetic fatty liver disease. Not least, ACE2 is upregulated in adipocytes in response to nutritional stimuli, and administration of recombinant ACE2 decreased body weight and increased thermogenesis. In addition to tissue-specific regulation of ACE2 function, the enzyme undergoes complex cellular posttranslational modifications that are changed during diabetes evolution, with at least proteolytic cleavage and ubiquitination leading to modifications in ACE2 activity. Detailed characterization of ACE2 in a cellular and tissue-specific manner holds promise for improving therapeutic outcomes in diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Robin Shoemaker
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Catalin M Filipeanu
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
3
|
Hu W, Tan J, Lin Y, Tao Y, Zhou Q. Bibliometric and visual analysis of ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications from 2000 to 2023. Heliyon 2024; 10:e31405. [PMID: 38807880 PMCID: PMC11130665 DOI: 10.1016/j.heliyon.2024.e31405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background The pathogenesis of diabetes and its microvascular complications are intimately associated with renin angiotensin system dysregulation. Evidence suggests the angiotensin converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis regulates metabolic imbalances, inflammatory responses, reduces oxidative stress, and sustains microvascular integrity, thereby strengthening defences against diabetic conditions. This study aims to conduct a comprehensive analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications over the past two decades, focusing on key contributors, research hotspots, and thematic trends. Methods This cross-sectional bibliometric analysis of 349 English-language publications was performed using HistCite, VOSviewer, CiteSpace, and Bibliometrix R for visualization and metric analysis. Primary analytical metrics included publication count and keyword trend dynamics. Results The United States, contributing 105 articles, emerged as the most productive country, with the University of Florida leading institutions with 18 publications. Benter IF was the most prolific author with 14 publications, and Clinical Science was the leading journal with 13 articles. A total of 151 of the 527 author's keywords with two or more occurrences clustered into four major clusters: diabetic microvascular pathogenesis, metabolic systems, type 2 diabetes, and coronavirus infections. Keywords such as "SARS", "ACE2", "coronavirus", "receptor" and "infection" displayed the strongest citation bursts. The thematic evolution in this field expanded from focusing on the renin angiotensin system (2002-2009) to incorporating ACE2 and diabetes metabolism (2010-2016). The latter period (2017-2023) witnessed a significant surge in diabetes research, reflecting the impact of COVID-19 and associated conditions such as diabetic retinopathy and cardiomyopathy. Conclusions This scientometric study offers a detailed analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications, providing valuable insights for future research directions.
Collapse
Affiliation(s)
- Weiwen Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yeting Lin
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yulin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
4
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Karavanaki K, Rodolaki K, Soldatou A, Karanasios S, Kakleas K. Covid-19 infection in children and adolescents and its association with type 1 diabetes mellitus (T1d) presentation and management. Endocrine 2023; 80:237-252. [PMID: 36462147 PMCID: PMC9734866 DOI: 10.1007/s12020-022-03266-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Children seem to be affected by the new SARS-CoV-2 virus less severely than adults, with better prognosis and low mortality. Serious complications of COVID-19 infection in children include multisystem inflammatory response syndrome in COVID-19 infection (MIS-C), myo-or pericarditis and, less frequently, long COVID syndrome. On the other hand, adults with type 1 (T1D) or type 2 diabetes (T2D) are among the most vulnerable groups affected by COVID-19, with increased morbidity and mortality. Moreover, an association of SARS-CoV-2 with diabetes has been observed, possibly affecting the frequency and severity of the first clinical presentation of T1D or T2D, as well as the development of acute diabetes after COVID-19 infection. The present review summarizes the current data on the incidence of T1D among children and adolescents during the COVID-19 pandemic, as well as its severity. Moreover, it reports on the types of newly diagnosed diabetes after COVID infection and the possible pathogenetic mechanisms. Additionally, this study presents current data on the effect of SARS-CoV-2 on diabetes control in patients with known T1D and on the severity of clinical presentation of COVID infection in these patients. Finally, this review discusses the necessity of immunization against COVID 19 in children and adolescents with T1D.
Collapse
Affiliation(s)
- Kyriaki Karavanaki
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens,"P&A Kyriakou" Children's Hospital, Athens, Greece
| | - Kalliopi Rodolaki
- First Department of Pediatrics, National and Kapodistrian University of Athens,"Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alexandra Soldatou
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens,"P&A Kyriakou" Children's Hospital, Athens, Greece
| | - Spyridon Karanasios
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens,"P&A Kyriakou" Children's Hospital, Athens, Greece
| | - Kostas Kakleas
- First Department of Pediatrics, National and Kapodistrian University of Athens,"Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
6
|
Popovic DS, Papanas N, Koufakis T, Kotsa K, Mahmeed WA, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Firenze A, Galia M, Goh SY, Janez A, Kalra S, Kempler P, Kapoor N, Lessan N, Lotufo P, Rizvi AA, Sahebkar A, Santos RD, Stoian AP, Toth PP, Viswanathan V, Rizzo M. Glucometabolic Perturbations in Type 2 Diabetes Mellitus and Coronavirus Disease 2019: Causes, Consequences, and How to Counter Them Using Novel Antidiabetic Drugs - The CAPISCO International Expert Panel. Exp Clin Endocrinol Diabetes 2023; 131:260-267. [PMID: 36693416 DOI: 10.1055/a-2019-1111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The growing amount of evidence suggests the existence of a bidirectional relation between coronavirus disease 2019 (COVID-19) and type 2 diabetes mellitus (T2DM), as these two conditions exacerbate each other, causing a significant healthcare and socioeconomic burden. The alterations in innate and adaptive cellular immunity, adipose tissue, alveolar and endothelial dysfunction, hypercoagulation, the propensity to an increased viral load, and chronic diabetic complications are all associated with glucometabolic perturbations of T2DM patients that predispose them to severe forms of COVID-19 and mortality. Severe acute respiratory syndrome coronavirus 2 infection negatively impacts glucose homeostasis due to its effects on insulin sensitivity and β-cell function, further aggravating the preexisting glucometabolic perturbations in individuals with T2DM. Thus, the most effective ways are urgently needed for countering these glucometabolic disturbances occurring during acute COVID-19 illness in T2DM patients. The novel classes of antidiabetic medications (dipeptidyl peptidase 4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and sodium-glucose co-transporter-2 inhibitors (SGLT-2is) are considered candidate drugs for this purpose. This review article summarizes current knowledge regarding glucometabolic disturbances during acute COVID-19 illness in T2DM patients and the potential ways to tackle them using novel antidiabetic medications. Recent observational data suggest that preadmission use of GLP-1 RAs and SGLT-2is are associated with decreased patient mortality, while DPP-4is is associated with increased in-hospital mortality of T2DM patients with COVID-19. Although these results provide further evidence for the widespread use of these two classes of medications in this COVID-19 era, dedicated randomized controlled trials analyzing the effects of in-hospital use of novel antidiabetic agents in T2DM patients with COVID-19 are needed.
Collapse
Affiliation(s)
- Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | | | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, Ankara, Turkey
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, Sweden
| | - Alberto Firenze
- Unit of Research and International Cooperation, University Hospital of Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, Italy
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Slovenia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, Brazil
| | - Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Anca Pantea Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Manfredi Rizzo
- Department of Biochemistry, Mohammed Bin Rashid University, Dubai, United Arab Emirates
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Italy
| |
Collapse
|
7
|
Rajapakse N, Nomura H, Wu M, Song J, Hung A, Tran S, Ta H, Akther F, Wu Y, Johansen M, Chew K, Kumar V, Woodruff T, Clark R, Koehbach J, Lomonte B, Rosado C, Thomas M, Boudes M, Reboul C, Rash L, Gallo L, Essid S, Elmlund D, Miemczyk S, Hansbro N, Saunders B, Britton W, Sly P, Yamamoto A, Fernandez J, Moyle P, Short K, Hansbro P, Kuruppu S, Smith I. Development of a novel angiotensin converting enzyme 2 stimulator with broad implications in SARS-CoV2 and type 1 diabetes. RESEARCH SQUARE 2023:rs.3.rs-2642181. [PMID: 37066342 PMCID: PMC10104254 DOI: 10.21203/rs.3.rs-2642181/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.
Collapse
Affiliation(s)
| | | | - Melanie Wu
- School of Chemistry and Molecular Biosciences, The University of Queensland
| | | | | | - Shirley Tran
- School of Biomedical Sciences, The University of Queensland
| | | | | | | | | | - Keng Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland
| | | | | | | | | | | | - Merlin Thomas
- Department of Diabetes, Central Clinical School, Monash University
| | | | | | - Lachlan Rash
- The University of Queensland St Lucia QLD 4072, Australia
| | - Linda Gallo
- School of Biomedical Sciences, The University of Queensland
| | - Sumia Essid
- School of Biomedical Sciences, The University of Queensland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zahedi M, Kordrostami S, Kalantarhormozi M, Bagheri M. A Review of Hyperglycemia in COVID-19. Cureus 2023; 15:e37487. [PMID: 37187644 PMCID: PMC10181889 DOI: 10.7759/cureus.37487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common chronic metabolic disorders worldwide, which increases the risk of common and opportunistic infections. Following the coronavirus disease 2019 (COVID-19) pandemic, a higher incidence rate, more severe forms of the disease, and exacerbation of hyperglycemia and its complications have been observed in patients with DM. Moreover, stress-induced hyperglycemia has been observed in many hospitalized nondiabetic patients after contracting COVID-19. Hyperglycemia worsens prognosis in both diabetic and nondiabetic patients. In this study, the mechanism of new-onset or exacerbation of hyperglycemia, the effect of the treatments used for COVID-19 on hyperglycemia, the importance and appropriate method of blood glucose (blood sugar (BS)) control during the disease, and the possible fate of new-onset hyperglycemia after recovery from COVID-19 to some extent is expressed.
Collapse
Affiliation(s)
- Maryam Zahedi
- Department of Internal Medicine, Endocrinology, and Metabolism, Clinical Research Development Unit (CRDU) 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, IRN
| | - Saba Kordrostami
- Department of Endocrinology and Diabetes, Clinical Research Development Unit (CRDU) 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, IRN
| | | | - Marziyeh Bagheri
- Department of Internal Medicine, Bushehr University of Medical Sciences, Bushehr, IRN
| |
Collapse
|
9
|
Kim K, Moon JH, Ahn CH, Lim S. Effect of olmesartan and amlodipine on serum angiotensin-(1-7) levels and kidney and vascular function in patients with type 2 diabetes and hypertension. Diabetol Metab Syndr 2023; 15:43. [PMID: 36899369 PMCID: PMC10005920 DOI: 10.1186/s13098-023-00987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/27/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Recent studies suggest that angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) [Ang-(1-7)] might have beneficial effects on the cardiovascular system. We investigated the effects of olmesartan on the changes in serum ACE2 and Ang-(1-7) levels as well as kidney and vascular function in patients with type 2 diabetes and hypertension. METHODS This was a prospective, randomized, active comparator-controlled trial. Eighty participants with type 2 diabetes and hypertension were randomized to receive 20 mg of olmesartan (N = 40) or 5 mg of amlodipine (N = 40) once daily. The primary endpoint was changes of serum Ang-(1-7) from baseline to week 24. RESULTS Both olmesartan and amlodipine treatment for 24 weeks decreased systolic and diastolic blood pressures significantly by > 18 mmHg and > 8 mmHg, respectively. Serum Ang-(1-7) levels were more significantly increased by olmesartan treatment (25.8 ± 34.5 pg/mL → 46.2 ± 59.4 pg/mL) than by amlodipine treatment (29.2 ± 38.9 pg/mL → 31.7 ± 26.0 pg/mL), resulting in significant between-group differences (P = 0.01). Serum ACE2 levels showed a similar pattern (6.31 ± 0.42 ng/mL → 6.74 ± 0.39 ng/mL by olmesartan treatment vs. 6.43 ± 0.23 ng/mL → 6.61 ± 0.42 ng/mL by amlodipine treatment; P < 0.05). The reduction in albuminuria was significantly associated with the increases in ACE2 and Ang-(1-7) levels (r = - 0.252 and r = - 0.299, respectively). The change in Ang-(1-7) levels was positively associated with improved microvascular function (r = 0.241, P < 0.05). Multivariate regression analyses showed that increases in serum Ang-(1-7) levels were an independent predictor of a reduction in albuminuria. CONCLUSIONS These findings suggest that the beneficial effects of olmesartan on albuminuria may be mediated by increased ACE2 and Ang-(1-7) levels. These novel biomarkers may be therapeutic targets for the prevention and treatment of diabetic kidney disease. TRIAL REGISTRATION ClinicalTrials.gov NCT05189015.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Ji Hye Moon
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea.
| |
Collapse
|
10
|
A Review on COVID-19: Primary Receptor, Endothelial Dysfunction, Related Comorbidities, and Therapeutics. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9843681 DOI: 10.1007/s40995-022-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore, endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease, cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19 patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
Collapse
|
11
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
12
|
View of the Renin-Angiotensin System in Acute Kidney Injury Induced by Renal Ischemia-Reperfusion Injury. J Renin Angiotensin Aldosterone Syst 2022; 2022:9800838. [DOI: 10.1155/2022/9800838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a sequence of complicated events that is defined as a reduction of the blood supply followed by reperfusion. RIRI is the leading cause of acute kidney injury (AKI). Among the diverse mediators that take part in RIRI-induced AKI, the renin-angiotensin system (RAS) plays an important role via conventional (angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R)) and nonconventional (ACE2, Ang 1-7, Ang 1-9, AT2 receptor (AT2R), and Mas receptor (MasR)) axes. RIRI alters the balance of both axes so that RAS can affect RIRI-induced AKI. In overall, the alteration of Ang II/AT1R and AKI by RIRI is important to consider. This review has looked for the effects and interactions of RAS activities during RIRI conditions.
Collapse
|
13
|
Kodani N, Ohsugi M. The patient-centered diabetes management during the COVID-19 pandemic. Glob Health Med 2022; 4:210-215. [PMID: 36119784 PMCID: PMC9420329 DOI: 10.35772/ghm.2022.01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Since December 2019, in the fight against the coronavirus disease 2019 (COVID-19) pandemic, we observed that glycemic control in people with diabetes is easily affected by lifestyle changes. To maintain a good health condition, a patient-centered approach with mental support and close monitoring is required. For these, telemedicine and online continuous glucose monitoring (CGM), are effective systems. Therefore, based on our experience during the two-year period, we reviewed the literature for appropriate actions required for the management of diabetes to prevent COVID-19 infection and avoid unfavorable outcomes in COVID-19 cases. Once infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is a high risk of a poor prognosis in patients with diabetes. Glucocorticoid therapy in severe COVID-19 cases leads to further hyperglycemia. Since good glycemic control has been shown to improve outcomes, strict glycemic control using CGM is recommended. Using CGM data, insulin can be adequately titrated without causing hypoglycemia, and remote data monitoring can reduce the risk of infection for health care professionals, by reducing the frequency of patient contact. Among patients with COVID-19, some are found to have newly-diagnosed diabetes at admission. Those newly diagnosed patients present with a higher risk of poor prognosis compared to those with pre-existing diabetes. Therefore, glycemic status should be evaluated in all patients with COVID-19 admitted to hospitals.
Collapse
Affiliation(s)
- Noriko Kodani
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
- Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Birabaharan M, Kaelber DC, Pettus JH, Smith DM. Risk of new-onset type 2 diabetes in 600 055 people after COVID-19: A cohort study. Diabetes Obes Metab 2022; 24:1176-1179. [PMID: 35112782 PMCID: PMC9035030 DOI: 10.1111/dom.14659] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Morgan Birabaharan
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - David C. Kaelber
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeremy H. Pettus
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Bigdelou B, Sepand MR, Najafikhoshnoo S, Negrete JAT, Sharaf M, Ho JQ, Sullivan I, Chauhan P, Etter M, Shekarian T, Liang O, Hutter G, Esfandiarpour R, Zanganeh S. COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes. Front Immunol 2022; 13:890517. [PMID: 35711466 PMCID: PMC9196863 DOI: 10.3389/fimmu.2022.890517] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated symptoms, named coronavirus disease 2019 (COVID-19), have rapidly spread worldwide, resulting in the declaration of a pandemic. When several countries began enacting quarantine and lockdown policies, the pandemic as it is now known truly began. While most patients have minimal symptoms, approximately 20% of verified subjects are suffering from serious medical consequences. Co-existing diseases, such as cardiovascular disease, cancer, diabetes, and others, have been shown to make patients more vulnerable to severe outcomes from COVID-19 by modulating host-viral interactions and immune responses, causing severe infection and mortality. In this review, we outline the putative signaling pathways at the interface of COVID-19 and several diseases, emphasizing the clinical and molecular implications of concurring diseases in COVID-19 clinical outcomes. As evidence is limited on co-existing diseases and COVID-19, most findings are preliminary, and further research is required for optimal management of patients with comorbidities.
Collapse
Affiliation(s)
- Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Sahar Najafikhoshnoo
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jorge Alfonso Tavares Negrete
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Mohammed Sharaf
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Jim Q Ho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian Sullivan
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Prashant Chauhan
- Institute of Parasitology, Biology Centre Czech Academy of Science, Ceske Budejovice, Czech Republic
| | - Manina Etter
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Tala Shekarian
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Olin Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Gregor Hutter
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Rahim Esfandiarpour
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
16
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
17
|
Xu L, Ho CT, Liu Y, Wu Z, Zhang X. Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Front Nutr 2022; 9:899842. [PMID: 35495940 PMCID: PMC9046984 DOI: 10.3389/fnut.2022.899842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Chi-Tang Ho
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang
| |
Collapse
|
18
|
An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Mol Cell Biochem 2022; 477:1681-1695. [PMID: 35235124 PMCID: PMC8889522 DOI: 10.1007/s11010-022-04396-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023]
Abstract
A significantly high percentage of hospitalized COVID-19 patients with diabetes mellitus (DM) had severe conditions and were admitted to ICU. In this review, we have delineated the plausible molecular mechanisms that could explain why there are increased clinical complications in patients with DM that become critically ill when infected with SARS-CoV2. RNA viruses have been classically implicated in manifestation of new onset diabetes. SARS-CoV2 infection through cytokine storm leads to elevated levels of pro-inflammatory cytokines creating an imbalance in the functioning of T helper cells affecting multiple organs. Inflammation and Th1/Th2 cell imbalance along with Th17 have been associated with DM, which can exacerbate SARS-CoV2 infection severity. ACE-2-Ang-(1-7)-Mas axis positively modulates β-cell and cardiac tissue function and survival. However, ACE-2 receptors dock SARS-CoV2, which internalize and deplete ACE-2 and activate Renin-angiotensin system (RAS) pathway. This induces inflammation promoting insulin resistance that has positive effect on RAS pathway, causes β-cell dysfunction, promotes inflammation and increases the risk of cardiovascular complications. Further, hyperglycemic state could upregulate ACE-2 receptors for viral infection thereby increasing the severity of the diabetic condition. SARS-CoV2 infection in diabetic patients with heart conditions are linked to worse outcomes. SARS-CoV2 can directly affect cardiac tissue or inflammatory response during diabetic condition and worsen the underlying heart conditions.
Collapse
|
19
|
Potential role of Drug Repositioning Strategy (DRS) for management of tauopathy. Life Sci 2022; 291:120267. [PMID: 34974076 DOI: 10.1016/j.lfs.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.
Collapse
|
20
|
Kazakou P, Lambadiari V, Ikonomidis I, Kountouri A, Panagopoulos G, Athanasopoulos S, Korompoki E, Kalomenidis I, Dimopoulos MA, Mitrakou A. Diabetes and COVID-19; A Bidirectional Interplay. Front Endocrinol (Lausanne) 2022; 13:780663. [PMID: 35250853 PMCID: PMC8891603 DOI: 10.3389/fendo.2022.780663] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
There seems to be a bidirectional interplay between Diabetes mellitus (DM) and coronavirus disease 2019 (COVID-19). On the one hand, people with diabetes are at higher risk of fatal or critical care unit-treated COVID-19 as well as COVID-19 related health complications compared to individuals without diabetes. On the other hand, clinical data so far suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may result in metabolic dysregulation and in impaired glucose homeostasis. In addition, emerging data on new onset DM in previously infected with SARS-CoV-2 patients, reinforce the hypothesis of a direct effect of SARS-CoV-2 on glucose metabolism. Attempting to find the culprit, we currently know that the pancreas and the endothelium have been found to express Angiotensin-converting enzyme 2 (ACE2) receptors, the main binding site of the virus. To move from bench to bedside, understanding the effects of COVID-19 on metabolism and glucose homeostasis is crucial to prevent and manage complications related to COVID-19 and support recovering patients. In this article we review the potential underlying pathophysiological mechanisms between COVID-19 and glucose dysregulation as well as the effects of antidiabetic treatment in patients with diabetes and COVID-19.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ignatios Ikonomidis
- Laboratory of Preventive Cardiology, Second Cardiology Department, Attikon University Hospital National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgios Panagopoulos
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Athanasopoulos
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kalomenidis
- 1 Department of Intensive Care, Evangelismos Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Meletios A. Dimopoulos
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Asimina Mitrakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Asimina Mitrakou,
| |
Collapse
|
21
|
Huang G, Liang Q, Wang Y, Qin L, Yang H, Lin L, Yu X. Association of ACE2 gene functional variants with gestational diabetes mellitus risk in a southern Chinese population. Front Endocrinol (Lausanne) 2022; 13:1052906. [PMID: 36531495 PMCID: PMC9752565 DOI: 10.3389/fendo.2022.1052906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To explore the relationship between angiotensin-converting enzyme 2 (ACE2) genetic variants and gestational diabetes mellitus (GDM) in a southern Chinese population. METHODS Potential functional variants (rs2106809, rs6632677, and rs2074192) of ACE2 were selected and genotyped in 566 GDM patients and 710 normal pregnaõncies in Guilin, China. The odds ratio (OR) and its corresponding 95% confidence interval (CI) were used to evaluate the association between genetic variant and GDM risk, and then the false positive report probability, multifactor dimensional reduction (MDR), and bioinformatics tools were used to confirm the significant association in the study. RESULTS After adjusting for age and prepregnancy body mass index, logistic regression analysis showed that ACE2 rs6632677 was significantly associated with a decreased risk of GDM (CC vs. GG: adjusted OR = 0.09, 95% CI: 0.01 - 0.71, P = .023; GC/CC vs. GG: adjusted OR = 0.68, 95% CI = 0.46 - 0.99, P = .048; and CC vs. GG/GC: adjusted OR = 0.09, 95% CI = 0.01 - 0.72, P = .024), whereas rs2074192 was associated with increased GDM risk (TT vs. CC/CT: adjusted OR = 1.38, 95% CI = 1.08 - 1.75, P = .009). Furthermore, we found that rs6632677 interacted with SBP (P interaction = .043) and FPG (P interaction = .021) and rs2074192 interacted with HDL-c (P interaction = .029) and LDL-c (P interaction = .035) to influence the GDM risk of the individual. In the MDR analysis, the rs6632677 was the best one-locus model, and the three-loci model was the best interaction model to predict GDM risk. In addition, functional analysis confirmed that rs2074192 may regulate the splicing process of ACE2 gene. CONCLUSION ACE2 gene variants are significantly associated with the risk of GDM via gene-gene and gene-environment combinations. The rs2074192 C > T affects the splicing of the ACE2 gene, which may be a potential mechanism leading to the changed susceptibility of an individual female during pregnancy to GDM.
Collapse
Affiliation(s)
- Gongchen Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin, China
| | - Qiulian Liang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin, China
| | - Yukun Wang
- Scientific Experiment Center, Guilin Medical University, Guilin, China
| | - Linyuan Qin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin, China
| | - Haili Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin, China
| | - Lin Lin
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Lin Lin, ; Xiangyuan Yu,
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin, China
- *Correspondence: Lin Lin, ; Xiangyuan Yu,
| |
Collapse
|
22
|
Semiz S. SIT1 transporter as a potential novel target in treatment of COVID-19. Biomol Concepts 2021; 12:156-163. [PMID: 34969185 DOI: 10.1515/bmc-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published earlier this year demonstrated the association of the solute carrier SLC6A20 gene with the risk and severity of COVID-19. The SLC6A20 protein product (Sodium-dependent Imino Transporter 1 (SIT1)) is involved in the transport of amino acids, including glycine. Here we summarized the results of recent studies demonstrating the interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 as well as an observed association of SLC6A20 with the risk and traits of Type 2 diabetes (T2D). Recently, it was also proposed that SLC6A20 represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. Ivermectin, as a partial agonist of glycine-gated chloride channels, was also recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors. Furthermore, plasma glycine levels are found to be decreased in diabetic patients. Thus, further clinical trials are warranted to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels in the treatment of COVID-19, particularly for the severe case of disease associated with hyperglycemia, inflammation, and T2D. These findings suggest that SIT1 may potentially represent one of the missing pieces in the complex puzzle observed between these two pandemic diseases and the potential novel target for their efficient treatment.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE, E-mail:
| |
Collapse
|
23
|
Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 2021; 233:e13733. [PMID: 34561952 PMCID: PMC8646749 DOI: 10.1111/apha.13733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023]
Abstract
The molecular link between SARS-CoV-2 infection and susceptibility is not well understood. Nonetheless, a bi-directional relationship between SARS-CoV-2 and diabetes has been proposed. The angiotensin-converting enzyme 2 (ACE2) is considered as the primary protein facilitating SARS-CoV and SARS-CoV-2 attachment and entry into the host cells. Studies suggested that ACE2 is expressed in the endocrine cells of the pancreas including beta cells, in addition to the lungs and other organs; however, its expression in the islets, particularly beta cells, has been met with some contradiction. Importantly, ACE2 plays a crucial role in glucose homoeostasis and insulin secretion by regulating beta cell physiology. Given the ability of SARS-CoV-2 to infect human pluripotent stem cell-derived pancreatic cells in vitro and the presence of SARS-CoV-2 in pancreatic samples from COVID-19 patients strongly hints that SARS-CoV-2 can invade the pancreas and directly cause pancreatic injury and diabetes. However, more studies are required to dissect the underpinning molecular mechanisms triggered in SARS-CoV-2-infected islets that lead to aggravation of diabetes. Regardless, it is important to understand the function of ACE2 in the pancreatic islets to design relevant therapeutic interventions in combatting the effects of SARS-CoV-2 on diabetes pathophysiology. Herein, we detail the function of ACE2 in pancreatic beta cells crucial for regulating insulin sensitivity, secretion, and glucose metabolism. Also, we discuss the potential role played by ACE2 in aiding SARS-COV-2 entry into the pancreas and the possibility of ACE2 cooperation with alternative entry factors as well as how that may be linked to diabetes pathogenesis.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| |
Collapse
|
24
|
Rahman MR, Islam T, Shahjaman M, Islam MR, Lombardo SD, Bramanti P, Ciurleo R, Bramanti A, Tchorbanov A, Fisicaro F, Fagone P, Nicoletti F, Pennisi M. Discovering common pathogenetic processes between COVID-19 and diabetes mellitus by differential gene expression pattern analysis. Brief Bioinform 2021; 22:bbab262. [PMID: 34260684 PMCID: PMC8344483 DOI: 10.1093/bib/bbab262] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the newly discovered coronavirus, SARS-CoV-2. Increased severity of COVID-19 has been observed in patients with diabetes mellitus (DM). This study aimed to identify common transcriptional signatures, regulators and pathways between COVID-19 and DM. We have integrated human whole-genome transcriptomic datasets from COVID-19 and DM, followed by functional assessment with gene ontology (GO) and pathway analyses. In peripheral blood mononuclear cells (PBMCs), among the upregulated differentially expressed genes (DEGs), 32 were found to be commonly modulated in COVID-19 and type 2 diabetes (T2D), while 10 DEGs were commonly downregulated. As regards type 1 diabetes (T1D), 21 DEGs were commonly upregulated, and 29 DEGs were commonly downregulated in COVID-19 and T1D. Moreover, 35 DEGs were commonly upregulated in SARS-CoV-2 infected pancreas organoids and T2D islets, while 14 were commonly downregulated. Several GO terms were found in common between COVID-19 and DM. Prediction of the putative transcription factors involved in the upregulation of genes in COVID-19 and DM identified RELA to be implicated in both PBMCs and pancreas. Here, for the first time, we have characterized the biological processes and pathways commonly dysregulated in COVID-19 and DM, which could be in the next future used for the design of personalized treatment of COVID-19 patients suffering from DM as comorbidity.
Collapse
Affiliation(s)
- Md Rezanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Enayetpur, Sirajganj, Bangladesh
| | - Tania Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shahjaman
- Department of Statistics, Begum Rokeya University, Rangpur, Bangladesh
| | - Md Rafiqul Islam
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| |
Collapse
|
25
|
Kazakou P, Paschou SA, Psaltopoulou T, Gavriatopoulou M, Korompoki E, Stefanaki K, Kanouta F, Kassi GN, Dimopoulos MA, Mitrakou A. Early and late endocrine complications of COVID-19. Endocr Connect 2021; 10:R229-R239. [PMID: 34424853 PMCID: PMC8494407 DOI: 10.1530/ec-21-0184] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023]
Abstract
Endocrine system plays a vital role in controlling human homeostasis. Understanding the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage endocrine disorders before and during hospitalization in COVID-19-infected patients as well as to follow them up properly upon recovery. Many endocrine glands such as pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries have been found to express angiotensin-converting enzyme 2 receptors, the main binding site of the virus. Since the pandemic outbreak, various publications focus on the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse prognosis of the disease in endocrine patients. However, data on endocrine disorders both during the phase of the infection (early complications) and upon recovery (late complications) are scarce. The aim of this review is to identify and discuss early and late endocrine complications of COVID-19. The majority of the available data refer to glucose dysregulation and its reciprocal effect on COVID-19 infection with the main interest focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been also reported. Complications of other endocrine glands are still not clear. Considering the recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, long-term studies are required to evaluate certain effects of COVID-19 on the endocrine glands.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotini Kanouta
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | - Georgia N Kassi
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Asimina Mitrakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Kazakou P, Paschou SA, Psaltopoulou T, Gavriatopoulou M, Korompoki E, Stefanaki K, Kanouta F, Kassi GN, Dimopoulos MA, Mitrakou A. Early and late endocrine complications of COVID-19. Endocr Connect 2021. [PMID: 34424853 DOI: 10.1530/ec-21-0184.pmid:34424853;pmcid:pmc8494407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Endocrine system plays a vital role in controlling human homeostasis. Understanding the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage endocrine disorders before and during hospitalization in COVID-19-infected patients as well as to follow them up properly upon recovery. Many endocrine glands such as pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries have been found to express angiotensin-converting enzyme 2 receptors, the main binding site of the virus. Since the pandemic outbreak, various publications focus on the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse prognosis of the disease in endocrine patients. However, data on endocrine disorders both during the phase of the infection (early complications) and upon recovery (late complications) are scarce. The aim of this review is to identify and discuss early and late endocrine complications of COVID-19. The majority of the available data refer to glucose dysregulation and its reciprocal effect on COVID-19 infection with the main interest focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been also reported. Complications of other endocrine glands are still not clear. Considering the recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, long-term studies are required to evaluate certain effects of COVID-19 on the endocrine glands.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotini Kanouta
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | - Georgia N Kassi
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Asimina Mitrakou
- Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
28
|
Rathi H, Burman V, Datta SK, Rana SV, Mirza AA, Saha S, Kumar R, Naithani M. Review on COVID-19 Etiopathogenesis, Clinical Presentation and Treatment Available with Emphasis on ACE2. Indian J Clin Biochem 2021; 36:3-22. [PMID: 33424145 PMCID: PMC7778574 DOI: 10.1007/s12291-020-00953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, Wuhan city in the Hubei province of China reported for the first time a cluster of patients infected with a novel coronavirus, since then there has been an outburst of this disease across the globe affecting millions of human inhabitants. Severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), is a member of beta coronavirus family which upon exposure caused a highly infectious disease called novel coronavirus disease-2019 (COVID-19). COVID-19, a probably bat originated disease was declared by World Health Organization (WHO) as a global pandemic in March 2020. Since then, despite rigorous global containment and quarantine efforts, the disease has affected nearly 56,261,952 laboratory confirmed human population and caused deaths of over 1,349,506 lives worldwide. Virus passes in majority through respiratory droplets and then enters lung epithelial cells by binding to angiotensin converting enzyme 2 (ACE2) receptor and there it undergoes replication and targeting host cells causing severe pathogenesis. Majority of human population exposed to SARS-CoV-2 having fully functional immune system undergo asymptomatic infection while 5-10% are symptomatic and only 1-2% are critically affected and requires ventilation support. Older people or people with co-morbidities are severely affected by COVID-19. These categories of patients also display cytokine storm due to dysfunctional immune response which brutally destroys the affected organs and may lead to death in some. Real time PCR is still considered as standard method of diagnosis along with other serology, radiological and biochemical investigations. Till date, no specific validated medication is available for the treatment of COVID-19 patients. Thus, this review provides detailed knowledge about the different landscapes of disease incidence, etiopathogenesis, involvement of various organs, diagnostic criteria's and treatment guidelines followed for management of COVID-19 infection since its inception. In conclusion, extensive research to recognize novel pathways and their cross talk to combat this virus in precarious settings is our future positive hope.
Collapse
Affiliation(s)
- Himani Rathi
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Vishakha Burman
- Department of Biotechnology, SVBP University of Agriculture and Technology, Meerut, Uttar Pradesh India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Satya Vati Rana
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Anissa Atif Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Raman Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| |
Collapse
|
29
|
Abstract
Initial studies found increased severity of coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in patients with diabetes mellitus. Furthermore, COVID-19 might also predispose infected individuals to hyperglycaemia. Interacting with other risk factors, hyperglycaemia might modulate immune and inflammatory responses, thus predisposing patients to severe COVID-19 and possible lethal outcomes. Angiotensin-converting enzyme 2 (ACE2), which is part of the renin-angiotensin-aldosterone system (RAAS), is the main entry receptor for SARS-CoV-2; although dipeptidyl peptidase 4 (DPP4) might also act as a binding target. Preliminary data, however, do not suggest a notable effect of glucose-lowering DPP4 inhibitors on SARS-CoV-2 susceptibility. Owing to their pharmacological characteristics, sodium-glucose cotransporter 2 (SGLT2) inhibitors might cause adverse effects in patients with COVID-19 and so cannot be recommended. Currently, insulin should be the main approach to the control of acute glycaemia. Most available evidence does not distinguish between the major types of diabetes mellitus and is related to type 2 diabetes mellitus owing to its high prevalence. However, some limited evidence is now available on type 1 diabetes mellitus and COVID-19. Most of these conclusions are preliminary, and further investigation of the optimal management in patients with diabetes mellitus is warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef-Hospital (Ruhr-Universität Bochum), Bochum, Germany.
| |
Collapse
|
30
|
Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020; 9:20. [PMID: 33344064 PMCID: PMC7735952 DOI: 10.1167/tvst.9.13.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.
Collapse
Affiliation(s)
- Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kang Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Du
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shengquan Liao
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhibing Liang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Physiology & Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157:104833. [PMID: 32302706 PMCID: PMC7194807 DOI: 10.1016/j.phrs.2020.104833] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) is crucial for the physiology and pathology of all the organs. Angiotensin-converting enzyme 2 (ACE2) maintains the homeostasis of RAS as a negative regulator. Recently, ACE2 was identified as the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus that is causing the pandemic of Coronavirus disease 2019 (COVID-19). Since SARS-CoV-2 must bind with ACE2 before entering the host cells in humans, the distribution and expression of ACE2 may be critical for the target organ of the SARS-CoV-2 infection. Moreover, accumulating evidence has demonstrated the implication of ACE2 in the pathological progression in tissue injury and several chronic diseases, ACE2 may also be essential in the progression and clinical outcomes of COVID-19. Therefore, we summarized the expression and activity of ACE2 in various physiological and pathological conditions, and discussed its potential implication in the susceptibility of SARS-CoV-2 infection and the progression and prognosis of COVID-19 patients in the current review.
Collapse
Affiliation(s)
- Yanwei Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China; School of Medicine, Southeast University, Nanjing, 210000, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Li Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
32
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
33
|
Horne JR, Vohl MC. Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. Am J Physiol Endocrinol Metab 2020; 318:E830-E833. [PMID: 32310688 PMCID: PMC7215091 DOI: 10.1152/ajpendo.00150.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The angiotensin converting enzyme-2 (ACE2) cellular receptor is responsible for the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thus impacting the entrance and clearance of the virus. Studies demonstrate that upregulation of ACE2 has a protective effect on SARS-CoV-2 illness severity. Moreover, animal studies demonstrate that dietary intake can modulate ACE2 gene expression and function. A high intake of resveratrol may have a protective role, upregulating ACE2, whereas a high intake of dietary fat may have a detrimental role, downregulating ACE2. As such, we postulate on the biological plausibility of interactions between dietary fat and/or resveratrol and ACE2 gene variations in the modulation of SARS-CoV-2 illness severity. We call to action the research community to test this plausible interaction in a sample of human subjects.
Collapse
Affiliation(s)
- Justine R Horne
- Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
34
|
Yang M, Ma X, Xuan X, Deng H, Chen Q, Yuan L. Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Front Pharmacol 2020; 11:432. [PMID: 32322207 PMCID: PMC7156971 DOI: 10.3389/fphar.2020.00432] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and represents a potential therapeutic target for NAFLD. Glucagon-like peptide-1 (GLP-1) signaling has been shown to regulate the RAS within various local tissues. In this study, we aimed to investigate the functional relationship between GLP-1 and the local RAS in the liver during NAFLD. Wild-type and ACE2 knockout mice were used to establish a high-fat-induced NAFLD model. After the mice were treated with liraglutide (a GLP-1 analogue) for 4 weeks, the key RAS component genes were up-regulated in the liver of NAFLD mice. Liraglutide treatment regulated the RAS balance, preventing a reduction in fatty acid oxidation gene expression and increasing gluconeogenesis and the expression of inflammation-related genes caused by NAFLD, which were impaired in ACE2 knockout mice. Liraglutide-treated HepG2 cells exhibited activation of the ACE2/Ang1-7/Mas axis, increased fatty acid oxidation gene expression, and decreased inflammation, which could be reversed by A779 and AngII. These results indicate that the local RAS in the liver becomes overactivated in response to NAFLD. Moreover, ACE2 knockout increases the severity of liver steatosis. Liraglutide has a negative and antagonistic effect on the ACE/AngII/AT1R axis, a positive impact on the ACE2/Ang1-7/Mas axis, and is mediated through the PI3K/AKT pathway. This may represent a potential new mechanism by which liraglutide improves NAFLD.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Ma
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Xuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Le Y, Wei R, Yang K, Lang S, Gu L, Liu J, Hong T, Yang J. Liraglutide ameliorates palmitate-induced oxidative injury in islet microvascular endothelial cells through GLP-1 receptor/PKA and GTPCH1/eNOS signaling pathways. Peptides 2020; 124:170212. [PMID: 31770577 DOI: 10.1016/j.peptides.2019.170212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
Abstract
In type 2 diabetes, lipotoxicity damages islet microvascular endothelial cells (IMECs), leading to pancreatic islet β cell dysfunction directly or indirectly. Glucagon-like peptide-1 (GLP-1) and its analogs have beneficial roles in endothelial cells. However, the protective effects of GLP-1 agents on IMECs and their potential mechanism remained obscure. In this study, exposure of MS-1 (a cell line derived from mouse IMECs) to different concentrations of palmitic acid (PA) was used to establish an injury model. The cells exposed to PA (0.25 mmol/L) were treated with a GLP-1 analog liraglutide (3, 10, 30, and 100 nmol/L). Reactive oxygen species (ROS) generation, apoptosis-related protein level, and endothelin-1 production were detected. The protein levels of signaling molecules were analyzed and specific inhibitors or blockers were used to identify involvement of signaling pathways in the effects of liraglutide. Results showed that PA significantly increased ROS generation and the levels of pro-apoptotic protein Bax, and decreased the levels of anti-apoptotic protein Bcl-2 and the mRNA expression and secretion of endothelin-1. Meanwhile, PA downregulated the protein levels of GLP-1 receptor (GLP-1R), phosphorylated protein kinase A (PKA), guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1), and endothelial nitric oxide synthase (eNOS). Furthermore, liraglutide ameliorated all these effects of PA in a dose-dependent manner. Importantly, GLP-1R antagonist exendin (9-39), PKA inhibitor H89, GTPCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine, or NOS inhibitor N-nitro-l-arginine-methyl ester abolished the liraglutide-mediated amelioration in PA-impaired MS-1 cells. In conclusion, liraglutide ameliorates the PA-induced oxidative stress, apoptosis, and endothelin-1 secretion dysfunction in mouse IMECs through GLP-1R/PKA and GTPCH1/eNOS signaling pathways.
Collapse
Affiliation(s)
- Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
36
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
37
|
Kuipers A, Moll GN, Wagner E, Franklin R. Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models. Peptides 2019; 112:78-84. [PMID: 30529303 DOI: 10.1016/j.peptides.2018.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Native angiotensin-(1-7) exerts many therapeutic effects. However, it is rapidly degraded by ACE and other peptidases. This drawback is largely eliminated for lanthionine-stabilized angiotensin-(1-7), termed cAng-(1-7), which is fully resistant to ACE and has strongly increased resistance to other peptidases. Goal of the present study was to test whether cAng-(1-7) has therapeutic activity in diabetes mouse models: in a multiple low dose streptozotocin-induced model of type I diabetes and / or in a db/db model of type II diabetes. In the type I diabetes model cAng-(1-7) caused in an increase in the insulin level of 133% in week 4 (p < 0.001) compared to vehicle, and in the type II diabetes model an increase of 55% of the insulin level in week 8 (p < 0.05) compared to vehicle. cAng-(1-7) reduced blood glucose levels in the type I model by 37% at day 22 (p < 0.001) and in the type II diabetes model by 17% at day 63 of treatment (p < 0.001) and in an oral glucose tolerance test in a type II diabetes model, by 17% at week 4 (p < 0.01). cAng-(1-7) also caused a reduction of glycated hemoglobin levels in the type II diabetes model of 21% in week 6 (p < 0,001). These data are consistent with therapeutic potential of cAng-(1-7) in type I and II diabetes.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands
| | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| | - Elizabeth Wagner
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| | - Rick Franklin
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| |
Collapse
|
38
|
Santos RAS. Genetic Models. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7120897 DOI: 10.1007/978-3-030-22696-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically altered rat and mouse models have been instrumental in the functional analysis of genes in a physiological context. In particular, studies on the renin-angiotensin system (RAS) have profited from this technology in the past. In this review, we summarize the existing animal models for the protective axis of the RAS consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7)(Ang-(1-7), and its receptor Mas. With the help of models with altered expression of the components of this axis in the brain and cardiovascular organs, its physiological and pathophysiological functions have been elucidated. Thus, novel opportunities for therapeutic interventions in cardiovascular diseases were revealed targeting ACE2 or Mas.
Collapse
|
39
|
Graus-Nunes F, Souza-Mello V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomed Pharmacother 2018; 109:639-645. [PMID: 30404071 DOI: 10.1016/j.biopha.2018.10.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
Local renin-angiotensin system (RAS) in the pancreas is linked to the modulation of glucose-stimulated insulin secretion (GSIS) in beta cells and insulin sensitivity in target tissues, emerging as a promising tool in the prevention and/or treatment of obesity, diabetes, and systemic arterial hypertension. Insulin resistance alters pancreatic islet cell distribution and morphology and hypertrophied islets exhibit upregulated angiotensin II type 1 receptor, which drives oxidative stress, apoptosis, and fibrosis, configuring beta cell dysfunction and diminishing islet lifespan. Pharmacological modulation of RAS has shown beneficial effects in diet-induced obesity model, mainly related to the translational potential that angiotensin receptor blockers and ECA2/ANG (1-7)/MAS receptor axis modulation have when it comes to islet preservation and type 2 diabetes prevention and/or treatment. This review describes the existing evidence for different approaches to blocking RAS elements in the management of insulin resistance and diabetes and focuses on islet remodeling and GSIS in rodents and humans.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Xuan X, Gao F, Ma X, Huang C, Wang Y, Deng H, Wang S, Li W, Yuan L. Activation of ACE2/angiotensin (1-7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model. Metabolism 2018; 81:83-96. [PMID: 29225087 DOI: 10.1016/j.metabol.2017.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Angiotensin-converting enzyme 2 (ACE2) has been identified in pancreatic islets and can preserve β cells. In this study, we aimed to examine the possible role of ACE2 and its end product, angiotensin 1-7 (A1-7), in reducing β cell dedifferentiation during metabolic stress. METHODS First, a lineage-tracing experiment was performed to track β cells in mice fed a high-fat diet (HFD). Second, the ACE2/A1-7 axis was evaluated in the HFD mouse model. Intraperitoneal glucose tolerance tests (IPGTTs) and intraperitoneal insulin tolerance tests (IPITTs) were conducted. Phenotypic changes in β cells were detected by immunohistochemistry and quantitative real-time PCR. Pancreatic sections were immunostained for vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Finally, the effects of the ACE2/A1-7 axis were explored in isolated mouse islets exposed to different concentrations of glucose. Glucose-stimulated insulin release and levels of insulin mRNA and OCT4 mRNA were measured. RESULTS Pancreatic β cell dedifferentiation occurred both in vitro and in vivo in response to metabolic stress and was accompanied by ACE2 reduction. HFD-induced insulin resistance and glucose intolerance were exacerbated in ACE2-knockout (ACE2KO) mice but were alleviated by exogenous A1-7 in C57BL/6J mice. Approximately 20% of β cells were dedifferentiated in ACE2KO mice fed a standard rodent chow diet (SD). A higher percentage of dedifferentiated β cells was detected in ACE2KO mice than in wild-type (WT) mice under HFD conditions. In contrast, the administration of A1-7 alleviated HFD-induced β cell dedifferentiation in C57BL/6J mice. Moreover, the exogenous injection of A1-7 improved microcirculation in islets and decreased the production of iNOS in islets of C57BL/6J mice fed an HFD. Additionally, ACE2 was found to be mainly expressed in α cells of mice, while Mas, the receptor of A1-7, was distributed in β cells. CONCLUSIONS Overall, this study is the first to demonstrate that the ACE2/A1-7/Mas axis may be one of the intra-islet paracrine mechanisms of communication between α and β cells. Enhancing the ACE2/A1-7 axis exerts a protective effect by ameliorating β cell dedifferentiation, and this effect might be partially mediated through improvements in islet microcirculation and suppression of islet iNOS.
Collapse
Affiliation(s)
- Xiuping Xuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyi Ma
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenghu Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongjun Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencun Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
41
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
42
|
Wang Y, Wang G, Cui L, Liu R, Xiao H, Yin C. Angiotensin 1-7 ameliorates caerulein-induced inflammation in pancreatic acinar cells by downregulating Toll-like receptor 4/nuclear factor-κB expression. Mol Med Rep 2017; 17:3511-3518. [PMID: 29286117 PMCID: PMC5802148 DOI: 10.3892/mmr.2017.8354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the effects of angiotensin (Ang) 1–7 on caerulein (CAE)-stimulated nuclear factor (NF)-κB, Toll-like receptor (TLR4) and cytokine expression using pancreatic acinar AR42J cells. AR42J cells were treated with 10 nmol/l CAE for various durations. In addition, cells were pretreated with various concentrations of Ang 1–7 or A779, a specific antagonist of Ang 1–7, and were stimulated with CAE for 12 h. Control cells were treated with vehicle (F-12K complete medium with 2% fetal bovine serum, 10 U/ml penicillin and 100 mg/ml streptomycin) alone. The mRNA and protein expression levels of TLR4, NF-κB, interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α (TNF-α) were determined by western blotting, immunofluorescence and reverse transcription-quantitative polymerase chain reaction. CAE treatment stimulated TLR4 and NF-κB expression within AR42J cells. Immunofluorescence indicated that TLR4 was expressed on the membranes and in the cytoplasm of AR42J cells, whereas NF-κB expression accumulated in the cytoplasm and nuclei. CAE-induced expression of TLR4 and NF-κB within AR42J cells was abrogated by 10−5 mmol/l Ang 1–7; however, TLR4 and NF-κB expression was enhanced with the addition of A779, particularly 10−5 mmol/l. In addition, treatment with 10−6 and 10−5 mmol/l Ang 1–7 significantly mitigated CAE-induced expression of IL-6, IL-8 and TNF-α, whereas it enhanced IL-10 expression. Conversely, A779 treatment enhanced the CAE-induced expression of IL-6, IL-8 and TNF-α, and reduced IL-10 expression in AR42J cells. In conclusion, these results suggested that Ang 1–7 may attenuate CAE-induced inflammation by downregulating TLR4, NF-κB and proinflammatory cytokine expression within AR42J cells. Therefore, Ang 1–7 may exert protective effects against the pathological progression of AP in a cell model of AP induced by CAE and may be considered in the development of treatments for this disease.
Collapse
Affiliation(s)
- Yan Wang
- Department of Emergency, Beijing Friendship Hospital, Beijing 100050, P.R. China
| | - Guoxing Wang
- Department of Emergency, Beijing Friendship Hospital, Beijing 100050, P.R. China
| | - Lijian Cui
- Department of Emergency, Beijing Chao‑Yang Hospital, Beijing 100020, P.R. China
| | - Ruixia Liu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Hongli Xiao
- Department of Emergency, Beijing Friendship Hospital, Beijing 100050, P.R. China
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| |
Collapse
|
43
|
Brar GS, Barrow BM, Watson M, Griesbach R, Choung E, Welch A, Ruzsicska B, Raleigh DP, Zraika S. Neprilysin Is Required for Angiotensin-(1-7)'s Ability to Enhance Insulin Secretion via Its Proteolytic Activity to Generate Angiotensin-(1-2). Diabetes 2017; 66:2201-2212. [PMID: 28559246 PMCID: PMC5521860 DOI: 10.2337/db16-1318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve β-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1-7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1-7)-mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1-7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1-7) and neprilysin-derived degradation products angiotensin-(1-4), angiotensin-(5-7), and angiotensin-(3-4) failed to enhance GSIS. Conversely, angiotensin-(1-2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein-coupled receptor (GPCR) MasR, angiotensin-(1-2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1-7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1-7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1-7) compounds and neprilysin inhibitors as therapies for diabetes.
Collapse
Affiliation(s)
- Gurkirat S Brar
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | | | - Matthew Watson
- Department of Chemistry, Stony Brook University, Stony Brook, NY
| | - Ryan Griesbach
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Edwina Choung
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Andrew Welch
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Bela Ruzsicska
- Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
44
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
45
|
Chodavarapu H, Chhabra KH, Xia H, Shenoy V, Yue X, Lazartigues E. High-fat diet-induced glucose dysregulation is independent of changes in islet ACE2 in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1223-R1233. [PMID: 27806985 DOI: 10.1152/ajpregu.00362.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
While restoration of ACE2 activity in the pancreas leads to improvement of glycemia in experimental models of Type 2 diabetes, global deficiency in ACE2 disrupts β-cell function and impairs glucose tolerance in mice, demonstrating the physiological role of ACE2 in glucose homeostasis. Although the contribution of pancreatic ACE2 to glucose regulation has been demonstrated in genetic models of diabetes and in models with overexpression of the renin-angiotensin system (RAS), it is unclear whether islet ACE2 is involved in glycemic control in common models of human Type 2 diabetes. To determine whether diet-induced diabetes deregulates glucose homeostasis via reduction of ACE2 in the pancreatic islets, wild-type (WT) and ACE2 knockout (KO) male mice were fed a high-fat diet (HFD) for 16 wk. ACE2 KO mice were more susceptible than WT mice to HFD-mediated glycemic dysregulation. Islet ACE2 activity and expression of various genes, including ANG II type 1a receptor (mAT1aR) were then assessed. Surprisingly, we observed no change in islet ACE2 activity and expression despite local RAS overactivity, indicated by an upregulation of mAT1aR expression. Despite a predominant expression in islet α-cells, further investigation highlighted a minor role for ACE2 on glucagon expression. Further, pancreatic ACE2 gene therapy improved glycemia in HFD-fed WT mice, leading to enhanced glucose-stimulated insulin secretion, reduced pancreatic ANG II levels, fibrosis, and ADAM17 activity. Altogether, our study demonstrates that HFD feeding increases RAS activity and mediates glycemic dysregulation likely through loss of ACE2 present outside the islets but independently of changes in islet ACE2.
Collapse
Affiliation(s)
- Harshita Chodavarapu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kavaljit H Chhabra
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Vinayak Shenoy
- Department of Pharmacology, California Health Sciences University, Clovis, California; and
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| |
Collapse
|
46
|
Kibel A. Could angiotensin-(1-7) be connected with improvement of microvascular function in diabetic patients? Angiotensin-(1-7) iontophoresis may provide the answer. Med Hypotheses 2016; 93:16-20. [PMID: 27372850 DOI: 10.1016/j.mehy.2016.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus, a metabolic disorder with significant global health care burden, causes chronic microvascular and macrovascular complications that still comprise a therapeutic challenge. Angiotensin-(1-7), a heptapeptide with vasodilatory properties, has been found to restore vascular reactivity and endothelial cell function, mostly in experiments on larger isolated animal vessels and in cell cultures. The presented hypothesis suggests that angiotensin-(1-7) might have beneficial effects on microvascular function that is damaged in diabetic patients, alleviating endothelial dysfunction and increasing microvascular reactivity to various vasoactive agents in diabetes. It is further proposed that iontophoresis with angiotensin-(1-7) might be used to explore this potential beneficial effect, as well as provide a possible future therapeutic delivery method for angiotensin-(1-7). Since other peptides and proteins have been previously tested and used in iontophoretic transdermal delivery, it is plausible that angiotensin-(1-7) would be a suitable candidate for transdermal iontophoretic application for research (and potentially therapeutic) purposes. If confirmed, the delineated hypothesis would have immense implications for more effective care of diabetic patients, as well as for better understanding of microcirculatory pathophysiological mechanisms in diabetes.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular Diseases, Internal Medicine Clinic, Osijek University Hospital, Croatia; Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, J.Huttlera 4, 31000 Osijek, Croatia.
| |
Collapse
|
47
|
He J, Yang Z, Yang H, Wang L, Wu H, Fan Y, Wang W, Fan X, Li X. Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus. Peptides 2015; 64:49-54. [PMID: 25576844 DOI: 10.1016/j.peptides.2014.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to determine the antidiabetic activity of Ang-(1-7), an important component of the renin-angiotensin system, in a rat model of streptozotocin (STZ)-induced type 2 diabetes mellitus (DM). A total of 36 male Wistar rats were randomly divided into 3 groups: control group fed standard laboratory diet, DM group fed high-fat diet and injected with STZ, and Ang-(1-7) group receiving injection of STZ followed by Ang-(1-7) treatment. Body weight, blood glucose levels, fasting serum Ang II and insulin levels, and homeostasis model assessment of insulin resistance (HOMA-IR) were measured. The pancreas was collected for histological examination and gene expression analysis. Notably, the Ang-(1-7) group showed a significant decrease in fasting blood glucose and serum Ang II levels and HOMA-IR values and increase in fasting serum insulin levels. Pancreatic β cells in the control and Ang-(1-7) groups were normally distributed in the center of pancreatic islets with large clear nuclei. In contrast, pancreatic β cells in the DM group had a marked shrinkage of the cytoplasm and condensation of nuclear chromatin. Ang-(1-7) treatment significantly facilitated insulin production by β cells in diabetic rats. The DM-associated elevation of inducible nitric oxide synthase (iNOS), caspase-3, caspase-9, caspase-8, and Bax and reduction of Bcl-2 was significantly reversed by Ang-(1-7) treatment. Taken together, Ang-(1-7) protects against STZ-induced DM through improvement of insulin resistance, insulin secretion, and pancreatic β cell survival, which is associated with reduction of iNOS expression and alteration of the Bcl-2 family.
Collapse
Affiliation(s)
- Junhua He
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Zhiming Yang
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiyu Yang
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Wang
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huilu Wu
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunjuan Fan
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wang
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Fan
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xing Li
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|