1
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
2
|
Jo S, Seo M, Nguyen TH, Cha JW, An YJ, Park S. Biosynthesis-Encoded Lipogenic Acetyl-CoA Measurement Using NMR Reveals Glucose-Driven Lipogenesis and Glutamine's Alternative Roles in Kidney Cancer. J Am Chem Soc 2024; 146:33753-33762. [PMID: 39611721 DOI: 10.1021/jacs.4c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Fatty acid de novo synthesis (FADNS) is a critical process in lipogenesis that is characteristically altered in clear cell renal cell carcinoma (ccRCC), which is the major type of kidney cancer. An important challenge in studying the FADNS process has been the accurate measurement of cytosolic lipogenic acetyl-CoA (AcCoA), the precursor in FADNS, due to its compartmentalization within cells. Here, we describe a novel NMR-based method to decode the isotopic enrichment of lipogenic AcCoA, which, as we demonstrated, is encoded in the simple signal ratios of the geminal methyl groups of lanosterol during its biosynthesis. The approach was validated based on the independence of the tracer enrichment and species along with the expected FADNS modulation using differentially enriched tracers and a well-studied drug. Application of this technique to 786-O ccRCC cells showed that glucose may serve as a major carbon source for lipogenic AcCoA in FADNS at physiological nutrient concentrations, at odds with previous studies that indicated glutamine's dominant role through reductive carboxylation under higher nutrient conditions. Further investigation into glutamine's alternative roles in ccRCC cells suggested its major involvement in the bioenergetic TCA cycle, pyrimidine synthesis, and glutathione synthesis, which is also critical in ccRCC growth. The glutamine-dependent glutathione synthesis was also suggested as a possible metabolic vulnerability compared to normal kidney cells using a glutathione synthesis inhibitor. The current study provides a simple tool for studying an important aspect of lipid metabolism and suggests translational implications for targeting glucose-driven lipogenesis and glutamine-supported glutathione synthesis in ccRCC.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Munjun Seo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Thi Ha Nguyen
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jin Wook Cha
- KIST Gangneung Institute of Natural Products, Natural Product Drug Development Division, Center for Natural Product Systems Biology, Gangneung 25451, Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
3
|
Kawaguchi K, Kohashi K, Mori T, Yamamoto H, Iwasaki T, Kinoshita I, Susuki Y, Furukawa H, Endo M, Matsumoto Y, Nakashima Y, Oda Y. Prognostic implications of the immunohistochemical expression of perilipin 1 and adipophilin in high-grade liposarcoma. J Clin Pathol 2024; 77:676-682. [PMID: 37258253 DOI: 10.1136/jcp-2023-208814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
AIMS Liposarcoma is a malignant soft tissue tumour with adipocytic differentiation. Dedifferentiated liposarcoma (DDLS) and myxoid liposarcoma (MLS) are classified as high-grade liposarcomas. Lipid droplet-associated protein (also known as perilipin 1 (PLIN1)) is the predominant perilipin and has utility as a specific marker of adipogenic differentiation. Adipose differentiation-related protein (also known as adipophilin (ADRP)) is ubiquitously expressed in a range of tissues. High ADRP expression is reportedly a poor prognostic factor in several cancer types. However, no previous studies have examined the association between PLIN1 or ADRP expression and prognosis in sarcoma. This study therefore aimed to evaluate the association between PLIN1 or ADRP expression and prognosis in liposarcoma. METHODS In total, 97 primary resection specimens (53 MLS and 44 DDLS) were examined in this study. PLIN1 and ADRP expression was evaluated by immunohistochemistry. Survival analyses were performed for MLS and DDLS. RESULTS Of the 53 MLS specimens, 15 (28.3%) exhibited high PLIN1 expression. PLIN1 expression was not observed in DDLS specimens. High PLIN1 expression was significantly associated with increased disease-free survival (DFS) among patients with MLS (p=0.045). Distinct ADRP expression was observed in 13 of 53 (24.5%) MLS specimens and 5 of 44 (11.4%) DDLS specimens. High ADRP expression was associated with shorter overall survival (OS) in MLS (p=0.042) and DFS and shorter OS in DDLS (p=0.024 and p<0.001, respectively). CONCLUSIONS PLIN1 and ADRP expression is associated with poor prognosis in high-grade liposarcoma.
Collapse
Affiliation(s)
- Kengo Kawaguchi
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Taro Mori
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | | | - Takeshi Iwasaki
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Izumi Kinoshita
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Yosuke Susuki
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Hiroshi Furukawa
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | | | | | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Cardaci TD, VanderVeen BN, Huss AR, Bullard BM, Velázquez KT, Frizzell N, Carson JA, Price RL, Murphy EA. Decreased skeletal muscle intramyocellular lipid droplet-mitochondrial contact contributes to myosteatosis in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C684-C697. [PMID: 39010842 PMCID: PMC11427022 DOI: 10.1152/ajpcell.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Alexander R Huss
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Department of Veterans Affairs Health Care System, Columbia, South Carolina, United States
| | - Norma Frizzell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - James A Carson
- Department of Kinesiology and Sports Management, JL Huffines Institute for Sports Medicine & Human Performance, Texas A&M University, College Station, Texas, United States
| | - Robert L Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| |
Collapse
|
5
|
Maimaitiyiming A, An H, Xing C, Li X, Li Z, Bai J, Luo C, Zhuo T, Huang X, Maimaiti A, Aikemu A, Wang Y. Machine learning-driven mast cell gene signatures for prognostic and therapeutic prediction in prostate cancer. Heliyon 2024; 10:e35157. [PMID: 39170129 PMCID: PMC11336432 DOI: 10.1016/j.heliyon.2024.e35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background The role of Mast cells has not been thoroughly explored in the context of prostate cancer's (PCA) unpredictable prognosis and mixed immunotherapy outcomes. Our research aims to employs a comprehensive computational methodology to evaluate Mast cell marker gene signatures (MCMGS) derived from a global cohort of 1091 PCA patients. This approach is designed to identify a robust biomarker to assist in prognosis and predicting responses to immunotherapy. Methods This study initially identified mast cell-associated biomarkers from prostate adenocarcinoma (PRAD) patients across six international cohorts. We employed a variety of machine learning techniques, including Random Forest, Support Vector Machine (SVM), Lasso regression, and the Cox Proportional Hazards Model, to develop an effective MCMGS from candidate genes. Subsequently, an immunological assessment of MCMGS was conducted to provide new insights into the evaluation of immunotherapy responses and prognostic assessments. Additionally, we utilized Gene Set Enrichment Analysis (GSEA) and pathway analysis to explore the biological pathways and mechanisms associated with MCMGS. Results MCMGS incorporated 13 marker genes and was successful in segregating patients into distinct high- and low-risk categories. Prognostic efficacy was confirmed by survival analysis incorporating MCMGS scores, alongside clinical parameters such as age, T stage, and Gleason scores. High MCMGS scores were correlated with upregulated pathways in fatty acid metabolism and β-alanine metabolism, while low scores correlated with DNA repair mechanisms, homologous recombination, and cell cycle progression. Patients classified as low-risk displayed increased sensitivity to drugs, indicating the utility of MCMGS in forecasting responses to immune checkpoint inhibitors. Conclusion The combination of MCMGS with a robust machine learning methodology demonstrates considerable promise in guiding personalized risk stratification and informing therapeutic decisions for patients with PCA.
Collapse
Affiliation(s)
- Abudukeyoumu Maimaitiyiming
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Chen Xing
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Xiaodong Li
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Zhao Li
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junbo Bai
- Department of Pediatric Urology, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Luo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tao Zhuo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Huang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aierpati Maimaiti
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Yujie Wang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| |
Collapse
|
6
|
Pagliari F, Jansen J, Knoll J, Hanley R, Seco J, Tirinato L. Cancer radioresistance is characterized by a differential lipid droplet content along the cell cycle. Cell Div 2024; 19:14. [PMID: 38643120 PMCID: PMC11031927 DOI: 10.1186/s13008-024-00116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines. RESULTS Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern. CONCLUSIONS In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Rachel Hanley
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany.
| | - Luca Tirinato
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy.
| |
Collapse
|
7
|
Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, Li N, Zhou L, Yang Y, Wang L, Wang L, Yang X, Lei Y, Deng C, Li Y, Deng Z, Ding Y, Kuang Y, Yao Z, Xun Y, Li F, Li H, Hu J, Liu Z, Wang T, Hao Y, Jiao X, Guan W, Tao Z, Ren S, Chen K. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat Genet 2024; 56:442-457. [PMID: 38361033 PMCID: PMC10937392 DOI: 10.1038/s41588-024-01662-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Li
- Shanghai Luming Biotech, Shanghai, China
| | - Nisha Li
- Shanghai Luming Biotech, Shanghai, China
- Shanghai OE Biotech, Shanghai, China
| | - Lijie Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liping Wang
- Department of Pathology, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchun Kuang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Philadelphia, PA, USA
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shancheng Ren
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Han J, Itoh T, Shioya A, Sakurai M, Oyama T, Kumagai M, Takamura H, Okuro M, Mukai T, Kitakata H, Inagaki M, Higashi M, Guo X, Yamada S. The combination of the low immunohistochemical expression of peroxiredoxin 4 and perilipin 2 predicts longer survival in pancreatic ductal adenocarcinoma with peroxiredoxin 4 possibly playing a main role. Histol Histopathol 2023; 38:1415-1427. [PMID: 37787446 DOI: 10.14670/hh-18-666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Therefore, indicators that can be used for the early prediction of the prognosis of PDAC are needed. Peroxiredoxin (PRDX) 4 is a secretion-type antioxidant enzyme located in the cytoplasmic endoplasmic reticulum. Recent studies have reported that it is closely related to the development and prognosis of many types of cancer. Perilipin (PLIN) 2 is a lipid droplet coating protein. The high expression of PLIN2 is known to be an indicator of some types of cancer and oxidative stress management. It is highly suggestive of the interplay between PRDX4 and PLIN2 to some degree. In this study, we collected 101 patients' clinical data and paraffin-embedded specimens with PDAC and analyzed them with immunohistochemical staining of PRDX4 and PLIN2. We found that the low expression of PRDX4 predicts longer survival and a better clinical condition in PDAC patients. Moreover, when the low expression of PRDX4 is combined with the low expression of PLIN2, the 3-year survival is significantly improved. Univariate and multivariate Cox proportional hazard analyses showed that the PRDX4 expression in PDAC was an independent prognostic factor for survival. Taken together, between PRDX4 and PLIN2, PRDX4 plays a main role in prognosis and has the potential to become a clinical prognostic indicator of PDAC.
Collapse
Affiliation(s)
- Jia Han
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan.
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Tohru Itoh
- The Director Laboratory, Kanazawa Medical University Hospital, Ishikawa, Japan
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, Japan
| | - Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Ishikawa, Japan
- Health Evaluation Center, Kanazawa Medical University, Ishikawa, Japan
| | - Takeru Oyama
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Motona Kumagai
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
- Department of Pathology II, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroyuki Takamura
- Department of Surgical Oncology, Kanazawa Medical University, Ishikawa, Japan
| | - Masashi Okuro
- Department of Geriatric Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Tsuyoshi Mukai
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, Japan
| | - Hidekazu Kitakata
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, Japan
| | - Masaru Inagaki
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
- Research Center, Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| |
Collapse
|
9
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Methylation-related genes involved in renal carcinoma progression. Front Genet 2023; 14:1225158. [PMID: 37693315 PMCID: PMC10486271 DOI: 10.3389/fgene.2023.1225158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Huang J, Chen X, Dai L, Xu J, Xiao M, Ruan Y. Association analysis of PLIN2 gene polymorphisms and lambing performance in Qianbei Ma goats. Reprod Domest Anim 2023; 58:253-262. [PMID: 36254397 DOI: 10.1111/rda.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022]
Abstract
Qianbei Ma goats are one of the three most valued local goat breeds in Guizhou, China; furthermore, it has lower litter size performance. The purpose of this study was to explore the correlation between SNP (single-nucleotide polymorphisms) of PLIN2 gene and lambing performance. The bioinformatics analysis, DNA sequencing, RT-qPCR and correlation analysis methods were used to analyse the evolutionary relationship of PLIN2 protein in 13 species, to detect the expression pattern of PLIN2 gene in the gonad axis of Qianbei sheep, to explore the dominant genotype of PLIN2 related to lambing traits and to screen molecular markers related to lambing performance to guide the breeding of Qianbei Ma goats. Results showed that the Qianbei Ma goat PLIN2 protein had the closest genetic relationship with sheep and the furthest from mice, there were significant or extremely significant differences in the expression levels of the PLIN2 gene in the gonadal axis of the mothers of single- and multi-lamb groups. Compared with the reference sequence, four SNPs were found, which were g.1006 C → A and g.1171 A → G in the first and second intron regions of the PLIN2 gene, g.8514 C → T in the exon 8 region and g.9122 A → T in the 3'UTR. The correlation analysis showed that g.1006 C → A, g.8514 C → T and g.9122 A → T had significant indigenous effects on the lambing performance of Qianbei Ma goats (p < .05). The number of third births for diploid H2H5 was significantly higher than that of diploid H1H2, and the number of first to third births for diploid H2H5 was large and stable. The results showed that PLIN2 gene could be used as a candidate gene related to lambing traits of Qianbei Ma goat.
Collapse
Affiliation(s)
- Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Tan SK, Hougen HY, Merchan JR, Gonzalgo ML, Welford SM. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nat Rev Urol 2023; 20:48-60. [PMID: 36192502 PMCID: PMC10826284 DOI: 10.1038/s41585-022-00654-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Lipid droplet formation is a defining histological feature in clear-cell renal cell carcinoma (ccRCC) but the underlying mechanisms and importance of this biological behaviour have remained enigmatic. De novo fatty acid (FA) synthesis, uptake and suppression of FA oxidation have all been shown to contribute to lipid storage, which is a necessary tumour adaptation rather than a bystander effect. Clinical studies and mechanistic investigations into the roles of different enzymes in FA metabolism pathways have revealed new metabolic vulnerabilities that hold promise for clinical effect. Several metabolic alterations are associated with worse clinical outcomes in patients with ccRCC, as lipogenic genes drive tumorigenesis. Enzymes involved in the intrinsic FA metabolism pathway include FA synthase, acetyl-CoA carboxylase, ATP citrate lyase, stearoyl-CoA desaturase 1, cluster of differentiation 36, carnitine palmitoyltransferase 1A and the perilipin family, and each might be potential therapeutic targets in ccRCC owing to the link between lipid deposition and ccRCC risk. Adipokines and lipid species are potential biomarkers for diagnosis and treatment monitoring in patients with ccRCC. FA metabolism could potentially be targeted for therapeutic intervention in ccRCC as small-molecule inhibitors targeting the pathway have shown promising results in preclinical models.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen Y Hougen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mark L Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
13
|
Alchahin AM, Mei S, Tsea I, Hirz T, Kfoury Y, Dahl D, Wu CL, Subtelny AO, Wu S, Scadden DT, Shin JH, Saylor PJ, Sykes DB, Kharchenko PV, Baryawno N. A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma. Nat Commun 2022; 13:5747. [PMID: 36180422 PMCID: PMC9525645 DOI: 10.1038/s41467-022-33375-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.
Collapse
Affiliation(s)
- Adele M Alchahin
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Ioanna Tsea
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Douglas Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Ninib Baryawno
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Zhang S, Xu X, Li Z, Yi T, Ma J, Zhang Y, Li Y. Analysis and Validation of Differentially Expressed Ferroptosis-Related Genes in Regorafenib-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2513263. [PMID: 36204517 PMCID: PMC9530921 DOI: 10.1155/2022/2513263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Background Although tyrosine kinase inhibitors (TKIs) constitute a type of anticancer drugs, the underlying mechanisms of TKI-associated cardiotoxicity remain largely unknown. Ferroptosis is a regulated cell death form that implicated in several tumors' biological processes. Our objective was to probe into the differential expression of ferroptosis-related genes in regorafenib-induced cardiotoxicity through multiple bioinformatics analysis and validation. Methods and Materials Four adult human cardiomyocyte cell lines treated with regorafenib were profiled using Gene Expression Omnibus (GEO) (GSE146096). Differentially expressed genes (DEGs) were identified using DESeq2 in R (V.3.6.3). Then, Gene Ontology (GO) Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, and Gene Set Enrichment Analysis (GSEA) were used to explore DEGs' bioinformatics functions and enriched pathways. We intersected DEGs with 259 ferroptosis-related genes from the FerrDb database. Finally, the mRNA levels of differentially expressed ferroptosis-related genes (DEFRGs) were validated in regorafenib-cultured cardiomyocytes to anticipate the link between DEFRGs and cardiotoxicity. Results 747,1127,773 and 969 DEGs were screened out in adult human cardiomyocyte lines A, B, D, and E, respectively. The mechanism by which REG promotes cardiotoxicity associated with ferroptosis may be regulated by PI3K-Akt, TGF-beta, and MAPK. GSEA demonstrated that REG can promote cardiotoxicity by suppressing genes and pathways encoding extracellular matrix and related proteins, oxidative phosphorylation, or ATF-2 transcription factor network. After overlapping DEGs with ferroptosis-related genes, we got seven DEFRGs and found that ATF3, MT1G, and PLIN2 were upregulated and DDIT4 was downregulated. The ROC curve demonstrated that these genes predict regorafenib-induced cardiotoxicity well. Conclusion We identified four DEFRGs which may become potential predictors and participate in the regorafenib-induced cardiotoxicity. Our findings provide possibility that targeting these ferroptosis-related genes may be an alternative for clinical prevention and therapy of regorafenib-related cardiotoxicity.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xueming Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada 91761
| | - Tian Yi
- Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Jingyu Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yilan Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
15
|
Panel of Candidate Genes to Predict the Survival of Patients with Clear Cell Renal Cancer on the Basis of Gene Expression Regulated by HIF1α/HIF2α. Bull Exp Biol Med 2022; 172:738-742. [PMID: 35501649 DOI: 10.1007/s10517-022-05468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/27/2022]
Abstract
The detection of genes related to the lifetime of patients with clear cell renal cancer provides information on the mechanisms of the tumor development and can be the basis for creating approaches to predict patient survival. In this paper, the expression of genes regulated by the HIF2α transcriptional factor was studied. Based on the results obtained here and previously identified genes regulated by the transcriptional factor HIF1α, a new panel of 6 genes, including the BAP1 gene, was proposed. Expression of genes of this panel allows predicting the survival of patients with clear cell renal cancer with high sensitivity (93%), specificity (96%), and relative risk (21.5). After verification, the application of this panel can be useful for personalized treatment of patients with clear cell renal cancer, which will increase the effectiveness of therapy.
Collapse
|
16
|
He Y, Dong Y, Zhang X, Ding Z, Song Y, Huang X, Chen S, Wang Z, Ni Y, Ding L. Lipid Droplet-Related PLIN2 in CD68 + Tumor-Associated Macrophage of Oral Squamous Cell Carcinoma: Implications for Cancer Prognosis and Immunotherapy. Front Oncol 2022; 12:824235. [PMID: 35372038 PMCID: PMC8967322 DOI: 10.3389/fonc.2022.824235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background PLIN2 (adipose differentiation-related protein) belongs to the perilipin family and is a marker of lipid droplets (LDs). Numerous types of tumor exhibit a high PLIN2 level, but its tumorigenic or tumor-suppressive role has been in debate. Recently, LDs serve as innate immune hubs and show antimicrobial capacity. We here aimed to investigate the heterogeneous functions of PLIN2 in the tumor microenvironment and immune regulation. Methods This retrospective study included 96 oral squamous cell carcinoma (OSCC) samples and analyzed the spatial distribution of PLIN2 by immunohistochemistry (IHC) and LD level by oil red O staining. A total of 21 serial sections were obtained to analyze the relationship between PLIN2 and immune cells by IHC and immunofluorescence (IF). Single-cell sequencing was used to analyze the cell locations of PLIN2. The values of diagnosis and prognosis of PLIN2 were also evaluated. Tumor Immune Estimation Resource (TIMER), cBioPortal databases, and IHC analysis were used to investigate the relationship between PLIN2 and OSCC immune microenvironment. Results PLIN2 was mainly expressed in tumor-infiltrating immunocytes (TIIs) of OSCC. Patients with high PLIN2 harbored more cytoplastic LDs. CD68+ tumor-associated macrophages (TAMs), instead of T cells and B cells, were found to be the main resource of PLIN2 in OSCC stroma and lung, pancreas, prostate, and testis. However, CD56+ NK cells also showed less extent of PLIN2 staining in OSCC. Moreover, patients with a high PLIN2 level in immune cells had a higher TNM stage and were susceptible to postoperative metastasis, but the escalated PLIN2 level in invasive tumor front independently predicted shorter metastasis-free survival. Furthermore, a high PLIN2 presentation in the microenvironment induced immune suppression which was featured as less infiltration of CD8+ T cells and more CD68+ TAMs and Foxp3+ Tregs, accompanied by more immune checkpoint molecules such as CSF1R, LGALS9, IL-10, CTLA-4, and TIGIT. Conclusion CD68+ TAM-derived PLIN2 might participate in regulating immune balance of OSCC patients, which provides new insight into immune checkpoint therapy.
Collapse
Affiliation(s)
- Yijia He
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuexin Dong
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinwen Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Johnson M, Nowlan S, Sahin G, Barnett DA, Joy AP, Touaibia M, Cuperlovic-Culf M, Zofija Avizonis D, Turcotte S. Decrease of Intracellular Glutamine by STF-62247 Results in the Accumulation of Lipid Droplets in von Hippel-Lindau Deficient Cells. Front Oncol 2022; 12:841054. [PMID: 35223522 PMCID: PMC8865074 DOI: 10.3389/fonc.2022.841054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for β-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sarah Nowlan
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Gülsüm Sahin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | | | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | | | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
18
|
Nguyen TH, Yousefi H, Okpechi SC, Lauterboeck L, Dong S, Yang Q, Alahari SK. Nischarin Deletion Reduces Oxidative Metabolism and Overall ATP: A Study Using a Novel NISCHΔ5-6 Knockout Mouse Model. Int J Mol Sci 2022; 23:ijms23031374. [PMID: 35163298 PMCID: PMC8835720 DOI: 10.3390/ijms23031374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt–PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch’s effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.
Collapse
Affiliation(s)
- Tina H. Nguyen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Samuel C. Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Qinglin Yang
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
- Correspondence: ; Tel.: +1-504-568-4734
| |
Collapse
|
19
|
Azukisawa S, Zheng J, Guo X, Ura H, Niida Y, Itoh T, Yamada S. The differential expression of perilipin-2 in hepatoblastoma and its association with prognosis. Histol Histopathol 2021; 36:1169-1178. [PMID: 34477212 DOI: 10.14670/hh-18-371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perilipin-2, a lipid droplet (LD) coating protein, has been found to be involved in cancer progression. However, its role in hepatoblastoma (HB) is undefined. We collected 87 HB samples and the corresponding clinical data. Immunohistochemistry (IHC) staining was performed to detect perilipin-2 and the association of the perilipin-2 expression with clinical characteristics and prognosis was analyzed. The expression of perilipin-2 was increased in fetal HB components in comparison to embryonal HB components. The predominant staining pattern was vesicular in fetal HB cells, while it was granular in embryonal HB cells. Furthermore, strong expression of perilipin-2 was associated with the histopathological type of fetal predominant HB. Although event-free survival (EFS) did not differ to a statistically significant extent between the strong and weak expression groups in a univariate survival analysis, a multivariate survival analysis revealed that EFS was significantly improved in the strong perilipin-2 expression group. In conclusion, perilipin-2 is differentially expressed in HB and the strong expression of perilipin-2 predicts a better prognosis.
Collapse
Grants
- 19K16783 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
- 20K07454 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
- S2018-6 Promoted Research from Kanazawa Medical University
Collapse
Affiliation(s)
- Sadafumi Azukisawa
- Department of Gastroenterological Endoscopy, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Jianbo Zheng
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Tohru Itoh
- Department of Gastroenterological Endoscopy, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| |
Collapse
|
20
|
Royo-García A, Courtois S, Parejo-Alonso B, Espiau-Romera P, Sancho P. Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World J Stem Cells 2021; 13:1307-1317. [PMID: 34630864 PMCID: PMC8474722 DOI: 10.4252/wjsc.v13.i9.1307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Previously regarded as simple fat storage particles, new evidence suggests that lipid droplets (LDs) are dynamic and functional organelles involved in key cellular processes such as membrane biosynthesis, lipid metabolism, cell signalling and inflammation. Indeed, an increased LD content is one of the most apparent features resulting from lipid metabolism reprogramming necessary to support the basic functions of cancer cells. LDs have been associated to different cellular processes involved in cancer progression and aggressiveness, such as tumorigenicity, invasion and metastasis, as well as chemoresistance. Interestingly, all of these processes are controlled by a subpopulation of highly aggressive tumoral cells named cancer stem cells (CSCs), suggesting that LDs may be fundamental elements for stemness in cancer. Considering the key role of CSCs on chemoresistance and disease relapse, main factors of therapy failure, the design of novel therapeutic approaches targeting these cells may be the only chance for long-term survival in cancer patients. In this sense, their biology and functional properties render LDs excellent candidates for target discovery and design of combined therapeutic strategies. In this review, we summarise the current knowledge identifying LDs and CSCs as main contributors to cancer aggressiveness, metastasis and chemoresistance.
Collapse
Affiliation(s)
- Alba Royo-García
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| | - Sarah Courtois
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
21
|
Perilipin 2 Impacts Acute Kidney Injury via Regulation of PPAR α. J Immunol Res 2021; 2021:9972704. [PMID: 34541006 PMCID: PMC8445733 DOI: 10.1155/2021/9972704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) can induce oxidative stress and injury via the generation of reactive oxygen species (ROS). Renal proximal tubular cells are susceptible to oxidative stress, and the dysregulation of renal proximal tubular cellular homeostasis can damage cells via apoptotic pathways. A recent study showed that the generation of ROS can increase perilipin 2 (Plin2) expression in HepG2 cells. Some evidence has also demonstrated the association between Plin2 expression and renal tumors. However, the underlying mechanism of Plin2 in I/R-induced acute kidney injury (AKI) remains elusive. Here, using a mouse model of I/R-induced AKI, we found that ROS generation was increased and the expression of Plin2 was significantly upregulated. An in vitro study further revealed that the expression of Plin2, and the generation of ROS were significantly upregulated in primary tubular cells treated with hydrogen peroxide. Accordingly, Plin2 knockdown decreased apoptosis in renal proximal tubular epithelial cells treated with hydrogen peroxide, which depended on the activation of peroxisome proliferator-activated receptor α (PPARα). Overall, the present study demonstrated that Plin2 is involved in AKI; knockdown of this marker might limit apoptosis via the activation of PPARα. Consequently, the downregulation of Plin2 could be a novel therapeutic strategy for AKI.
Collapse
|
22
|
TLR3 Serves as a Prognostic Biomarker and Associates with Immune Infiltration in the Renal Clear Cell Carcinoma Microenvironment. JOURNAL OF ONCOLOGY 2021; 2021:3336770. [PMID: 34531911 PMCID: PMC8440088 DOI: 10.1155/2021/3336770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/15/2021] [Accepted: 08/14/2021] [Indexed: 01/11/2023]
Abstract
Background Clear cell renal cancer (KIRC) is one of the most common cancers globally, with a poor prognosis. TLRs play a vital role in anticancer immunity and the regulation of the biological progress of tumour cells. However, the precise role of TLRs in KIRC is still ambiguous. Methods Various bioinformatics analysis and clinical validation of tissues were performed to evaluate the prognostic value of TLRs and their correlation with immune infiltration in KIRC. Results The expression of TLR2/3/7/8 was increased at both mRNA and protein levels in KIRC. TLRs in KIRC were involved in the activation of apoptosis, EMT, RAS/MAPK, and RTK pathways, as well as the inhibition of the cell cycle and the hormone AR pathway. Drug sensitivity analysis revealed that high expression of TLR3 and low expression of TLR7/9/10 were resistant to most of the small molecules or drugs from CTRP. Enrichment analyses showed that TLRs were mainly involved in innate immune response, toll-like receptor signalling pathway, NF-kappa B signalling pathway, and TNF signalling pathway. Furthermore, a high-level TLR3 expression was associated with a favourable prognosis in KIRC. Validation research further confirmed that TLR3 expression was increased in KIRC tissues, and high TLR3 levels were associated with poor overall survival. Moreover, TLR3 in KIRC showed a positive association with an abundance of immune cells, including B-cells, CD4+ T-cells, CD8+ T-cells, macrophage, neutrophils, and dendritic cells, and the expression of the immune biomarker sets. Several TLR3-associated kinase, miRNA, or transcription factor targets were also identified in KIRC. Conclusion Our results indicate that TLR3 serves as a prognostic biomarker and associated with immune infiltration in KIRC. This work lays a foundation for further studies on the role of TLR3 in the carcinogenesis and progression of KIRC.
Collapse
|
23
|
Serum Perilipin 2 (PLIN2) Predicts Multiple Organ Dysfunction in Critically Ill Patients. Biomedicines 2021; 9:biomedicines9091210. [PMID: 34572396 PMCID: PMC8468514 DOI: 10.3390/biomedicines9091210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet protein with various metabolic functions. However, studies investigating PLIN2 in the context of inflammation, especially in systemic and acute inflammation, are lacking. Hence, we assessed the relevance of serum PLIN2 in critically ill patients. We measured serum PLIN2 serum in 259 critically ill patients (166 with sepsis) upon admission to a medical intensive care unit (ICU) compared to 12 healthy controls. A subset of 36 patients underwent computed tomography to quantify body composition. Compared to controls, serum PLIN2 concentrations were elevated in critically ill patients at ICU admission. Interestingly, PLIN2 independently indicated multiple organ dysfunction (MOD), defined as a SOFA score > 9 points, at ICU admission, and was also able to independently predict MOD after 48 h. Moreover, serum PLIN2 levels were associated with severe respiratory failure potentially reflecting a moribund state. However, PLIN2 was neither a predictor of ICU mortality nor did it reflect metabolic dysregulation. Conclusively, the first study assessing serum PLIN2 in critical illness proved that it may assist in risk stratification because it is capable of independently indicating MOD at admission and predicting MOD 48 h after PLIN2 measurement. Further evaluation regarding the underlying mechanisms is warranted.
Collapse
|
24
|
Sunami Y, Rebelo A, Kleeff J. Lipid Droplet-Associated Factors, PNPLA3, TM6SF2, and HSD17B Proteins in Hepatopancreatobiliary Cancer. Cancers (Basel) 2021; 13:cancers13174391. [PMID: 34503201 PMCID: PMC8431307 DOI: 10.3390/cancers13174391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Aberrant lipid synthesis and reprogrammed lipid metabolism are both associated with the development and progression of pancreatic and liver cancer. Most cells store fatty acids in the form of triacylglycerols in lipid droplets. Lipid droplets are intracellular organelles that not only store neutral lipids, but also play roles as molecular messengers and signaling factors. Some cancer cells accumulate massive amount of lipid droplets. Lipid droplets and lipid droplet-associated factors are further implicated to mediate proliferation, invasion, metastasis, as well as chemotherapy resistance in several types of cancer. This review dissected recent findings on the role of several lipid droplet-associated factors, patatin-like phospholipase domain-containing 3 (PNPLA3), Transmembrane 6 superfamily member 2 (TM6SF2), and 17β-hydroxysteroid dehydrogenase (HSD17B) 11 and 13 as well as their genetic variations in hepatopancreatobiliary diseases, especially cancer. Abstract Pancreatic and liver cancer are leading causes of cancer deaths, and by 2030, they are projected to become the second and the third deadliest cancer respectively. Cancer metabolism, especially lipid metabolism, plays an important role in progression and metastasis of many types of cancer, including pancreatic and liver cancer. Lipid droplets are intracellular organelles that store neutral lipids, but also act as molecular messengers, and signaling factors. It is becoming increasingly evident that alterations in the regulation of lipid droplets and their associated factors influence the risk of developing not only metabolic disease but also fibrosis and cancer. In the current review article, we summarized recent findings concerning the roles of lipid droplet-associated factors, patatin-like phospholipase domain-containing 3, Transmembrane 6 superfamily member 2, and 17β-hydroxysteroid dehydrogenase 11 and 13 as well as genetic variants in pancreatic and hepatic diseases. A better understanding of cancer type- and cell type-specific roles of lipid droplet-associated factors is important for establishing new therapeutic options in the future.
Collapse
|
25
|
Liao G, Wang P, Wang Y. Identification of the Prognosis Value and Potential Mechanism of Immune Checkpoints in Renal Clear Cell Carcinoma Microenvironment. Front Oncol 2021; 11:720125. [PMID: 34336706 PMCID: PMC8317210 DOI: 10.3389/fonc.2021.720125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Background Kidney Renal Clear Cell Carcinoma (KIRC) is one of the most prevalent types of cancer worldwide. KIRC has a poor prognosis and, to date, immunotherapy based on immune checkpoints is the most promising treatment. However, the role of immune checkpoints in KIRC remains ambiguous. Methods Bioinformatics analyses and qRT-PCR were performed to explore and further confirm the prognostic value of immune checkpoint genes and their correlation with immune infiltration in KIRC samples. Results The expression of the immune checkpoint genes CD274, PDCD1LG2, HAVCR2, CTLA4, TIGFT, LAG3, and PDCD1 was upregulated in KIRC tissues. These genes were involved in the activation of the apoptosis pathway in KIRC. Low expression of CD274 and HAVCR2 and high expression of CTLA4 were associated with poor overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) of KIRC patients. The univariate and multivariate analyses revealed that CTLA4, HAVCR2, age, pTNM stage, and tumor grade were independent factors affecting the prognosis of KIRC patients. A predictive nomogram demonstrated that the calibration plots for the 3‐year and 5‐year OS probabilities showed good agreement compared to the actual OS of KIRC patients. The expression of CTLA4 and HAVCR2 were positively associated with immune cell infiltration, immune biomarkers, chemokines, and chemokine receptors. Moreover, miR-20b-5p was identified as a potential miRNA target of CTLA4 in KIRC. Conclusion Our study clarified the prognostic value of several immune checkpoint regulators in KIRC, revealing a CTLA4/miR-20b-5p axis in the control of immune cell infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Guodong Liao
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Wang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuyong Wang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Mass Sanchez PB, Krizanac M, Weiskirchen R, Asimakopoulos A. Understanding the Role of Perilipin 5 in Non-Alcoholic Fatty Liver Disease and Its Role in Hepatocellular Carcinoma: A Review of Novel Insights. Int J Mol Sci 2021; 22:5284. [PMID: 34067931 PMCID: PMC8156377 DOI: 10.3390/ijms22105284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
Consumption of high-calorie foods, such as diets rich in fats, is an important factor leading to the development of steatohepatitis. Several studies have suggested how lipid accumulation creates a lipotoxic microenvironment for cells, leading cells to deregulate their transcriptional and translational activity. This deregulation induces the development of liver diseases such as non-alcoholic fatty liver disease (NAFLD) and subsequently also the appearance of hepatocellular carcinoma (HCC) which is one of the deadliest types of cancers worldwide. Understanding its pathology and studying new biomarkers with better specificity in predicting disease prognosis can help in the personalized treatment of the disease. In this setting, understanding the link between NAFLD and HCC progression, the differentiation of each stage in between as well as the mechanisms underlying this process, are vital for development of new treatments and in exploring new therapeutic targets. Perilipins are a family of five closely related proteins expressed on the surface of lipid droplets (LD) in several tissues acting in several pathways involved in lipid metabolism. Recent studies have shown that Plin5 depletion acts protectively in the pathogenesis of liver injury underpinning the importance of pathways associated with PLIN5. PLIN5 expression is involved in pro-inflammatory cytokine regulation and mitochondrial damage, as well as endoplasmic reticulum (ER) stress, making it critical target of the NAFLD-HCC studies. The aim of this review is to dissect the recent findings and functions of PLIN5 in lipid metabolism, metabolic disorders, and NAFLD as well as the progression of NAFLD to HCC.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (P.B.M.S.); (M.K.)
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (P.B.M.S.); (M.K.)
| |
Collapse
|
27
|
Zhang X, Su L, Sun K. Expression status and prognostic value of the perilipin family of genes in breast cancer. Am J Transl Res 2021; 13:4450-4463. [PMID: 34150026 PMCID: PMC8205812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Perilipin (PLIN) family of genes were previously shown to be involved in the formation and degradation of Lipid Droplets (LDs). In addition, they may play important roles in the development and progression of breast cancer. However, the prognostic value of PLIN family members in breast cancer patients remains unclear. METHODS Mutations and copy number alterations of PLIN family genes in breast cancer were examined using the cBioportal for Cancer Genomics. In addition, the expression patterns of PLIN family genes were explored using the UCSC Xena online tool. Finally, the Kaplan-Meier Plotter was used to investigate the prognostic value of PLIN family genes in breast cancer. RESULTS The findings revealed a low frequency of genetic alterations and amplification was the most frequent change in the PLIN family genes. Additionally, there was an increase in the expression of Perilipin 3 (PLIN3) in breast cancer tissues compared to normal breast tissues. However, expression of the other genes in the PLIN family was significantly lower in breast cancer tissues compared to normal breast tissues. Moreover, there was an increase in the expression levels of Perilipin 1 (PLIN1), PLIN3, Perilipin 4 (PLIN4) and Perilipin 5 (PLIN5) in the luminal A and luminal B subgroups. On the other hand, the expression of Perilipin 2 (PLIN2) was elevated in the human epidermal growth factor receptor 2 (HER2) positive and basal-like subgroups. Furthermore, Kaplan-Meier Plotter analysis demonstrated that high expression of PLIN1 might predict a longer Overall Survival (OS) in patients with breast cancer while overexpression of PLIN2 indicated poor OS of breast cancer patients. CONCLUSION The findings from this study indicated that genes in the PLIN family were aberrantly expressed in breast cancer and may serve as novel therapeutic targets as well as prognostic biomarkers for the disease.
Collapse
Affiliation(s)
- Xuede Zhang
- Department of Hematology and Oncology, Beilun District People’s HospitalNingbo, Zhejiang, China
| | - Lei Su
- Department of Oncology, Zhangqiu District People’s HospitalJinan, Shandong, China
| | - Kai Sun
- Department of Oncology, Liuzhou People’s HospitalLiuzhou 545001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Li FZ, Ye Q, Ran LW, Fang S. Adipophilin expression in skin lesions with clear cell histology. J Clin Pathol 2021; 75:627-631. [PMID: 33952590 DOI: 10.1136/jclinpath-2021-207443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
AIMS Clear cells formed due to depositions of glycogen or lipids in the cytoplasm commonly occur in various tissues. Adipophilin (ADP), a lipid regulatory protein, is closely related to lipid droplets. This study aims to examine adipophilin expression in clear cells of various skin lesions. METHODS ADP expression was examined using immunohistochemistry in 108 sections from 15 skin lesion types with clear cell histology, namely, sebaceoma (n=16), sebaceous adenoma (n=3), sebaceous carcinoma (n=12), xanthomata cutis (n=10), xanthogranuloma (n=8), Paget's disease (n=10), Bowen disease (n=10), hidradenoma (n=9), atypical lipoma (n=5), superficial lipomatous nevus (n=5), metastatic renal cell carcinoma (n=5), squamous cell carcinoma (n=4), seborrheic keratosis (n=4), dermatofibroma (n=4) and clear cell sarcoma (n=3). RESULTS ADP was not expressed in Bowen disease, hidradenoma or seborrheic keratosis. Four expression patterns, foamy, reticular, granular and punctate, were summarised based on their expression in clear cells. Different expression patterns were related to tissue origin and differentiation degree. Foamy expression was commonly observed in lesions with mature sebaceous glands and xanthomas; reticular expression in adipocytes; granular expression in xanthoma, xanthogranuloma and metastatic renal carcinoma and punctate expression in sebaceoma, sebaceous carcinoma, Paget's disease, squamous cell carcinoma and clear cell sarcoma. Furthermore, stronger staining with focal vesicular labelling was noted in sebaceoma than in sebaceous carcinoma. Characteristic labelling was noted, including the circular distribution in Touton giant cells of xanthogranulomas and focal distribution in the clear cells along the edge of necrotic tissue in clear cell sarcoma. CONCLUSIONS ADP is useful in identifying intracytoplasmic lipids and can be used to diagnose skin lesions with clear cell histology, especially in some lesions with characteristic labelling.
Collapse
Affiliation(s)
- Feng-Zeng Li
- Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Ye
- Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Wei Ran
- Dermatology, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China
| | - Sheng Fang
- Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ Open Diabetes Res Care 2021; 9:9/1/e002091. [PMID: 33903117 PMCID: PMC8076933 DOI: 10.1136/bmjdrc-2020-002091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood. RESEARCH DESIGN AND METHODS To investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503. RESULTS We found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs. CONCLUSION Glyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.
Collapse
Affiliation(s)
- Cécile Guillon
- Urgo Research Innovation and Development, Chenôve, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sandra Ferraro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sophie Clément
- Urgo Research Innovation and Development, Chenôve, France
| | | | | | - Christelle Bonod
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| |
Collapse
|
30
|
Conte M, Santoro A, Collura S, Martucci M, Battista G, Bazzocchi A, Morsiani C, Sevini F, Capri M, Monti D, Franceschi C, Salvioli S. Circulating perilipin 2 levels are associated with fat mass, inflammatory and metabolic markers and are higher in women than men. Aging (Albany NY) 2021; 13:7931-7942. [PMID: 33735111 PMCID: PMC8034884 DOI: 10.18632/aging.202840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Perilipin 2 (PLIN2) is a protein involved in lipid storage and metabolism in non-adipose tissues. Detectable levels of circulating PLIN2 (cPLIN2) have been reported to be associated with some types of cancer, but no systematic analysis of age-related modifications in cPLIN2 levels has ever been performed. We measured serum cPLIN2 in a group of old people including centenarians in comparison with young subjects and tested possible correlations with parameters of body composition, fat and glucose metabolism, and inflammation. We found that: i. levels of cPLIN2 do not change with age, but women have higher levels of cPLIN2 with respect to men; ii. cPLIN2 levels strongly correlate to BMI, as well as fat and lean mass; iii. cPLIN2 levels strongly correlate with the proinflammatory adipokine leptin. Due to the adipogenic activity of leptin, it is hypothesized that cPLIN2 is affected and possibly regulated by this pleiotropic adipokine. Moreover, these results suggest that cPLIN2 (possibly together with leptin) could be assumed as a proxy for body adiposity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Wu P, Xu Y, Li J, Li X, Zhang P, Ruan N, Zhang C, Sun P, Wang Q, Wu G. Comparison of the Fatty Acid Metabolism Pathway in Pan-Renal Cell Carcinoma: Evidence from Bioinformatics. Anal Cell Pathol (Amst) 2021; 2021:8842105. [PMID: 33688464 PMCID: PMC7925032 DOI: 10.1155/2021/8842105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study analyzed and compared the potential role of fatty acid metabolism pathways in three subtypes of renal cell carcinoma. Biological pathways that were abnormally up- and downregulated were identified through gene set variation analysis in the subtypes. Abnormal downregulation of the fatty acid metabolism pathway occurred in all three renal cell carcinoma subtypes. Alteration of the fatty acid metabolism pathway was vital in the development of pan-renal cell carcinoma. Bioinformatics methods were used to obtain a panoramic view of copy number variation, single-nucleotide variation, mRNA expression, and the survival landscape of fatty acid metabolism pathway-related genes in pan-renal cell carcinoma. Most importantly, we used genes related to the fatty acid metabolism pathway to establish a prognostic-related risk model in the three subtypes of renal cell carcinoma. The data will be valuable for future clinical treatment and scientific research.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, Republic of Korea
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Sun
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Xia S, Lin Y, Lin J, Li X, Tan X, Huang Z. Increased Expression of TICRR Predicts Poor Clinical Outcomes: A Potential Therapeutic Target for Papillary Renal Cell Carcinoma. Front Genet 2021; 11:605378. [PMID: 33505430 PMCID: PMC7831611 DOI: 10.3389/fgene.2020.605378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Papillary renal cell carcinoma (PRCC), although the second-most common type of renal cell carcinoma, still lacks specific biomarkers for diagnosis, treatment, and prognosis. TopBP1-interacting checkpoint and replication regulator (TICRR) is a DNA replication initiation regulator upregulated in various cancers. We aimed to evaluate the role of TICRR in PRCC tumorigenesis and prognosis. Methods: Based on the Kidney Renal Papillary cell carcinoma Project (KIRP) on The Cancer Genome Atlas (TCGA) database, we determined the expression of TICRR using the Wilcoxon rank sum test. The biological functions of TICRR were evaluated using the Metascape database and Gene Set Enrichment Analysis (GSEA). The association between TICRR and immune cell infiltration was investigated by single sample GSEA. Logistic analysis was applied to study the correlation between TICRR expression and clinicopathological characteristics. Finally, Cox regression analysis, Kaplan–Meier analysis, and nomograms were used to determine the predictive value of TICRR on clinical outcomes in PRCC patients. Results:TICRR expression was significantly elevated in PRCC tumors (P < 0.001). Functional annotation indicated enrichment with negative regulation of cell division, cell cycle, and corresponding pathways in the high TICRR expression phenotype. High TICRR expression in PRCC was associated with female sex, younger age, and worse clinical stages. Cox regression analysis revealed that TICRR was a risk factor for overall survival [hazard ratio (HR): 2.80, P = 0.002], progression-free interval (HR: 2.86, P < 0.001), and disease-specific survival (HR: 7.03, P < 0.001), especially in patients with male sex, age below 60 years, clinical stages II–IV and clinical T stage T1–T2. Conclusion: Increased TICRR expression in PRCC might play a role in tumorigenesis by regulating the cell cycle and has prognostic value for clinical outcomes.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Lin
- Department of Nephrology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaqiong Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyong Li
- Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuexian Tan
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zena Huang
- Department of General Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
33
|
McCauley C, Anang V, Cole B, Simmons GE. Potential Links between YB-1 and Fatty Acid Synthesis in Clear Cell Renal Carcinoma. ACTA ACUST UNITED AC 2020; 8. [PMID: 33778158 DOI: 10.18103/mra.v8i10.2273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the National Institutes of Health, clear cell renal cell carcinoma (ccRCC) is the most common type of Renal Cell Carcinoma (RCC), making up approximately 75% of total renal carcinoma cases. Clear cell Renal Cell Carcinoma is characterized by a significant accumulation of lipids in the cytoplasm, which allows light from microscopes to pass through giving them a "clear" phenotype. Many of these lipids are in the form of fatty acids, both free and incorporated into lipid droplets. RCC is typically associated with a poor prognosis due to the lack of specific symptoms. Some symptoms include blood in urine, fever, lump on the side, weight loss, fatigue, to name a few; all of which can be associated with non-specific, non-cancerous, health conditions that contribute to difficult diagnosis. Treatment of RCC has typically been centered around radical nephrectomy as the standard of care, but due to the potentially small size of lesions and the possibility of causing surgically induced chronic kidney disease, treatments have shifted to more cautious, less invasive approaches. These approaches include active surveillance, nephron-sparing surgery, and other minimally invasive techniques like cryotherapy and renal ablation. Although these techniques have had the desired effect of reducing the number of surgeries, there is still considerable potential for renal impairment and the chance that tumors can grow out of control without surgery. With the difficulty that surrounds the treatment of ccRCC and its considerably high mortality rate amongst urological cancers, it is important to look for novel approaches to improve patient outcomes. This review looks at available literature and our data that suggests the lipogenic enzyme stearoyl-CoA desaturase may be more beneficial to patient survival than once thought. As our understanding of the importance of lipids in cell metabolism and longevity matures, it is important to present new perspectives that present a new understanding of ccRCC and the role of lipids in survival mechanisms engaged by transformed cells during cancer progression. In this review, we provide evidence that pharmacological inhibition of lipid desaturation in renal cancer patients is not without risk, and that the presence of unsaturated fatty acids may be a beneficial factor in patient outcomes. Although more direct experimental evidence is needed to make definitive conclusions, it is clear that the work reviewed herein should challenge our current understanding of cancer biology and may inform novel approaches to the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Carter McCauley
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA
| | - Vasthy Anang
- Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA
| | - Breanna Cole
- Department of Biology, The College of St. Scholastica, Duluth, MN, 55811, USA
| | - Glenn E Simmons
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Carcinogenesis and Chemoprevention program, Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Tang D, Zhao YC, Liu H, Luo S, Clarke JM, Glass C, Su L, Shen S, Christiani DC, Gao W, Wei Q. Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer. Int J Cancer 2020; 147:1559-1570. [PMID: 32072637 PMCID: PMC8078192 DOI: 10.1002/ijc.32932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey M. Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
35
|
Dey P, Kundu A, Han SH, Kim KS, Park JH, Yoon S, Kim IS, Kim HS. Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells. Biomolecules 2020; 10:1260. [PMID: 32878322 PMCID: PMC7565513 DOI: 10.3390/biom10091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma has emerged as one of the leading causes of cancer-related deaths in the USA. Here, we examined the anticancer profile of oxindole derivatives (SH-859) in human renal cancer cells. Targeting 786-O cells by SH-859 inhibited cell growth and affected the protein kinase B/mechanistic target of rapamycin 1 pathway, which in turn downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, as well as other signaling proteins. Treatment with SH-859 altered glycolysis, mitochondrial function, and levels of adenosine triphosphate and cellular metabolites. Flow cytometry revealed the induction of apoptosis and G0/G1 cell cycle arrest in renal cancer cells following SH-859 treatment. Induction of autophagy was also confirmed after SH-859 treatment by acridine orange and monodansylcadaverine staining, immunocytochemistry, and Western blot analyses. Finally, SH-859 also inhibited the tumor development in a xenograft model. Thus, SH-859 can serve as a potential molecule for the treatment of human renal carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| |
Collapse
|
36
|
Wang S, Zhang L, Yu Z, Chai K, Chen J. Identification of a Glucose Metabolism-related Signature for prediction of Clinical Prognosis in Clear Cell Renal Cell Carcinoma. J Cancer 2020; 11:4996-5006. [PMID: 32742447 PMCID: PMC7378912 DOI: 10.7150/jca.45296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent and invasive histological subtypes among all renal cell carcinomas (RCC). Cancer cell metabolism, particularly glucose metabolism, has been reported as a hallmark of cancer. However, the characteristics of glucose metabolism-related gene sets in ccRCC have not been systematically profiled. Methods: In this study, we downloaded a gene expression profile and glucose metabolism-related gene set from TCGA (The Cancer Genome Altas) and MSigDB, respectively, to analyze the characteristics of glucose metabolism-related gene sets in ccRCC. We used a multivariable Cox regression analysis to develop a risk signature, which divided patients into low- and high- risk groups. In addition, a nomogram that combined the risk signature and clinical characteristics was created for predicting the 3- and 5-year overall survival (OS) of ccRCC. The accuracy of the nomogram prediction was evaluated using the area under the receiver operating characteristic curve (AUC) and a calibration plot. Results: A total of 231 glucose metabolism-related genes were found, and 68 differentially expressed genes (DEGs) were identified. After screening by univariate regression analysis, LASSO regression analysis and multivariable Cox regression analysis, six glucose metabolism-related DEGs (FBP1, GYG2, KAT2A, LGALS1, PFKP, and RGN) were selected to develop a risk signature. There were significant differences in the clinical features (Fuhrman nuclear grade and TNM stage) between the high- and low-risk groups. The multivariable Cox regression indicated that the risk score was independent of the prognostic factors (training set: HR=3.393, 95% CI [2.025, 5.685], p<0.001; validation set: HR=1.933, 95% CI [1.130, 3.308], p=0.016). The AUCs of the nomograms for the 3-year OS in the training and validation sets were 0.808 and 0.819, respectively, and 0.777 and 0.796, respectively, for the 5- year OS. Conclusion: We demonstrated a novel glucose metabolism-related risk signature for predicting the prognosis of ccRCC. However, additional in vitro and in vivo research is required to validate our findings.
Collapse
Affiliation(s)
- Sheng Wang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang.,Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Ling Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang.,Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhihong Yu
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Kequn Chai
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Jiabin Chen
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
37
|
Fujimoto M, Matsuzaki I, Nishitsuji K, Yamamoto Y, Murakami D, Yoshikawa T, Fukui A, Mori Y, Nishino M, Takahashi Y, Iwahashi Y, Warigaya K, Kojima F, Jinnin M, Murata SI. Adipophilin expression in cutaneous malignant melanoma is associated with high proliferation and poor clinical prognosis. J Transl Med 2020; 100:727-737. [PMID: 31857696 DOI: 10.1038/s41374-019-0358-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Adipophilin (ADP) is a primary protein component of lipid droplets (LDs). For more than half a century, certain types of cancer cells have been known to contain LDs in their cytoplasm. However, the pathological significance of ADP or LDs in cancer remains unclear. In the present study, we investigated the association between ADP and other pathological characteristics in cutaneous malignant melanomas to clarify the role of ADP in melanoma cells. We immunostained whole paraffin sections of primary cutaneous melanomas obtained from 90 cases for ADP, after which we analyzed the correlation between ADP immunohistochemistry (IHC) and patient survival data. We also studied the relationship between the ADP IHC score and in situ hybridization (ISH) score of ADP mRNA, and the Ki67-labeling index (Ki67-LI) by using tissue microarrays consisting of 74 primary cutaneous malignant melanomas, 19 metastasizing melanomas, and 29 melanocytic nevi. Finally, we analyzed the relationship between ADP expression and cell proliferation in cutaneous melanoma cell lines. We found that high ADP expression was associated with poor metastasis-free survival, disease-specific survival, and overall survival rates of patients with cutaneous melanomas (P < 0.05). By linear regression analysis, ADP IHC was correlated with increasing ADP mRNA ISH H-scores and Ki67-LI scores in melanocytic lesions (P < 0.01). ADP IHC and ADP ISH H-scores and Ki67-LI scores were greater in pT3-4 melanomas than in pT1-2 melanomas. In cell-based assays, cells with increased ADP expression showed higher proliferation rates compared with those of low-ADP cells. Thus, ADP expression in malignant melanoma was significantly associated with high cell proliferation and poor clinical prognosis. Our results thus indicate a significant association between ADP and melanoma progression, and we propose that ADP may be a novel marker of aggressive cutaneous melanoma with a lipogenic phenotype.
Collapse
Affiliation(s)
- Masakazu Fujimoto
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan.
| | - Ibu Matsuzaki
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | | | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Murakami
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takanori Yoshikawa
- Clinical Study Support Center, Wakayama Medical University, Wakayama, Japan
| | - Ayaka Fukui
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuuki Mori
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masaru Nishino
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Takahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yoshifumi Iwahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Kenji Warigaya
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
38
|
Pan Q, Cheng G, Liu Y, Xu T, Zhang H, Li B. TMSB10 acts as a biomarker and promotes progression of clear cell renal cell carcinoma. Int J Oncol 2020; 56:1101-1114. [PMID: 32319572 PMCID: PMC7115359 DOI: 10.3892/ijo.2020.4991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Qiufeng Pan
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gong Cheng
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuenan Liu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tianbo Xu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Zhang
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing Li
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
39
|
Cruz ALS, Barreto EDA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis 2020; 11:105. [PMID: 32029741 PMCID: PMC7005265 DOI: 10.1038/s41419-020-2297-3] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Lipid droplets (also known as lipid bodies) are lipid-rich, cytoplasmic organelles that play important roles in cell signaling, lipid metabolism, membrane trafficking, and the production of inflammatory mediators. Lipid droplet biogenesis is a regulated process, and accumulation of these organelles within leukocytes, epithelial cells, hepatocytes, and other nonadipocyte cells is a frequently observed phenotype in several physiologic or pathogenic situations and is thoroughly described during inflammatory conditions. Moreover, in recent years, several studies have described an increase in intracellular lipid accumulation in different neoplastic processes, although it is not clear whether lipid droplet accumulation is directly involved in the establishment of these different types of malignancies. This review discusses current evidence related to the biogenesis, composition and functions of lipid droplets related to the hallmarks of cancer: inflammation, cell metabolism, increased proliferation, escape from cell death, and hypoxia. Moreover, the potential of lipid droplets as markers of disease and targets for novel anti-inflammatory and antineoplastic therapies will be discussed.
Collapse
Affiliation(s)
- André L S Cruz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Physiopathology, Polo Novo Cavaleiros, Federal University of Rio De Janeiro (UFRJ), Macaé, Brazil
| | - Ester de A Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Narayana P B Fazolini
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | - Patricia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Okeigwe I, Bulun S, Liu S, Rademaker AW, Coon JS, Kujawa S, Robins J, Yin P. PLIN2 Functions As a Novel Link Between Progesterone Signaling and Metabolism in Uterine Leiomyoma Cells. J Clin Endocrinol Metab 2019; 104:6256-6264. [PMID: 31504629 PMCID: PMC6823729 DOI: 10.1210/jc.2019-00762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Uterine leiomyoma (fibroids) are the most common tumors in women. Recently, perilipin-2 (PLIN2) was identified as a critical target gene of the progesterone receptor; however, its function in the pathogenesis of fibroids is unknown. OBJECTIVE To determine the function of PLIN2 in leiomyoma cells. DESIGN Tissue and primary cells from leiomyoma and myometrium were analyzed. PLIN2 function in leiomyoma was assessed using small interfering RNA. RNA-sequencing was performed to identify genome-wide effects of PLIN2 depletion. Metabolic activity was measured using the Seahorse XF96 analyzer. Real-time quantitative PCR and immunoblotting were also performed. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Forty-one premenopausal women undergoing surgery for fibroids. MAIN OUTCOME MEASURES Gene expression, oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and cell proliferation. RESULTS PLIN2 gene expression was 2.4-fold lower in leiomyoma compared with adjacent myometrium, suggesting a link between PLIN2 deficiency and fibroids. A total of 3877 genes were differentially expressed after PLIN2 knockdown. Gene ontology analysis identified metabolism as the second-highest biological process affected by PLIN2 depletion. OCR (mitochondrial respiration) and ECAR (glycolysis) were significantly upregulated after PLIN2 knockdown; PLIN2-depleted cells had a greater basal metabolic activity and higher metabolic stress response. Cell proliferation was also significantly increased after PLIN2 knockdown. CONCLUSIONS PLIN2 depletion increases mitochondrial respiration and glycolysis, suggesting that PLIN2 is a critical regulator of metabolic function in leiomyoma cells. PLIN2 deficiency also reprograms leiomyoma cells to a proproliferative phenotype. These findings introduce metabolomics as an area to explore to better understand leiomyoma tumorigenesis.
Collapse
Affiliation(s)
- Ijeoma Okeigwe
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Serdar Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shimeng Liu
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alfred W Rademaker
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John S Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stacy Kujawa
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jared Robins
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Correspondence and Reprint Requests: Ping Yin, MD, PhD, Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Suite 4-121, Chicago, Illinois 60611. E-mail:
| |
Collapse
|
41
|
Dey P, Son JY, Kundu A, Kim KS, Lee Y, Yoon K, Yoon S, Lee BM, Nam KT, Kim HS. Knockdown of Pyruvate Kinase M2 Inhibits Cell Proliferation, Metabolism, and Migration in Renal Cell Carcinoma. Int J Mol Sci 2019; 20:5622. [PMID: 31717694 PMCID: PMC6887957 DOI: 10.3390/ijms20225622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the activity of pyruvate kinase M2 (PKM2) isoform is crucial for the survival of tumor cells. However, the molecular mechanism underlying the function of PKM2 in renal cancer is undetermined. Here, we reveal the overexpression of PKM2 in the proximal tubule of renal tumor tissues from 70 cases of patients with renal carcinoma. The functional role of PKM2 in human renal cancer cells following small-interfering RNA-mediated PKM2 knockdown, which retarded 786-O cell growth was examined. Targeting PKM2 affected the protein kinase B (AKT)/mechanistic target of the rapamycin 1 (mTOR) pathway, and downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, and other downstream signaling key proteins. PKM2 knockdown changed glycolytic metabolism, mitochondrial function, adenosine triphosphate (ATP) level, and intracellular metabolite formation and significantly reduced 786-O cell migration and invasion. Acridine orange and monodansylcadaverine staining, immunocytochemistry, and immunoblotting analyses revealed the induction of autophagy in renal cancer cells following PKM2 knockdown. This is the first study to indicate PKM2/AKT/mTOR as an important regulatory axis mediating the changes in the metabolism of renal cancer cells.
Collapse
Affiliation(s)
- Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Yura Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea;
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| |
Collapse
|
42
|
Wang S, Chai K, Chen J. A novel prognostic nomogram based on 5 long non-coding RNAs in clear cell renal cell carcinoma. Oncol Lett 2019; 18:6605-6613. [PMID: 31788117 PMCID: PMC6865834 DOI: 10.3892/ol.2019.11009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and invasive histological subtype of all kidney malignancies, with high levels of incidence and mortality. In the present study, long non-coding (lnc)RNA expression profiles of patients with ccRCC from The Cancer Genome Atlas database were comprehensively analyzed to identify differentially expressed lncRNAs (DElncRNAs). The patients with ccRCC were then divided into training and validation cohorts. Univariate and LASSO regression analyses were performed to select the most significant survival-associated candidate DElncRNAs in the training cohort. Multivariate Cox regression analysis was then performed to develop a risk score formula and a prognostic nomogram for predicting 3- and 5-year overall survival (OS). The accuracies of the nomogram predictions were evaluated by determining the area under the receiver operating characteristic curve (AUC) and a calibration plot. Finally, functional enrichment analysis and protein-protein interaction network prediction were implemented to predict the functions and molecular mechanisms of the candidate DElncRNAs in ccRCC. A total of 1,553 DElncRNAs were identified, and 5 candidate DElncRNAs (AC026992.2, AC245041.2, LINC00524, LINC01956 and LINC02080) were included in the nomogram. The AUC values for 3- and 5-year overall survival in the training cohort were 0.768 and 0.814, respectively, which were increased compared with that based on the clinical index (0.760 and 0.694, respectively). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the 521 mRNAs highly associated with 5 DElncRNAs were primarily involved in 17 terms and 25 pathways, respectively. Based on the 5 DElncRNAs, a novel and convenient prognostic nomogram for predicting 3- and 5-year OS for patients with ccRCC was developed. The results of the present study may be conducive to the development of a precise predictive tool for the prognosis of ccRCC and may provide information regarding the molecular mechanisms of ccRCC. However, additional experimental in vitro and in vivo studies investigating lncRNAs may be required.
Collapse
Affiliation(s)
- Sheng Wang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, P.R. China.,Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Kequn Chai
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Jiabin Chen
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
43
|
Bæk Møller N, Budolfsen C, Grimm D, Krüger M, Infanger M, Wehland M, E. Magnusson N. Drug-Induced Hypertension Caused by Multikinase Inhibitors (Sorafenib, Sunitinib, Lenvatinib and Axitinib) in Renal Cell Carcinoma Treatment. Int J Mol Sci 2019; 20:ijms20194712. [PMID: 31547602 PMCID: PMC6801695 DOI: 10.3390/ijms20194712] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
This paper reviews current treatments for renal cell carcinoma/cancer (RCC) with the multikinase inhibitors (MKIs) sorafenib, sunitinib, lenvatinib and axitinib. Furthermore, it compares these drugs regarding progression-free survival, overall survival and adverse effects (AE), with a focus on hypertension. Sorafenib and sunitinib, which are included in international clinical guidelines as first- and second-line therapy in metastatic RCC, are now being challenged by new-generation drugs like lenvatinib and axitinib. These drugs have shown significant clinical benefits for patients with RCC, but all four induce a variety of AEs. Hypertension is one of the most common AEs related to MKI treatment. Comparing sorafenib, sunitinib and lenvatinib revealed that sorafenib and sunitinib had the same efficacy, but sorafenib was safer to use. Lenvatinib showed better efficacy than sorafenib but worse safety. No trials have yet been completed that compare lenvatinib with sunitinib. Although axitinib promotes slightly higher hypertension rates compared to sunitinib, the overall discontinuation rate and cardiovascular complications are favourable. Although the mean rate of patients who develop hypertension is similar for each drug, some trials have shown large differences, which could indicate that lifestyle and/or genetic factors play an additional role.
Collapse
Affiliation(s)
- Nanna Bæk Møller
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (N.B.M.); (C.B.)
| | - Cecilie Budolfsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (N.B.M.); (C.B.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (N.B.M.); (C.B.)
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.K.); (M.I.); (M.W.)
- Correspondence: ; Tel.: +45-8716-7693
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.K.); (M.I.); (M.W.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.K.); (M.I.); (M.W.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.K.); (M.I.); (M.W.)
| | - Nils E. Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark;
| |
Collapse
|
44
|
Liu Y, Cheng G, Song Z, Xu T, Ruan H, Cao Q, Wang K, Bao L, Liu J, Zhou L, liu D, Yang H, Chen K, Zhang X. RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma. Int J Oncol 2019; 55:645-656. [PMID: 31364727 PMCID: PMC6685597 DOI: 10.3892/ijo.2019.4849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
As one of the most commonly reported malignancies of the urinary system, clear cell renal cell carcinoma (ccRCC) is an advanced metastatic tumor with high mortality rates. The Rac family small GTPase 2 (RAC2) is a member of the Rho GTPases. Although Rho GTPases play an important role in numerous different types of tumor, whether they have functions in ccRCC remains uncertain. The present study utilized bioinformatics analyses in order to compare the expression levels of RAC2 in ccRCC tumors vs. adjacent tissues, and assessed the association between RAC2 expression and clinicopathological parameters. Furthermore, reverse transcription‑quantitative PCR, western blotting and immunohistochemistry assays were performed to validate RAC2 expression levels in human ccRCC tissues and cell lines. Functional experiments were also conducted in order to identify the roles of RAC2 in vitro. The results revealed that RAC2 was upregulated in ccRCC tissues and cell lines. In addition, elevated expression levels of RAC2 were significantly associated with a poor overall survival (P=0.0061), higher Tumor‑Node‑Metastasis stage and worse G grade. Receiver operating characteristic analysis indicated that high expression levels of RAC2 could be a diagnostic index for ccRCC (area under the curve, 0.9095; P<0.0001). Furthermore, knockdown of RAC2 in vitro attenuated the proliferation, migration and invasion of renal carcinoma cells. In conclusion, the results of the present study demonstrated that RAC2 may act as a promising prognostic and diagnostic biomarker of ccRCC, and could be considered as a potential therapeutic target for treating ccRCC.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Di liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| |
Collapse
|
45
|
Pi H, Wang Z, Liu M, Deng P, Yu Z, Zhou Z, Gao F. SCD1 activation impedes foam cell formation by inducing lipophagy in oxLDL-treated human vascular smooth muscle cells. J Cell Mol Med 2019; 23:5259-5269. [PMID: 31119852 PMCID: PMC6652860 DOI: 10.1111/jcmm.14401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of fat-laden foam cells, which contributes to the fatty streaks in the plaques of atheromas, is an important process in atherosclerosis. Vascular smooth muscle cells (VSMCs) are a critical origin of foam cells. However, the mechanisms that underlie VSMC foam cell formation are not yet completely understood. Here, we demonstrated that oxidized low-density lipoprotein (oxLDL) inhibited lipophagy by suppressing lipid droplet (LD)-lysosome fusion and increased VSMC foam cell formation. Moreover, although oxLDL treatment inhibited lysosomal biogenesis, it had no significant effect on lysosomal proteolysis and lysosomal pH. Notably, through TMT-based quantitative proteomic analysis and database searching, 94 differentially expressed proteins were identified, of which 54 were increased and 40 were decreased in the oxLDL group compared with those in the control group. Subsequently, SCD1, a protein of interest, was further investigated. SCD1 levels in the VSMCs were down-regulated by exposure to oxLDL in a time-dependent manner and the interaction between SCD1 and LDs was also disrupted by oxLDL. Importantly, SCD1 overexpression enhanced LD-lysosome fusion, increased lysosomal biogenesis and inhibited VSMC foam cell formation by activating TFEB nuclear translocation and its reporter activity. Modulation of the SCD1/TFEB-mediated lipophagy machinery may offer novel therapeutic approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Huifeng Pi
- School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Zhen Wang
- School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| | - Mengyu Liu
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Ping Deng
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Zhengping Yu
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
- State Key Laboratory of Trauma, Burns and Combined InjuryThird Military Medical UniversityChongqingChina
| | - Zhou Zhou
- Department of Environmental Medicine, Department of Emergency Medicine of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Feng Gao
- School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| |
Collapse
|
46
|
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dančík V, Leshchiner ES, Viswanathan VS, Signoretti S, Choueiri TK, Boehm JS, Wagner BK, Doench JG, Clish CB, Clemons PA, Schreiber SL. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 2019; 10:1617. [PMID: 30962421 PMCID: PMC6453886 DOI: 10.1038/s41467-019-09277-9] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.
Collapse
Affiliation(s)
- Yilong Zou
- The Broad Institute, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Amy A Deik
- The Broad Institute, Cambridge, MA, 02142, USA
| | - Haoxin Li
- The Broad Institute, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Wenyu Wang
- The Broad Institute, Cambridge, MA, 02142, USA
| | | | | | | | | | | | | | - Sabina Signoretti
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | | | | | - Stuart L Schreiber
- The Broad Institute, Cambridge, MA, 02142, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
47
|
Perilipin 5 and Lipocalin 2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11030385. [PMID: 30893876 PMCID: PMC6468921 DOI: 10.3390/cancers11030385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers worldwide. Therefore, current global research focuses on molecular tools for early diagnosis of HCC, which can lead to effective treatment at an early stage. Perilipin 5 (PLIN5) has been studied as one of the main proteins of the perilipin family, whose role is to maintain lipid homeostasis by inhibiting lipolysis. In this study, we show for the first time that PLIN5 is strongly expressed in tumors of human patients with HCC as well as in mouse livers, in which HCC was genetically or experimentally induced by treatment with the genotoxic agent diethylnitrosamine. Moreover, the secreted acute phase glycoprotein Lipocalin 2 (LCN2) established as a biomarker of acute kidney injury, is also proven to indicate liver injury with upregulated expression in numerous cases of hepatic damage, including steatohepatitis. LCN2 has been studied in various cancers, and it has been assigned roles in multiple cellular processes such as the suppression of the invasion of HCC cells and their metastatic abilities. The presence of this protein in blood and urine, in combination with the presence of α-Fetoprotein (AFP), is hypothesized to serve as a biomarker of early stages of HCC. In the current study, we show in humans and mice that LCN2 is secreted into the serum from liver cancer tissue. We also show that AFP-positive hepatocytes represent the main source for the massive expression of LCN2 in tumoral tissue. Thus, the strong presence of PLIN5 and LCN2 in HCC and understanding their roles could establish them as markers for diagnosis or as treatment targets against HCC.
Collapse
|
48
|
Identification of EGFR as a Novel Key Gene in Clear Cell Renal Cell Carcinoma (ccRCC) through Bioinformatics Analysis and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6480865. [PMID: 30895194 PMCID: PMC6393869 DOI: 10.1155/2019/6480865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) was the most aggressive histological type of renal cell carcinoma (RCC) and accounted for 70-80% of cases of all RCC. The aim of this study was to identify the potential biomarker in ccRCC and explore their underlying mechanisms. Four profile datasets were downloaded from the GEO database to identify DEGs. GO and KEGG analysis of DEGs were performed by DAVID. A protein-protein interaction (PPI) network was constructed to predict hub genes. The hub gene expression within ccRCC across multiple datasets and the overall survival analysis were investigated utilizing the Oncomine Platform and UALCAN dataset, separately. A meta-analysis was performed to explore the relationship between the hub genes: EGFR and ccRCC. 127 DEGs (55 upregulated genes and 72 downregulated genes) were identified from four profile datasets. Integrating the result from PPI network, Oncomine Platform, and survival analysis, EGFR, FLT1, and EDN1 were screened as key factors in the prognosis of ccRCC. GO and KEGG analysis revealed that 127 DEGs were mainly enriched in 21 terms and 4 pathways. The meta-analysis showed that there was a significant difference of EGFR expression between ccRCC tissues and normal tissues, and the expression of EGFR in patients with metastasis was higher. This study identified 3 importance genes (EGFR, FLT1, and EDN1) in ccRCC, and EGFR may be a potential prognostic biomarker and novel therapeutic target for ccRCC, especially patients with metastasis.
Collapse
|
49
|
Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma-Bench-to-Bedside Therapy. Int J Mol Sci 2018; 19:ijms19113378. [PMID: 30380599 PMCID: PMC6275006 DOI: 10.3390/ijms19113378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies.
Collapse
|
50
|
Song Z, Cao Q, Ruan H, Yang H, Wang K, Bao L, Cheng G, Xu T, Xiao H, Wang C, Liu D, Chen K, Zhang X. RCAN1.4 acts as a suppressor of cancer progression and sunitinib resistance in clear cell renal cell carcinoma. Exp Cell Res 2018; 372:118-128. [PMID: 30267660 DOI: 10.1016/j.yexcr.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors in the urinary system, and its incidence continues to increase. Regulator of calcineurin 1 (RCAN1), one of the genes on chromosome 21, is a crucial mediator of tumor inhibition. RCAN1.4 is best characterized as an endogenous inhibitor of the phosphatase calcineurin, and it has been observed to be downregulated in numerous types of cancer. However, its essential function remains unclear in ccRCC. In the present study, we found that RCAN1.4 expression was frequently downregulated in renal cell carcinoma tissues and cells and was inversely correlated with various clinicopathological parameters. Low RCAN1.4 expression was associated with poor overall survival and disease-free survival and could act as a diagnostic indicator in ccRCC patients. Furthermore, the overexpression of RCAN1.4 inhibited cell proliferation, migration and invasion, whereas RCAN1.4 knockdown promoted these functions in ccRCC cell lines. In addition, RCAN1.4 expression was downregulated in sunitinib-resistant renal cancer cell lines, and inhibition of RCAN1.4 promoted sunitinib resistance. We also found that RCAN1.4 could regulate epithelial-mesenchymal transition (EMT) and the expression of HIF2α in sunitinib-resistant cell lines. Taken together, these findings indicate that downregulation of RCAN1.4 may be crucial for the metastasis of ccRCC and may induce sunitinib resistance. RCAN1.4 may act as a prognostic indicator and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haibing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|