1
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
2
|
Ciftel S, Mercantepe T, Aktepe R, Pinarbas E, Ozden Z, Yilmaz A, Mercantepe F. Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia-Reperfusion Rat Model via Endoplasmic Reticulum Stress. Biomedicines 2024; 12:2299. [PMID: 39457612 PMCID: PMC11504293 DOI: 10.3390/biomedicines12102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute mesenteric ischemia can lead to severe liver damage due to ischemia-reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. METHODS Twenty-four rats were divided into four groups: control, I/R, I/R+TMZ, and I/R+DEX. TMZ (20 mg/kg) was administered orally for seven days, and DEX (100 µg/kg) was given intraper-itoneally 30 min before I/R induction. Liver tissues were analyzed for creatinine, alanine ami-notransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBARS), and total thiol (TT) levels. RESULTS Compared with the control group, the I/R group presented significantly increased AST, ALT, TBARS, and TT levels. TMZ notably reduced creatinine levels. I/R caused significant liver necrosis, inflammation, and congestion. TMZ and DEX treatments reduced this histopathological damage, with DEX resulting in a more significant reduction in infiltrative areas and vascular congestion. The increase in the expression of caspase-3, Bax, 8-OHdG, C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) decreased with the TMZ and DEX treatments. In addition, Bcl-2 positivity decreased both in the TMZ and DEX treatments. CONCLUSIONS Both TMZ and DEX have protective effects against liver damage. These effects are likely mediated through the reduction in ERS and apoptosis, with DEX showing slightly superior protective effects compared with TMZ.
Collapse
Affiliation(s)
- Sedat Ciftel
- Department of Gastroenterology and Hepatology, Erzurum Regional Education and Research Hospital, 25070 Erzurum, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Riza Aktepe
- Department of Anatomy, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
3
|
Cheung MML, Shah A. Minimizing Narcotic Use in Rhinoplasty: An Updated Narrative Review and Protocol. Life (Basel) 2024; 14:1272. [PMID: 39459572 PMCID: PMC11509072 DOI: 10.3390/life14101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Opioids are commonly used to reduce pain after surgery; however, there are severe side effects and complications associated with opioid use, with addiction being of particular concern. Recent practice has shifted to reduce opioid consumption in surgery, although a specific protocol for rhinoplasty is still in progress. This paper aims to expand on the protocol previously established by the senior author based on updated evidence and details. This was accomplished by first high-lighting and summarizing analgesic agents with known opioid-reducing effects in the surgical field, with a particular focus on rhinoplasty, then compiling these analgesic options into a recommended protocol based on the most effective timing of administration (preoperative, intraoperative, postoperative). The senior author's previous article on the subject was referenced to compile a list of analgesic agents of importance. Each analgesic agent was then searched in PubMed in conjunction with "rhinoplasty" or "opioid sparing" to find relevant primary sources and systematic reviews. The preferred analgesic agents included, as follows: preoperative, 1000 mg oral acetaminophen, 200 mg of oral celecoxib twice daily for 5 days, and 1200 mg oral gabapentin; intraoperative, 0.75 μg/kg of intravenous dexmedetomidine and 1-2 mg/kg injected lidocaine with additional 2-4 mg/kg per hour or 1.5 cc total bupivacaine nerve block injected along the infraorbital area bilaterally and in the subnasal region; and postoperatively, 5 mg oral acetaminophen and 400 mg of oral celecoxib. When choosing specific analgesic agents, considerations include potential side effects, contraindications, and the drug-specific mode of administration.
Collapse
Affiliation(s)
- Madison Mai-Lan Cheung
- College of Medicine at Rockford, University of Illinois Chicago, Rockford, IL 61107, USA
| | - Anil Shah
- Department of Surgery, Section of Otolaryngology, University of Chicago, Chicago, IL 60637, USA
- Shah Aesthetics, Chicago, IL 60654, USA
| |
Collapse
|
4
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Yuan H, Guo J, Wang C, Zhang C. Alleviation effects of dexmedetomidine on myocardial ischemia/reperfusion injury through fatty acid metabolism pathway via Elovl6. Int Immunopharmacol 2024; 138:112588. [PMID: 38955031 DOI: 10.1016/j.intimp.2024.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Dexmedetomidine (Dex) is widely used in the sedation in intensive care units and as an anesthetic adjunct. Considering the anti-inflammatory and antioxidant properties of Dex, we applied in vivo rat model as well as in vitro cardiomyocyte models (embryonic rat cardiomyocytes H9c2 cells and neonatal rat cardiomyocytes, NRCMs) to evaluate the effects of Dex against myocardial ischemia reperfusion (I/R) injury. Transcriptomic sequencing for gene expression in heart tissues from control rats and Dex-treated rats identified that genes related to fatty acid metabolism were significantly regulated by Dex. Among these genes, the elongation of long-chain fatty acids (ELOVL) family member 6 (Elovl6) was most increased upon Dex-treatment. By comparing the effects of Dex on both wild type and Elovl6-knockdown H9c2 cells and NRCMs under oxygen-glucose deprivation/reoxygenation (OGD/R) challenge, we found that Elovl6 knockdown attenuated the protection efficiency of Dex, which was supported by the cytotoxicity endpoints (cell viability and lactate dehydrogenase release) and apoptosis as well as key gene expressions. These results indicate that Dex exhibited the protective function against myocardial I/R injury via fatty acid metabolism pathways and Elovl6 plays a key role in the process, which was further confirmed using palmitate exposure in both cells, as well as in an in vivo rat model. Overall, this study systematically evaluates the protective effects of Dex on the myocardial I/R injury and provides better understanding on the fatty acid metabolism underlying the beneficial effects of Dex.
Collapse
Affiliation(s)
- Haozheng Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi 710004, China
| | - Jingying Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi 710004, China
| | - Congxia Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi 710004, China
| | - Chunyan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
6
|
Yao X, Liu Y, Sui Y, Zheng M, Zhu L, Li Q, Irwin MG, Yang L, Zhan Q, Xiao J. Dexmedetomidine facilitates autophagic flux to promote liver regeneration by suppressing GSK3β activity in mouse partial hepatectomy. Biomed Pharmacother 2024; 177:117038. [PMID: 39002441 DOI: 10.1016/j.biopha.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3β and Flag-tagged GSK3β, α2-ADR antagonist, GSK3β inhibitor, AKT inhibitor were used to identify the role of GSK3β in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3β activity by SB216763 and si-GSK3β enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3β activity in an α2-ADR-dependent manner.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yongheng Sui
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Miao Zheng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| |
Collapse
|
7
|
Zhu M, Yuan Z, Wen C, Wei X. DEX Inhibits H/R-induced Cardiomyocyte Ferroptosis by the miR-141-3p/lncRNA TUG1 Axis. Thorac Cardiovasc Surg 2024. [PMID: 38889747 DOI: 10.1055/s-0044-1787691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Ferroptosis is emerging as a critical pathway in ischemia/reperfusion (I/R) injury, contributing to compromised cardiac function and predisposing individuals to sepsis and myocardial failure. The study investigates the underlying mechanism of dexmedetomidine (DEX) in hypoxia/reoxygenation (H/R)-induced ferroptosis in cardiomyocytes, aiming to identify novel targets for myocardial I/R injury treatment. METHODS H9C2 cells were subjected to H/R and treated with varying concentrations of DEX. Additionally, H9C2 cells were transfected with miR-141-3p inhibitor followed by H/R treatment. Levels of miR-141-3p, long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1), Fe2+, glutathione (GSH), and malondialdehyde were assessed. Reactive oxygen species (ROS) generation was measured via fluorescent labeling. Expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) was determined using Western blot. The interaction between miR-141-3p and lncRNA TUG1 was evaluated through RNA pull-down assay and dual-luciferase reporter gene assays. The stability of lncRNA TUG1 was assessed using actinomycin D. RESULTS DEX ameliorated H/R-induced cardiomyocyte injury and elevated miR-141-3p expression in cardiomyocytes. DEX treatment increased cell viability, Fe2+, and ROS levels while decreasing ACSL4 protein expression. Furthermore, DEX upregulated GSH and GPX4 protein levels. miR-141-3p targeted lncRNA TUG1, reducing its stability and overall expression. Inhibition of miR-141-3p or overexpression of lncRNA TUG1 partially reversed the inhibitory effect of DEX on H/R-induced ferroptosis in cardiomyocytes. CONCLUSION DEX mitigated H/R-induced ferroptosis in cardiomyocytes by upregulating miR-141-3p expression and downregulating lncRNA TUG1 expression, unveiling a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Zhiguo Yuan
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Chuanyun Wen
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Xiaojia Wei
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| |
Collapse
|
8
|
Pan B, Qian Y, Han B. Association of dexmedetomidine and intraoperative thermal insulation with postoperative outcomes in colorectal cancer resection. Int J Neurosci 2024:1-7. [PMID: 38712830 DOI: 10.1080/00207454.2024.2352772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To investigate the effects of dexmedetomidine combined with intraoperative thermal insulation on postoperative cognitive function, cellular immune status and inflammatory markers in patients undergoing radical resection for colorectal cancer. METHODS Fifty patients who underwent radical resection of colorectal cancer in our hospital from March 2020 to September 2021 were selected and divided into observation group (26 cases with dexmedetomidine combined with intraoperative thermal insulation intervention) and control group (24 cases with conventional anesthesia management). The evaluation measures included the mini-mental state scale (MMSE) score, CD4+ T cell, CD8+ T cell ratio and CD4+/CD8+ ratio, the level of inflammatory markers (IL-6, TNF-α, CRP), and the incidence of postoperative complications. RESULTS The MMSE score of the observation group was significantly higher than that of the control group on the 3rd day after operation (p < 0.001). After treatment, the proportion of CD4+ T cells, the proportion of CD8+ T cells and the ratio of CD4+/CD8+ in observation group were higher than those in control group (p < 0.01), while the inflammatory markers IL-6, TNF-α and CRP were lower than those in control group (p < 0.01). The incidence of postoperative cognitive dysfunction (POCD) in the observation group (7.69%) was significantly lower than that in the control group (33.33%) (p = 0.010), and the postoperative infection rate was also significantly decreased (p = 0.042). CONCLUSION Dexmedetomidine combined with intraoperative insulation can significantly improve postoperative cognitive function, maintain immune balance, reduce inflammatory response, and reduce the incidence of POCD and other postoperative complications in patients with radical resection of colorectal cancer.
Collapse
Affiliation(s)
- Bei Pan
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Yuying Qian
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Bei Han
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| |
Collapse
|
9
|
Nagliya D, Baggio Lopez T, Del Calvo G, Stoicovy RA, Borges JI, Suster MS, Lymperopoulos A. Differential Modulation of Catecholamine and Adipokine Secretion by the Short Chain Fatty Acid Receptor FFAR3 and α 2-Adrenergic Receptors in PC12 Cells. Int J Mol Sci 2024; 25:5227. [PMID: 38791266 PMCID: PMC11120680 DOI: 10.3390/ijms25105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gβγ-activated phospholipase C (PLC)-β/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (D.N.); (T.B.L.); (G.D.C.); (R.A.S.); (J.I.B.); (M.S.S.)
| |
Collapse
|
10
|
Huang Z, Bai Y, Chen Y, Chen Y, Jiang Y, Zhou J. Attenuation of intestinal ischemia-reperfusion-injury by anesthetics: a potentially protective effect of anesthetic management in experimental studies. Front Pharmacol 2024; 15:1367170. [PMID: 38444936 PMCID: PMC10912591 DOI: 10.3389/fphar.2024.1367170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal ischemia-reperfusion injury (IRI) is a potentially severe clinical syndrome after major surgical procedures. In addition to causing intestinal mucosa injury, intestinal IRI further damages distant organs, causing the severity of the condition in patients. So far, effective therapy for intestinal IRI is still absent, and the survival rate of the patients is low. Previous experimental studies have shown that some anesthetics can alleviate intestinal IRI and protect organs while exerting their pharmacological effects, indicating that reasonable perioperative anesthesia management may provide potential benefits for patients to avoid intestinal IRI. These meaningful findings drive scholars to investigate the mechanism of anesthetics in treating intestinal IRI in-depth to discuss the possible new clinical uses. In the present mini-review, we will introduce the protective effects of different anesthetics in intestinal IRI to help us enrich our knowledge in this area.
Collapse
Affiliation(s)
- Zhan Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ying Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
12
|
Hu B, Tian T, Li XT, Hao PP, Liu WC, Chen YG, Jiang TY, Chen PS, Cheng Y, Xue FS. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep 2023; 28:2158526. [PMID: 36738240 PMCID: PMC9904316 DOI: 10.1080/13510002.2022.2158526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To observe the protective effects of dexmedetomidine (Dex) postconditioning on myocardial ischemia/reperfusion injury (IRI) and to explore its potential molecular mechanisms. METHODS One-hundred forty-seven male Sprague-Dawley rats were randomly divided into five groups receiving the different treatments: Sham, ischemia/reperfusion (I/R), Dex, Brusatol, Dex + Brusatol. By the in vivo rat model of myocardial IRI, cardioprotective effects of Dex postconditioning were evaluated by assessing serum CK-MB and cTnI levels, myocardial HE and Tunel staining and infarct size. Furthermore, the oxidative stress-related markers including intracellular ROS level, myocardial tissue MDA level, SOD and GSH-PX activities were determined. RESULTS Dex postconditioning significantly alleviated myocardial IRI, decreased intracellular ROS and myocardial tissue MDA level, increased SOD and GSH-PX activities. Dex postconditioning significantly up-regulated myocardial expression of Bcl-2, down-regulated Bax and cleaved caspase-3 and decreased cardiomyocyte apoptosis rate. furthermores, Dex postconditioning promoted Nrf2 nuclear translocation, increased myocardial expression of Sirt3 and SOD2 and decreased Ac-SOD2. However, brusatol reversed cardioprotective benefits of Dex postconditioning, significantly decreased Dex-induced Nrf2 nuclear translocation and reduced myocardial expression of Sirt3 and SOD2. CONCLUSIONS Dex postconditioning can alleviate myocardial IRI by suppressing oxidative stress and apoptosis, and these beneficial effects are at least partly mediated by activating the Nrf2/Sirt3/SOD2 signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xin-Tao Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Pei Hao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wei-Chao Liu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ying-Gui Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian-Yu Jiang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Shan Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Cheng
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| |
Collapse
|
13
|
Hou M, Chen F, He Y, Tan Z, Han X, Shi Y, Xu Y, Leng Y. Dexmedetomidine against intestinal ischemia/reperfusion injury: A systematic review and meta-analysis of preclinical studies. Eur J Pharmacol 2023; 959:176090. [PMID: 37778612 DOI: 10.1016/j.ejphar.2023.176090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.
Collapse
Affiliation(s)
- Min Hou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Xuena Han
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yunpeng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Abuelazm MT, Ghanem A, Johanis A, Mahmoud A, Hassan AR, Katamesh BE, Amin MA, Abdelazeem B. Reno-protective effects of perioperative dexmedetomidine in kidney transplantation: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 2023; 55:2545-2556. [PMID: 36997837 PMCID: PMC10499682 DOI: 10.1007/s11255-023-03568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND OBJECTIVE There is currently no FDA-approved medical therapy for delayed graft function (DGF). Dexmedetomidine (DEX) has multiple reno-protective effects preventing ischemic reperfusion injury, DGF, and acute kidney injury. Therefore, we aimed to evaluate the reno-protective effects of perioperative DEX during renal transplantation. METHODS A systematic review and meta-analysis synthesizing randomized controlled trials (RCTs) from WOS, SCOPUS, EMBASE, PubMed, and CENTRAL until June 8th, 2022. We used the risk ratio (RR) for dichotomous outcomes and the mean difference for continuous outcomes; both presented with the corresponding 95% confidence interval (CI). We registered our protocol in PROSPERO with ID: CRD42022338898. RESULTS We included four RCTs with 339 patients. Pooled risk ratio found no difference between DEX and placebo in reducing DGF (RR: 0.58 with 95% CI [0.34, 1.01], p = 0.05) and acute rejection (RR: 0.88 with 95% CI [0.52, 1.49], p = 0.63). However, DEX improved short-term creatinine on day 1 (MD: - 0.76 with 95% CI [- 1.23, - 0.3], p = 0.001) and day 2 (MD: - 0.28 with 95% CI [- 0.5, - 0.07], p = 0.01); and blood urea nitrogen on day 2 (MD: - 10.16 with 95% CI [- 17.21, - 3.10], p = 0.005) and day 3 (MD: - 6.72 with 95% CI [- 12.85, - 0.58], p = 0.03). CONCLUSION Although there is no difference between DEX and placebo regarding reducing DGF and acute rejection after kidney transplantation, there may be some evidence that it has reno-protective benefits because we found statistically significant improvement in the short-term serum creatinine and blood urea nitrogen levels. More trials are required to investigate the long-term reno-protective effects of DEX.
Collapse
Affiliation(s)
| | - Ahmed Ghanem
- Cardiology Department, The Lundquist Institute, Torrance, CA, USA
| | - Amit Johanis
- Faculty of Medicine, Creighton University, Phoenix, AZ, USA
| | | | | | | | | | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, MI, USA
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Inoue G, Ohtaki Y, Satoh K, Odanaka Y, Katoh A, Suzuki K, Tomita Y, Eiraku M, Kikuchi K, Harano K, Yagi M, Uchida N, Dohi K. Sedation Therapy in Intensive Care Units: Harnessing the Power of Antioxidants to Combat Oxidative Stress. Biomedicines 2023; 11:2129. [PMID: 37626626 PMCID: PMC10452444 DOI: 10.3390/biomedicines11082129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
In critically ill patients requiring intensive care, increased oxidative stress plays an important role in pathogenesis. Sedatives are widely used for sedation in many of these patients. Some sedatives are known antioxidants. However, no studies have evaluated the direct scavenging activity of various sedative agents on different free radicals. This study aimed to determine whether common sedatives (propofol, thiopental, and dexmedetomidine (DEX)) have direct free radical scavenging activity against various free radicals using in vitro electron spin resonance. Superoxide, hydroxyl radical, singlet oxygen, and nitric oxide (NO) direct scavenging activities were measured. All sedatives scavenged different types of free radicals. DEX, a new sedative, also scavenged hydroxyl radicals. Thiopental scavenged all types of free radicals, including NO, whereas propofol did not scavenge superoxide radicals. In this retrospective analysis, we observed changes in oxidative antioxidant markers following the administration of thiopental in patients with severe head trauma. We identified the direct radical-scavenging activity of various sedatives used in clinical settings. Furthermore, we reported a representative case of traumatic brain injury wherein thiopental administration dramatically affected oxidative-stress-related biomarkers. This study suggests that, in the future, sedatives containing thiopental may be redeveloped as an antioxidant therapy through further clinical research.
Collapse
Affiliation(s)
- Gen Inoue
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Yuhei Ohtaki
- Department of Emergency Medicine, School of Medicine, The Jikei University, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazue Satoh
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Yuki Odanaka
- Center for Instrumental Analysis, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akihito Katoh
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Keisuke Suzuki
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Yoshitake Tomita
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Manabu Eiraku
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Kazuki Kikuchi
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Kouhei Harano
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Masaharu Yagi
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
| | - Naoki Uchida
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University Karasuyama Hospital, 6-11-11 Kitakarasuyama, Setagaya-ku, Tokyo 157-8577, Japan
| | - Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (G.I.)
- Department of Emergency Medicine, School of Medicine, The Jikei University, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
16
|
Li J, Wang K, Liu M, He J, Zhang H, Liu H. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway. J Mol Histol 2023:10.1007/s10735-023-10120-1. [PMID: 37186301 DOI: 10.1007/s10735-023-10120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Dexmedetomidine has been shown to protect against cerebral ischemia-reperfusion injury (CIRI). Nevertheless, the precise mechanism is obscure. In order to explore the effect of dexmedetomidine pre-conditioning on autophagy against CIRI in rats, middle cerebral artery occlusion (MCAO) was conducted to establish cerebral ischemia-reperfusion (I/R) model in male SD rats with 2 h ischemia and 24 h reperfusion. Dexmedetomidine was delivered to rats at 10, 50 and 100 µg/kg doses respectively, and LY294002, a PI3K/Akt/mTOR pathway inhibitor, was administered at 10 mg/kg intraperitoneally 30 min before MCAO. Neurological deficit score was assessed and cerebral infarct size was detected by TTC staining. Morris water maze (MWM) was performed to estimate spatial learning and memory ability. Furthermore, to detect activity of PI3K/Akt/mTOR pathway and autophagy, p-Akt, p-mTOR, Beclin-1 and LC3 were measured by western blot. Our findings revealed that 50 and 100 µg/kg of dexmedetomidine pretreatment could improve the neurological deficit score and reduce cerebral infarct size after CIRI, while these effects were markedly suppressed by LY294002. In MWM test, dexmedetomidine was confirmed to shorten escape latency and increase times across platform after CIRI. Nevertheless, LY294002 pretreatment eliminated the improvement of dexmedetomidine on spatial learning and memory ability. Furthermore, dexmedetomidine pretreatment reduced ratios of Beclin-1 and LC3II/LC3I and elevated p-Akt/Akt and p-mTOR/mTOR after CIRI. However, above effects of dexmedetomidine were partly reversed by LY294002. Overall, dexmedetomidine pretreatment exerted neuroprotection against CIRI in rats by attenuating autophagy via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China.
| | - Keyan Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Jinhua He
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Huanhuan Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Huan Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| |
Collapse
|
17
|
Yan F, Wang P, Yang X, Wang F. Long non-coding RNA HOXA11-AS regulates ischemic neuronal death by targeting miR-337-3p/YBX1 signaling pathway: protective effect of dexmedetomidine. Aging (Albany NY) 2023; 15:2797-2811. [PMID: 37059588 PMCID: PMC10120896 DOI: 10.18632/aging.204648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) is a common neurological disease. Homeobox A11 antisense RNA (HOXA11-AS), a long non-coding RNA (lncRNA), has been demonstrated as an important regulator in diverse human cancers. However, its function and regulatory mechanism in ischemic stroke remains largely unknown. Dexmedetomidine (Dex) have received wide attraction because of its neuroprotective effects. This study aimed to explore the possible link between Dex and HOXA11-AS in protecting neuronal cells from by ischemia/reperfusion-induced apoptosis. We used oxygen-glucose deprivation and reoxygenation (OGD/R) in mouse neuroblastoma Neuro-2a cells and middle cerebral artery occlusion (MACO) mouse model to test the link. We found that Dex significantly alleviated OGD/R-induced DNA fragmentation, cell viability and apoptosis, and rescued the decreased HOXA11-AS expression after ischemic damage in Neuro-2a cells. Gain-/loss-of-function studies revealed that HOXA11-AS promoted proliferation, inhibited apoptosis in Neuro-2a cells exposed to OGD/R. Knockdown of HOXA11-AS decreased the protective effect of Dex on OGD/R cells. HOXA11-AS was found to transcriptionally regulate microRNA-337-3p (miR-337-3p) expression as evidenced by luciferase reporter assay, while miR-337-3p expression was upregulated following ischemia in vitro and in vivo. Besides, knockdown of miR-337-3p protected OGD/R-induced apoptotic death of Neuro-2a cells. Furthermore, HOXA11-AS functioned as a competing endogenous RNA (ceRNA) and competed with Y box protein 1 (Ybx1) mRNA for directly binding to miR-337-3p, which protected ischemic neuronal death. Dex treatment protected against ischemic damage and improved overall neurological functions in vivo. Our data suggest a novel mechanism of Dex neuroprotection for ischemic stroke through regulating lncRNA HOXA11-AS by targeting the miR-337-3p/Ybx1 signaling pathway, which might help develop new strategies for the therapeutic interventions in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fei Yan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710115, China
| | - Pinxiao Wang
- Department of Urology, Xi’an Medical University, Xi’an, Shaanxi 710068, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| |
Collapse
|
18
|
Park YH, Park HP, Kim E, Lee H, Hwang JW, Jeon YT, Lim YJ. The antioxidant effect of preischemic dexmedetomidine in a rat model: increased expression of Nrf2/HO-1 via the PKC pathway. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:177-185. [PMID: 34560114 PMCID: PMC10068566 DOI: 10.1016/j.bjane.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The precise underlying mechanism of antioxidant effects of dexmedetomidine-induced neuroprotection against cerebral ischemia has not yet been fully elucidated. Activation of Nuclear factor erythroid 2-related factor (Nrf2) and Heme Oxygenase-1 (HO-1) represents a major antioxidant-defense mechanism. Therefore, we determined whether dexmedetomidine increases Nrf2/HO-1 expression after global transient cerebral ischemia and assessed the involvement of Protein Kinase C (PKC) in the dexmedetomidine-related antioxidant mechanism. METHODS Thirty-eight rats were randomly assigned to five groups: sham (n...=...6), ischemic (n...=...8), chelerythrine (a PKC inhibitor; 5...mg.kg-1 IV administered 30...min before cerebral ischemia) (n...=...8), dexmedetomidine (100.....g.kg-1 IP administered 30...min before cerebral ischemia (n...=...8), and dexmedetomidine...+...chelerythrine (n...=...8). Global transient cerebral ischemia (10...min) was applied in all groups, except the sham group; histopathologic changes and levels of nuclear Nrf2 and cytoplasmic HO-1 were examined 24...hours after ischemia insult. RESULTS We found fewer necrotic and apoptotic cells in the dexmedetomidine group relative to the ischemic group (p...<...0.01) and significantly higher Nrf2 and HO-1 levels in the dexmedetomidine group than in the ischemic group (p...<...0.01). Additionally, chelerythrine co-administration with dexmedetomidine attenuated the dexmedetomidine-induced increases in Nrf2 and HO-1 levels (p...<...0.05 and p...<...0.01, respectively) and diminished its beneficial neuroprotective effects. CONCLUSION Preischemic dexmedetomidine administration elicited neuroprotection against global transient cerebral ischemia in rats by increasing Nrf2/HO-1 expression partly via PKC signaling, suggesting that this is the antioxidant mechanism underlying dexmedetomidine-mediated neuroprotection.
Collapse
Affiliation(s)
- Yong-Hee Park
- Chung-Ang University College of Medicine, Chung-Ang University Hospital, Department of Anesthesiology and Pain Medicine, Seoul, South Korea
| | - Hee-Pyoung Park
- Seoul National University College of Medicine, Seoul National University Hospital, Department of Anesthesiology and Pain Medicine, Seoul, South Korea
| | - Eugene Kim
- Hanyang University Medical Center, College of Medicine, Hanyang University, Department of Anesthesiology and Pain Medicine, Seoul, South Korea
| | - Hannah Lee
- Seoul National University College of Medicine, Seoul National University Hospital, Department of Anesthesiology and Pain Medicine, Seoul, South Korea
| | - Jung-Won Hwang
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Department of Anesthesiology and Pain Medicine, Seongnam, South Korea
| | - Young-Tae Jeon
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Department of Anesthesiology and Pain Medicine, Seongnam, South Korea
| | - Young-Jin Lim
- Seoul National University College of Medicine, Seoul National University Hospital, Department of Anesthesiology and Pain Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Cong D, Yu Y, Meng Y, Qi X. Dexmedetomidine (Dex) exerts protective effects on rat neuronal cells injured by cerebral ischemia/reperfusion via regulating the Sphk1/S1P signaling pathway. J Stroke Cerebrovasc Dis 2023; 32:106896. [PMID: 36395661 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.
Collapse
Affiliation(s)
- Dawei Cong
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yunlong Yu
- Department of Neurosurgery, Yantai Harbour Hospital, Yantai 264000, China.
| | - Yan Meng
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| | - Xia Qi
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| |
Collapse
|
20
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
22
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
23
|
Liu H, Li J, Jiang L, He J, Zhang H, Wang K. Dexmedetomidine pretreatment alleviates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation through the JAK2/STAT3 pathway. Braz J Med Biol Res 2022; 55:e12145. [PMID: 35858000 PMCID: PMC9296126 DOI: 10.1590/1414-431x2022e12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral
ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear.
This study was conducted to investigate whether DEX pretreatment conferred
neuroprotection against CIRI by inhibiting neuroinflammation through the
JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was
performed to establish a cerebral ischemia/reperfusion (I/R) model.
Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham,
I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa
score, TTC staining, and HE staining were used to evaluate brain damage. ELISA
was used to exam levels of TNF-α. Western blotting was used to assess the levels
of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3
(p-STAT3). Our results suggested that both pretreatment with DEX and AG490
decreased the Longa score and cerebral infarct areas following cerebral I/R.
After treatment with IL-6, the effects of DEX on abrogating these pathological
changes were reduced. HE staining revealed that I/R-induced neuronal
pathological changes were attenuated by DEX application, consistent with the
AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore,
TNF-α levels were significantly increased in the I/R group, accompanied by an
increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment
down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the
down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by
IL-6. Collectively, our results indicated that DEX pretreatment conferred
neuroprotection against CIRI by inhibiting neuroinflammation via negatively
regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China.,College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Li Jiang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jinhua He
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huanhuan Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Keyan Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
25
|
Kim Y, Cho M, Paulson B, Kim SH, Kim JK. Minimizing Motion Artifacts in Intravital Microscopy Using the Sedative Effect of Dexmedetomidine. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35599594 DOI: 10.1017/s1431927622000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among intravital imaging instruments, the intravital two-photon fluorescence excitation microscope has the advantage of enabling real-time 3D fluorescence imaging deep into cells and tissues, with reduced photobleaching and photodamage compared with conventional intravital confocal microscopes. However, excessive motion of organs due to involuntary movement such as breathing may result in out-of-focus images and severe fluorescence intensity fluctuations, which hinder meaningful imaging and analysis. The clinically approved alpha-2 adrenergic receptor agonist dexmedetomidine was administered to mice during two-photon fluorescence intravital imaging to alleviate this problem. As dexmedetomidine blocks the release of the neurotransmitter norepinephrine, pain is suppressed, blood pressure is reduced, and a sedation effect is observed. By tracking the quality of focus and stability of detected fluorescence in two-photon fluorescence images of fluorescein isothiocyanate-sensitized liver vasculature in vivo, we demonstrated that intravascular dexmedetomidine can reduce fluorescence fluctuations caused by respiration on a timescale of minutes in mice, improving image quality and resolution. The results indicate that short-term dexmedetomidine treatment is suitable for reducing involuntary motion in preclinical intravital imaging studies. This method may be applicable to other animal models.
Collapse
Affiliation(s)
- Youngkyu Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Minju Cho
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan, College of Medicine, 88, Olympic-ro 43-Gil, Seoul 05505, Republic of Korea
| |
Collapse
|
26
|
Zhao S, Wu W, Lin X, Shen M, Yang Z, Yu S, Luo Y. Protective effects of dexmedetomidine in vital organ injury: crucial roles of autophagy. Cell Mol Biol Lett 2022; 27:34. [PMID: 35508984 PMCID: PMC9066865 DOI: 10.1186/s11658-022-00335-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Vital organ injury is one of the leading causes of global deaths. Accumulating studies have demonstrated that dexmedetomidine (DEX) has an outstanding protective effect on multiple organs for its antiinflammatory and antiapoptotic properties, while the underlying molecular mechanism is not clearly understood. Autophagy, an adaptive catabolic process, has been found to play a crucial role in the organ-protective effects of DEX. Herein, we present a first attempt to summarize all the evidence on the proposed roles of autophagy in the action of DEX protecting against vital organ injuries via a comprehensive review. We found that most of the relevant studies (17/24, 71%) demonstrated that the modulation of autophagy was inhibited under the treatment of DEX on vital organ injuries (e.g. brain, heart, kidney, and lung), but several studies suggested that the level of autophagy was dramatically increased after administration of DEX. Albeit not fully elucidated, the underlying mechanisms governing the roles of autophagy involve the antiapoptotic properties, inhibiting inflammatory response, removing damaged mitochondria, and reducing oxidative stress, which might be facilitated by the interaction with multiple associated genes (i.e., hypoxia inducible factor-1α, p62, caspase-3, heat shock 70 kDa protein, and microRNAs) and signaling cascades (i.e., mammalian target of rapamycin, nuclear factor-kappa B, and c-Jun N-terminal kinases pathway). The authors conclude that DEX hints at a promising strategy in the management of vital organ injuries, while autophagy is crucially involved in the protective effect of DEX.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhenyu Yang
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Sicong Yu
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Yu Luo
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
| |
Collapse
|
27
|
Liu H, Busl KM, Doré S. Role of Dexmedetomidine in Aneurysmal Subarachnoid Hemorrhage: A Comprehensive Scoping Review. J Neurosurg Anesthesiol 2022; 34:176-182. [PMID: 33060552 DOI: 10.1097/ana.0000000000000728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
Dexmedetomidine (DEX), an α2-adrenergic agonist, has been widely used for anesthesia, pain control, and intensive care unit sedation. Besides sleep-like sedation, DEX has many other beneficial effects, such as anti-inflammation, antioxidation, and anticell death. Subarachnoid hemorrhage (SAH), a severe and potentially fatal form of stroke, is a complex disease that is divided into 2 phases: early brain injury and delayed cerebral ischemia. In each phase, several pathologic changes are involved, including disturbed intracranial homeostasis, metabolic failure, blood-brain barrier damage, vasospasm, microthrombosis, and cortical spreading depolarization. DEX has been shown to have an effect on these SAH-related pathologic processes. Research shows that DEX could serve as a protective therapy for patients with SAH due to its ability to maintain stable intracerebral homeostasis, balance coagulation-fibrinolysis, repair a damaged blood-brain barrier as well as prevent vasospasm and suppress cortical spreading depolarization by anti-inflammatory, antioxidative, antiapoptotic, and vasoconstriction-dilation effects. In this scoping review, we critically assess the existing data on the potential protective effect of DEX after SAH. So far, only 1 retrospective clinical trial assessing the effect of DEX on clinical outcomes after SAH has been performed. Hence, more trials are still needed as well as translational research bringing results from bench to bedside.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, ShaanXi Province, China
- Departments of Anesthesiology, Neurology, Psychiatry, Pharmaceutics, and Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease
| | - Katharina M Busl
- Neurology and Neurosurgery, University of Florida College of Medicine, Gainesville, FL
| | - Sylvain Doré
- Departments of Anesthesiology, Neurology, Psychiatry, Pharmaceutics, and Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease
| |
Collapse
|
28
|
Drug repurposing for stroke intervention. Drug Discov Today 2022; 27:1974-1982. [DOI: 10.1016/j.drudis.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
29
|
Liu Z, Jin Y, Feng C, Liu G, Wang Y, Zhao X, Liu G. Renoprotective Effect of Intraoperative Dexmedetomidine in Renal Transplantation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9275406. [PMID: 35211189 PMCID: PMC8863455 DOI: 10.1155/2022/9275406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Renal dysfunction after kidney transplantation may be influenced by many reasons. This study was designed to evaluate whether the administration of dexmedetomidine (Dex) could ameliorate renal function and prognosis after kidney transplantation. METHODS A total of 65 patients were divided into Dex group (n = 33) and Con group (Con, n = 32). Dex group intravenously received an initial loading dose of 0.6 μg/kg Dex for 15 min before anaesthesia induction, followed by a rate of 0.4 μg/kg/h until 30 min after kidney reperfusion. By contrast, Con group received saline. The concentration of urinary kidney injury molecule-1 (KIM-1), serum creatinine (Cr), blood urea, urine output, β2 microglobulin (β2-MG), Cystatin C (CysC), and estimated glomerular filtration rate (eGFR) was recorded and compared between two groups during the course of the hospitalization or follow-up. Mean arterial pressure (MAP) and heart rate (HR), vasoactive drugs, and anaesthetics were recorded during the operation. Pain degree was evaluated using a visual analogue scale (VAS) after operation. Delayed graft function (DGF), graft loss, length of hospital stay, and mortality were compared between groups. RESULTS The concentration of KIM-1 in Dex group was lower than Con group at 2 h (P = 0.018), 24 h (P = 0.013), 48 h (P < 0.01), and 72 h (P < 0.01) after reperfusion. MAP of Dex group after tracheal intubation (P = 0.012) and incision (P = 0.018) and HR after intubation (P = 0.021) were lower than that of Con group. The dosage of sufentanil during operation in Dex group was less than Con group (P = 0.039). Patients that used atropine in Dex group were more than Con group (P = 0.027). Patients who received Dex presented with lower VAS scores at 6 h (P = 0.01) and 12 h (P = 0.002) after operation. Concentration of serum Cr and blood urea had no significant differences between groups before operation and on postoperative day 1 to 6. Urine output was recorded for 6 days after operation and had no differences between groups. Also, no differences were identified between two groups in urea, Cr, β2-MG, CysC, and eGFR in the first 3 months after operation. Incidence of DGF after operation was detected no difference between groups, while length of hospital stay in Dex group was less than Con group (P = 0.012). CONCLUSION Dex can decrease kidney injury marker level, attenuate perioperative stress, relieve the dosage of sufentanil and postoperative pain, and reduce length of hospital stay. However, Dex is not associated with changes in prognosis in the first 3 months after transplantation.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanwu Jin
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chang Feng
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ge Liu
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Wang
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Zhao
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gang Liu
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
30
|
Yang S, Guo L, Wang D, Yang Y, Wang J. Research on Mechanism of miR-106a Nanoparticles Carrying Dexmedetomidine in Regulating Recovery and Metabolism of Nerve Cells in Hypoxia-Reoxygenation Injury. J Biomed Nanotechnol 2022; 18:343-351. [PMID: 35484744 DOI: 10.1166/jbn.2022.3244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the mechanism of miR-106a nanoparticles carrying dexmedetomidine (DEX) in regulating the recovery and metabolism of nerve cells in hypoxia-reoxygenation injury. Hippocampus neuron model in hypoxia-reoxygenation injury was prepared in vitro. Study groups were randomly divided into control set, ischemic reperfusion (IR) set, dexmedetomidine (DEX) set, miR-106a-nanoparticles (NPs) set and set of dexmedetomidine (DEX) and miR-106a-NPs. We studied miR-106a expression, proliferative and apoptotic activity, secretion of IL-6 and tumor necrosis factor (TNF)-α, quantity of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide, and also content of reactive oxygen species (ROS) and superoxide dismutases (SOD). Expressions of of Bax, Bcl-2 and NF-κB were also detected. Results showed that the expression of miR-106a in hippocampus neuron was reduced, while proliferation was reduced and apoptotic activity was increased. The secretions of IL-6 and TNF-α were increased, while the quantities of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide were reduced. Bax expression was also increased and Bcl-2 expression was reduced. Moreover, ROS content was increased and SOD activity was reduced, while the NF-κB presentation was increased. The above-mentioned changes could be reversed in IR set, DEX set and miR-106a-NPs set. The action was more notable in the DEX and miR-106a-NPs sets. Finally, the proliferation in hippocampus neuron in hypoxia-reoxygenation injury could be prompted and apoptosis could be restrained by DEX and miR-106a-NPs. The secretion of inflammatory factors could be restrained through restraining the inflammatory pathway and oxidative stress. The energy metabolism could therefore be improved effectively and recovery of nerve cells in HBI could be improved.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Lei Guo
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Duozi Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Yanwei Yang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| |
Collapse
|
31
|
Jia T, Xing Z, Wang And H, Li G. Protective effect of dexmedetomidine on intestinal mucosal barrier function in rats after cardiopulmonary bypass. Exp Biol Med (Maywood) 2021; 247:498-508. [PMID: 34878923 DOI: 10.1177/15353702211062509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiopulmonary bypass can result in damage to the intestines, leading to the occurrence of systemic inflammatory response syndrome. Dexmedetomidine is reported to confer anti-inflammatory properties. Here, the purpose of this study is to investigate the effect of dexmedetomidine on the intestinal mucosa barrier damage in a rat model of cardiopulmonary bypass. It was observed that cardiopulmonary bypass greatly decreased the levels of hemodynamic parameters than SHAM group, whereas dexmedetomidine pretreatment in a cardiopulmonary bypass model rat prevented this reduction. Also, it showed that compared with control animals, cardiopulmonary bypass caused obvious mucosal damage, which was attenuated in dexmedetomidine + cardiopulmonary bypass group. The above findings were in line with that of dexmedetomidine pretreatment, which increased the expression of tight junction proteins, but it decreased the levels of DAO, D-LA, FABP2, and endotoxin. Moreover, the results demonstrated that due to pre-administration of dexmedetomidine, the level of pro-inflammatory factors was decreased, while the level of anti-inflammatory cytokine was increased. Also, it showed that dexmedetomidine suppressed TLR4/JAK2/STAT3 pathway that was activated by cardiopulmonary bypass. Together, these results revealed that dexmedetomidine pretreatment relieves intestinal microcirculation, attenuates intestinal damage, and inhibits the inflammatory response of cardiopulmonary bypass model rats, demonstrating that in CPB-induced damage of intestinal mucosal barrier function, dexmedetomidine pretreatment plays a protective role by inactivating TLR4/JAK2/STAT3-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Tong Jia
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Zhen Xing
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Huijuan Wang And
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Guoli Li
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| |
Collapse
|
32
|
Lan X, Xu Y. Protective role of lidocaine against cerebral ischemia-reperfusion injury: An in vitro study. Exp Ther Med 2021; 23:42. [PMID: 34849157 PMCID: PMC8613535 DOI: 10.3892/etm.2021.10964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lidocaine, a local anesthetic, is a valuable agent for the treatment of neuronal ischemia/reperfusion (I/R) injury. The aim of the present study was to investigate the role of lidocaine in oxygen-glucose deprivation/reperfusion (OGD/R)-induced cortical neurons and explore the related molecular mechanisms. Cerebral cortical neurons were isolated from Sprague-Dawley rat embryos and stimulated with OGD/R to establish an in vitro I/R injury model. Subsequently, neuronal cell viability, cytotoxicity and apoptosis were evaluated by performing the MTT assay, lactate dehydrogenase (LDH) assay and flow cytometry, respectively. The results suggested that OGD/R exposure significantly decreased cerebral cortical neuron cell viability, accelerated LDH release and induced cell apoptosis compared with control neurons, indicating that cerebral I/R injury was stimulated by OGD/R treatment. Further investigation indicated that 10 µM lidocaine significantly enhanced neuronal cell viability, and reduced LDH release and neuronal cell apoptosis in OGD/R-exposed cells compared with the OGD/R + saline group, which indicated that lidocaine displayed neuroprotective effects against I/R damage. In addition, the findings of the present study suggested that OGD/R exposure significantly decreased Bcl-2 and Bcl-xl protein expression levels, but increased Bax protein expression levels, the Bax/Bcl-2 ratio and caspase-3 activity compared with control neurons. However, lidocaine reversed OGD/R-mediated alterations to apoptosis-related protein expression. Furthermore, the results of the present study indicated that lidocaine increased Wnt3a, β-catenin and cyclin D1 expression levels in OGD/R-exposed cells compared with the OGD/R + saline group, thus activating the Wnt/β-catenin signaling pathway. The findings of the present study suggested that lidocaine served a protective role in OGD/R-triggered neuronal damage by activating the Wnt/β-catenin signaling pathway; therefore, lidocaine may serve as a potential candidate for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaoyang Lan
- Department of Neurology, First Medical Center, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yumin Xu
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
33
|
Li Y, Qu M, Xing F, Li H, Cheng D, Xing N, Zhang W. The Protective Mechanism of Dexmedetomidine in Regulating Atg14L-Beclin1-Vps34 Complex Against Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2021; 14:1063-1074. [PMID: 33914271 DOI: 10.1007/s12265-021-10125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
The blood flow restoration of ischemic tissues causes myocardial injury. Dexmedetomidine (Dex) protects multi-organs against ischemia/reperfusion (I/R) injury. This study investigated the protective mechanism of Dex post-treatment in myocardial I/R injury. The rat model of myocardial I/R was established. The effects of Dex post-treatment on cardiac function and autophagy flow were observed. Dex attenuated myocardial I/R injury and reduced I/R-induced autophagy in rats. Dex weakened the interactions between Beclin1 and Vps34 and Beclin1 and Atg14L, thus downregulating Vps34 kinase activity. In vitro, the cardiomyocytes subjected to oxygen glucose deprivation/reoxygenation were treated with Dex and PI3K inhibitor LY294002. LY294002 attenuated the myocardial protective effect of DEX, indicating that Dex protected against cardiac I/R by activating the PI3K/Akt pathway. In conclusion, Dex upregulated the phosphorylation of Beclin1 at S295 site by activating the PI3K/Akt pathway and reduced the interactions of Atg14L-Beclin1-Vps34 complex, thus inhibiting autophagy and protecting against myocardial I/R injury.
Collapse
Affiliation(s)
- Yanna Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| |
Collapse
|
34
|
Chen Y, Cao S, Chen H, Yin C, Xu X, Yang Z. Dexmedetomidine Preconditioning Reduces Myocardial Ischemia-Reperfusion Injury in Rats by Inhibiting the PERK Pathway. Arq Bras Cardiol 2021; 117:1134-1144. [PMID: 34644786 PMCID: PMC8757152 DOI: 10.36660/abc.20200672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ischemic heart disease has attracted much attention due to its high mortality rates, treatment costs and the increasing morbidity in the young population. Strategies for reperfusion have reduced mortality. However, reperfusion can lead to cardiomyocyte death and subsequent irreversible myocardial damage. At present, the timely and targeted treatment of ischemia-reperfusion (I/R) injury is often lacking. OBJECTIVES To evaluate if dexmedetomidine (DEX) has a protective effect in myocardiual I/R and explore the possible mechanism behind it. METHODS Rat hearts were perfused with a Langendorff perfusion system, and randomly assigned to five groups: control group, perfused with Krebs-Henseleit (K-H) solution for 205 minutes without ischemia; and four test groups that underwent 40 minutes of global ischemia and 120 min of reperfusion. The DEX group, the yohimbine (YOH) group and the DEX + YOH group were perfused with DEX (10 nM), YOH (1 μM) or the combination of DEX and YOH prior to reperfusion, respectively. Cardiac hemodynamics, myocardial infarct size, and myocardial histology were evaluated. The expression of glucose-related protein 78 (GRP78), protein kinase R-like ER kinase (PERK), phosphorylated PERK, eukaryotic initiation factor 2α (eIF2α), phosphorylated eIF2α, activating transcription factor 4 (ATF4), and CCAAT/enhancer-binding protein homologous protein (CHOP) were assessed. P<0.05 was considered to indicate a statistically significant difference. RESULTS DEX preconditioning improved the cardiac function of I/R hearts, reduced myocardial infarction, myocardial apoptosis, and the expression of GRP78, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. CONCLUSIONS DEX pretreatment reduced myocardial I/R injury by suppressing apoptosis, which was induced by the PERK pathway.
Collapse
Affiliation(s)
- YuJiao Chen
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
- Affiliated HospitalNorth Sichuan Medical CollegeNanChongSiChuanChinaAffiliated Hospital of North Sichuan Medical College, NanChong, SiChuan - China
| | - Song Cao
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - Hui Chen
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - CunZhi Yin
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - XinPeng Xu
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - ZaiQun Yang
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| |
Collapse
|
35
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
36
|
Wang N, Nie H, Zhang Y, Han H, Wang S, Liu W, Tian K. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway. Inflamm Res 2021; 71:93-106. [PMID: 34767031 DOI: 10.1007/s00011-021-01515-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Cerebral ischemic injury is associated with long-term disability. Dexmedetomidine (Dex) can exert neuroprotective effects on cerebral ischemic/reperfusion injury. The present study explored the mechanism of Dex in cerebral ischemic injury. MATERIALS AND METHODS To this end, the permanent middle cerebral artery occlusion (p-MCAO) mouse model was established and treated with Dex or/and Nrf2 inhibitor ML385. Subsequently, microglia were subjected to oxygen-glucose deprivation (OGD) in sugar-free environment and thereafter treated with Dex, Nrf2 inhibitor, and NLRP3 lentiviral overexpression vector, respectively. RESULTS Dex alleviated the neurobehavioral deficit of p-MCAO mice, reduced brain water content, relieved pathological changes, and reduced cerebral infarction size. Dex promoted the polarization of microglia from M1 to M2, thus ameliorating oxidative stress and inflammatory responses. Our results showed that Dex promoted M2-polarization of microglia in vivo and in vitro by promoting HO-1 expression via Nrf2 nuclear import. Moreover, the Nrf2/HO-1 axis inhibited the activation of NLRP2 inflammasome and NLRP3 overexpression reversed the effect of Dex. CONCLUSION In conclusion, Dex promoted M2-polarization of microglia and attenuated oxidative stress and inflammation, and thus protected against cerebral ischemic injury by activating the Nrf2/HO-1 pathway and inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yueyue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huiying Han
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shan Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wenjuan Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
37
|
Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W. Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 2021; 25:9983-9994. [PMID: 34664412 PMCID: PMC8572787 DOI: 10.1111/jcmm.16871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Gaolin Qiu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hainie Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Leilei Zhu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Gao Cheng
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yiqiao Wang
- Department of AnesthesiologyAnhui NO.2 Provincial People's HospitalHefeiChina
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Weiwei Wu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
38
|
Unchiti K, Leurcharusmee P, Samerchua A, Pipanmekaporn T, Chattipakorn N, Chattipakorn SC. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur J Neurosci 2021; 54:7006-7047. [PMID: 34561931 DOI: 10.1111/ejn.15474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Neurological disorders following brain injuries and neurodegeneration are on the rise worldwide and cause disability and suffering in patients. It is crucial to explore novel neuroprotectants. Dexmedetomidine, a selective α2-adrenoceptor agonist, is commonly used for anxiolysis, sedation and analgesia in clinical anaesthesia and critical care. Recent studies have shown that dexmedetomidine exerts protective effects on multiple organs. This review summarized and discussed the current neuroprotective effects of dexmedetomidine, as well as the underlying mechanisms. In preclinical studies, dexmedetomidine reduced neuronal injury and improved functional outcomes in several models, including hypoxia-induced neuronal injury, ischaemic-reperfusion injury, intracerebral haemorrhage, post-traumatic brain injury, anaesthetic-induced neuronal injury, substance-induced neuronal injury, neuroinflammation, epilepsy and neurodegeneration. Several mechanisms are associated with the neuroprotective function of dexmedetomidine, including neurotransmitter regulation, inflammatory response, oxidative stress, apoptotic pathway, autophagy, mitochondrial function and other cell signalling pathways. In summary, dexmedetomidine has the potential to be a novel neuroprotective agent for a wide range of neurological disorders.
Collapse
Affiliation(s)
- Kantarakorn Unchiti
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Samerchua
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanyong Pipanmekaporn
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Zhai M, Han M, Huang X, Kang F, Yang CH, Li J. Dexmedetomidine Protects Human Renal Tubular Epithelial HK-2 Cells against Hypoxia/Reoxygenation Injury by Inactivating Endoplasmic Reticulum Stress Pathway. CELL JOURNAL 2021; 23:457-464. [PMID: 34455722 PMCID: PMC8405080 DOI: 10.22074/cellj.2021.7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Objective The study was aimed to investigate the effects and potential mechanisms of Dexmedetomidine (Dex) on
hypoxia/reoxygenation (H/R) injury in human renal tubular epithelial HK-2 cells. Materials and Methods In this experimental study, HK-2 cells were divided into four groups: control group, Dex
group, H/R group, and Dex+H/R group. The cells in control group received no treatment, and cells in Dex group were
only treated with 0.1 nmol/L Dex. The cells in H/R group and Dex+H/R group were all treated with H/R (hypoxia for
24 hours and normoxia for 4 hours), and only the cells in Dex+H/R group were pre-administrated with 0.1 nmol/L
Dex. Following treatments at 37˚C for 28 hours, cell viability and apoptosis were measured by MTT assay and flow
cytometry, respectively. Also, the expressions of hypoxia-inducible factor 1 (HIF-1α), glucose-regulated protein 78
(GRP78), C/EBP homologous protein (CHOP), caspase-12 and cleaved caspase-3 were determined by western blot.
Results The cell viability was significant decreased in H/R group compared with control group (P<0.05), while was
significantly increased in Dex+H/R group compared with that in H/R group (P<0.05). However, the change tendency
of the cell apoptosis was opposite to that of cell viability. Compared with H/R group, the expression of HIF-1α was
evidently up-regulated, while GRP78, CHOP, capase-12 and cleaved caspase-3 expressions were all obviously down-
regulated in Dex+H/R group (P<0.05). In addition, the concentrations of malondialdehyde (MDA) in H/R group and
Dex+H/R group were 1.68 ± 0.22 nmol/mgprot and 0.85 ± 0.16 nmol/mgprot, respectively. The superoxide dismutase
(SOD) activity was higher in Dex+H/R group (121 ± 11 U/L), which which was more than twice larger than that in H/R
group (57 ± 10 U/L).
Conclusion Dex could promote cell viability and inhibit apoptosis through up-regulating HIF-1α, reducing endoplasmic
reticulum (ER) stress and mediating oxidative stress, thus ameliorating the H/R injury.
Collapse
Affiliation(s)
- Mingyu Zhai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - C Hengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
40
|
Hong H, Huang Q, Cai Y, Lin T, Xia F, Jin Z. Dexmedetomidine preconditioning ameliorates lung injury induced by pulmonary ischemia/reperfusion by upregulating promoter histone H3K4me3 modification of KGF-2. Exp Cell Res 2021; 406:112762. [PMID: 34352276 DOI: 10.1016/j.yexcr.2021.112762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Keratinocyte growth factor (KGF)-2 has been highlighted to play a significant role in maintaining the endothelial barrier integrity in lung injury induced by ischemia-reperfusion (I/R). However, the underlying mechanism remains largely unknown. The aims of this study were to determine whether dexmedetomidine preconditioning (DexP) modulates pulmonary I/R-induced lung injury through the alteration in KGF-2 expression. In our I/R-modeled mice, DexP significantly inhibited pathological injury, inflammatory response, and inflammatory cell infiltration, while promoted endothelial barrier integrity and KGF-2 promoter activity in lung tissues. Bioinformatics prediction and ChIP-seq revealed that I/R significantly diminished the level of H3K4me3 modification in the KGF-2 promoter, which was significantly reversed by DexP. Moreover, DexP inhibited the expression of histone demethylase JMJD3, which in turn promoted the expression of KGF-2. In addition, overexpression of JMJD3 weakened the protective effect of DexP on lung injury in mice with I/R. Collectively, the present results demonstrated that DexP ameliorates endothelial barrier dysfunction via the JMJD3/KGF-2 axis.
Collapse
Affiliation(s)
- Huisuo Hong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Qingqing Huang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| | - Yaoyao Cai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Tingting Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Fangfang Xia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Zhousheng Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| |
Collapse
|
41
|
Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox Res 2021; 39:1338-1351. [PMID: 34057703 DOI: 10.1007/s12640-021-00379-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.
Collapse
|
42
|
Guo Z, Wang W, Xie D, Lin R. Effect of supplemental dexmedetomidine in interventional embolism on cerebral oxygen metabolism in patients with intracranial aneurysms. J Int Med Res 2021; 49:3000605211002960. [PMID: 33823639 PMCID: PMC8033473 DOI: 10.1177/03000605211002960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the effect of supplemental dexmedetomidine in interventional
embolism on cerebral oxygen metabolism in patients with intracranial
aneurysms. Methods Ninety patients who underwent interventional embolism of intracranial
aneurysms were equally divided into Group A and Group B. In Group A,
dexmedetomidine was injected intravenously 10 minutes before inducing
anesthesia, with a loading dose of 0.6 µg/kg followed by 0.4 µg/kg/hour.
Group B received the same amount of normal saline by the same injection
method. Heart rate (HR), mean arterial pressure (MAP), arterial–jugular
venous oxygen difference [D(a-jv) (O2)], cerebral oxygen
extraction [CE (O2)], and intraoperative propofol use were
recorded before inducing anesthesia (T0) and at five time points
thereafter. Results The amount of propofol in Group A was lower vs Group B. At all five time
points after T0, HR, MAP, D(a-jv) (O2), and CE
(O2) in Group A were significantly lower vs Group B, with
significant differences for jugular venous oxygen saturation
(SjvO2) and the oxygen content of the internal
jugular vein (CjvO2) between the groups. Conclusion Dexmedetomidine resulted in less intraoperative propofol, lower D(a-jv)
(O2) and CE (O2), and improved cerebral oxygen
metabolism.
Collapse
Affiliation(s)
- Zhang Guo
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Weiwei Wang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Dahua Xie
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ruisheng Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
43
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H2O2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.repce.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Dexmedetomidine postconditioning suppresses myocardial ischemia/reperfusion injury by activating the SIRT1/mTOR axis. Biosci Rep 2021; 40:224148. [PMID: 32406910 PMCID: PMC7253405 DOI: 10.1042/bsr20194030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023] Open
Abstract
Myocardial ischemia/reperfusion (MI/R) triggers a complicated chain of inflammatory reactions. Dexmedetomidine (Dex) has been reported to be important in myocardial disorders. We evaluated the role of Dex in MI/R injury via the silent information regulator factor 2-related enzyme 1 (SIRT1)/mammalian target of rapamycin (mTOR) signaling pathway. First, Dex was immediately injected into rat models of MI/R injury during reperfusion. After Evans Blue-triphenyl tetrazolium chloride (TTC) and Hematoxylin-Eosin (H-E) staining, MI/R injury was observed. The extracted serum and myocardial tissues were used to detect oxidative stress and the inflammatory response. Western blot analysis was performed to evaluate MI/R autophagy and the levels of proteins associated with the SIRT1/mTOR axis. The effects of the combination of Dex and SIRT1 inhibitor EX527 on MI/R injury and autophagy were evaluated. Finally, the mechanism of Dex was tested, and autophagy levels and the levels of proteins associated with the SIRT1/mTOR signaling pathway were assessed in MI/R rats. The results of the present study suggested that Dex relieved MI/R injury, reduced cardiomyocyte apoptosis, oxidative stress and inflammatory reactions, up-regulated the SIRT1/mTOR axis and decreased overautophagy in MI/R rats. SIRT1 inhibitor EX527 attenuated the protective effects of Dex. Our study demonstrated that Dex alleviated MI/R injury by activating the SIRT1/mTOR axis. This investigation may offer new insight into the treatment of MI/R injury.
Collapse
|
45
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H 2O 2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. Rev Port Cardiol 2021; 40:273-281. [PMID: 33715922 DOI: 10.1016/j.repc.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Dexmedetomidine is a highly selective alpha-2 adrenoceptor agonist that has sedative and analgesic properties and myocardial protective effects. However, the mechanism underlying the protective effect of dexmedetomidine on cardiomyocytes remains unknown. This study mainly aimed to investigate the effects of dexmedetomidine on the generation of reactive oxygen species (ROS) in cardiomyocytes and whether it inhibits the apoptosis of cardiomyocytes by affecting antioxidant enzyme expression. METHODS Neonatal rat cardiomyocytes were pretreated with dexmedetomidine (100 nM) for 24 h. The cardiomyocytes were then incubated with 200 μM hydrogen peroxide solution (H2O2) for 4 h. PCR assay was used to determine the mRNA expression of antioxidant enzymes. Western blot assay was used to determine the protein expression of antioxidant enzymes. Fluorescence microscopy with the MitoSOX probe was used to detect the formation of ROS in cardiomyocytes, and fluorescence-activated cell sorting with annexin V/PI was used to determine the number of apoptotic cardiomyocytes. RESULTS Dexmedetomidine reduced ROS generation and antioxidant enzymes levels in cardiomyocytes before H2O2 stimulation (p<0.05). However, ROS generation and apoptosis in cardiomyocytes were significantly increased after H2O2 treatment, and dexmedetomidine pretreatment markedly inhibited the changes (p<0.05). CONCLUSION For the first time, to the best of our knowledge, our study shows that dexmedetomidine has a protective effect on cardiomyocytes through inhibition of ROS-induced apoptosis, and more importantly, this effect is independent of antioxidant enzyme mRNA and protein expression.
Collapse
Affiliation(s)
- Xiaojian Weng
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Wenjiao Shi
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Xiaodan Zhang
- Department of Intensive Care Unit, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China.
| | - Jianer Du
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| |
Collapse
|
46
|
Kölükçü E, Parlaktaş BS, Kölükçü V, Firat F, Deresoy FA, Katar M, Kuyucu YE, Unsal V. Protective effects of dexmedetomidine on ischaemia-reperfusion injury in an experimental rat model of priapism. Andrologia 2021; 53:e13985. [PMID: 33474739 DOI: 10.1111/and.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
The study aimed to investigate the effects of dexmedetomidine against ischaemia-reperfusion injury occurring after priapism in a model of induced-priapism in rats. A total of 18 male rats were randomised into three groups. Group 1 was the control group. A priapism model was performed rats in Group 2 and then ischaemia-reperfusion injury was evaluated. Group 3 had similar procedures to the rats in Group 2. Rats in Group 3 additionally had 100 μg/kg dexmedetomidine administered intraperitoneally immediately after reperfusion. Blood and tissue samples were analysed. Biochemical analysis of blood samples revealed a decrease in the levels of the pro-inflammatory cytokines including interleukin-1 beta (IL-1 Beta), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-alpha) in Group 3 compared to Group 2 (p:.04, p:.009 and p:.009, respectively). Similarly, the highest malondialdehyde (MDA) level was in Group 2 (p:.002). The levels of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were significantly higher in Group 3 than that of Group 2 (p:.037 and p:.045, respectively). Direct microscopic examinations revealed positive changes in desquamation, oedema, inflammation and vasocongestion scores in Group 3 compared to Group 2 (p:.007, p:.008, p:.007 and p:.006, respectively). Dexmedetomidine has a protective effect against ischaemia-reperfusion injury in penile tissue.
Collapse
Affiliation(s)
- Engin Kölükçü
- Department of Urology, Gaziosmanpasa University, Tokat, Turkey
| | | | - Vildan Kölükçü
- Department of Anesthesia and Reanimation, Tokat State Hospital, Tokat, Turkey
| | - Fatih Firat
- Department of Urology, Tokat State Hospital, Tokat, Turkey
| | - Faik A Deresoy
- Department of Pathology, Gaziosmanpasa University, Tokat, Turkey
| | - Muzaffer Katar
- Department of Biochemistry, Gaziosmanpasa University, Tokat, Turkey
| | - Yunus Emre Kuyucu
- Department of Biostatistics, Gaziosmanpasa University, Tokat, Turkey
| | - Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
47
|
Lee JM, Cho YJ, Ahn EJ, Choi GJ, Kang H. Pharmacological strategies to prevent postoperative delirium: a systematic review and network meta-analysis. Anesth Pain Med (Seoul) 2021; 16:28-48. [PMID: 33445233 PMCID: PMC7861905 DOI: 10.17085/apm.20079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Postoperative delirium (POD) is a condition of cerebral dysfunction and a common complication after surgery. This study aimed to compare and determine the relative efficacy of pharmacological interventions for preventing POD using a network meta-analysis. Methods We performed a systematic and comprehensive search to identify and analyze all randomized controlled trials until June 29, 2020, comparing two or more pharmacological interventions, including placebo, to prevent or reduce POD. The primary outcome was the incidence of POD. We performed a network meta-analysis and used the surface under the cumulative ranking curve (SUCRA) values and rankograms to present the hierarchy of the pharmacological interventions evaluated. Results According to the SUCRA value, the incidence of POD decreased in the following order: the combination of propofol and acetaminophen (86.1%), combination of ketamine and dexmedetomidine (86.0%), combination of diazepam, flunitrazepam, and pethidine (84.8%), and olanzapine (75.6%) after all types of anesthesia; combination of propofol and acetaminophen (85.9%), combination of ketamine and dexmedetomidine (83.2%), gabapentin (82.2%), and combination of diazepam, flunitrazepam, and pethidine (79.7%) after general anesthesia; and ketamine (87.1%), combination of propofol and acetaminophen (86.0%), and combination of dexmedetomidine and acetaminophen (66.3%) after cardiac surgery. However, only the dexmedetomidine group showed a lower incidence of POD than the control group after all types of anesthesia and after general anesthesia. Conclusions Dexmedetomidine reduced POD compared with the control group. The combination of propofol and acetaminophen and the combination of ketamine and dexmedetomidine seemed to be effective in preventing POD. However, further studies are needed to determine the optimal pharmacological intervention to prevent POD.
Collapse
Affiliation(s)
- Jun Mo Lee
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ye Jin Cho
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun Jin Ahn
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Geun Joo Choi
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea.,The Institute of Evidence Based Clinical Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea.,The Institute of Evidence Based Clinical Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
48
|
Lim H, Kim TY, Kim SY, Ro SJ, Koh SR, Ryu S, Ko JS, Jeong MA. The Protective Effects of Dexmedetomidine Preconditioning on Hepatic Ischemia/Reperfusion Injury in Rats. Transplant Proc 2020; 53:427-435. [PMID: 33280824 DOI: 10.1016/j.transproceed.2020.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/01/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ischemia/reperfusion (IR) injury is 1 of the major problems in liver surgery. This study aims to evaluate the histologic and biochemical effects of dexmedetomidine on ischemia/reperfusion injury in the liver of rats. METHODS Twenty-two Sprague-Dawley male rats were separated into 3 groups: group sham, IR (IR injury), and IR-D (IR with dexmedetomidine). Ischemia was induced for 45 minutes with portal clampage and the reperfusion period was 120 minutes. Group IR-D received 3 μg/kg of dexmedetomidine with loading for 10 minutes and then 3 μg/kg/h of dexmedetomidine was continuously injected intravenously 30 minutes before portal clampage. Biochemical factors (alanine aminotransferase and aspartate aminotransferase), variable cytokines (B cell lymphoma-2 (Bcl-2), Bax, caspase 3, caspase 8, nuclear factor-kappa B, interleukin (IL)-1β, IL-6, IL-10, mixed lineage kinase domain-like protein, and receptor-interacting protein kinase-3), and histologic findings were investigated. RESULTS Dexmedetomidine preconditioning significantly suppressed the histologic damage. In the IR-D group, the expression of IL-6 was decreased and the Bcl-2 was increased when compared with the IR group. CONCLUSION Dexmedetomidine suppresses hepatic IR injury and the protective mechanism appears to involve the decrease of IL-6 and upregulation of Bcl-2 expression, which result in the attenuation of inflammatory response and the inhibition of apoptosis.
Collapse
Affiliation(s)
- Hyunyoung Lim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Yeon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Ro
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Su Rim Koh
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Justin Sangwook Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Ae Jeong
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Gong Z, Long X, Wei H, Tang Y, Li J, Ma L, Yu J. [Dexmedetomidine combined with protective lung ventilation strategy provides lung protection in patients undergoing radical resection of esophageal cancer with one-lung ventilation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1013-1017. [PMID: 32895163 DOI: 10.12122/j.issn.1673-4254.2020.07.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of dexmedetomidine combined with pulmonary protective ventilation against lung injury in patients undergoing surgeries for esophageal cancer with one-lung ventilation (OLV). METHODS Forty patients with undergoing surgery for esophageal cancer with OLV were randomly divided into pulmonary protective ventilation strategy group (F group) and dexmedetomidine combined with protective ventilation strategy group (DF group; n=20). In F group, lung protective ventilation strategy during anesthesia was adopte, and in DF group, the patients received intravenous infusion of dexmedetomidine hydrochloride (0.3 μg · kg-1 ·h-1) during the surgery starting at 10 min before anesthesia induction in addition to protective ventilation strategy. Brachial artery blood was sampled before ventilation (T0), at 30 and 90 min after the start of OLV (T1 and T2, respectively) and at the end of the surgery (T3) for analysis of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), arterial oxygenation pressure (PaO2), oxygenation index (OI) and lung compliance (CL). RESULTS At the time points of T1, T2 and T3, SOD level was significantly higher and IL-6 level was significantly lower in the DF group than in F group (P < 0.05). The patients in DF group showed significantly higher PaO2, OI and CL index than those in F group at all the 3 time points. CONCLUSIONS Dexmedetomidine combined with pulmonary protective ventilation strategy can reduce perioperative lung injury in patients undergoing surgery for esophageal cancer with OLV by suppressing inflammation and oxidative stress to improve lung function and reduce adverse effects of the surgery.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Anesthesiology, Nanning 530021, China
| | - Xiaomao Long
- Department Cardiothoracic Surgery, People's Hospital of Guangxi Autonomous Region, Nanning 530021, China
| | - Huijun Wei
- Department of Anesthesiology, Nanning 530021, China
| | - Ying Tang
- Department of Anesthesiology, Nanning 530021, China
| | - Jun Li
- Department of Anesthesiology, Nanning 530021, China
| | - Li Ma
- Department of Anesthesiology, Nanning 530021, China
| | - Jun Yu
- People's Hospital of Guangxi Autonomous Region, Nanning 530021, China
| |
Collapse
|
50
|
Kotanoğlu MS, Kadioğlu E, Emerce E, Kaymak Ç, Özcan A, Başar H. Antioxidant effects of dexmedetomidine against hydrogen peroxide-induced DNA damage in vitro by alkaline Comet assay. Turk J Med Sci 2020; 50:1393-1398. [PMID: 31905495 PMCID: PMC7491270 DOI: 10.3906/sag-1910-76] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 01/16/2023] Open
Abstract
Background/aim Dexmedetomidine (DEX) is an alpha-2 adrenergic agonist that is commonly used as a sedative and anesthetic. The protective effects of DEX against oxidative damage under both in vitro and in vivo conditions have been demonstrated. It was aimed to evaluate and compare the protective effects of DEX and vitamin C (Vit C) on DNA against H2O2-induced DNA damage in human lymphocyte cell cultures in vitro by alkaline Comet assay. Materials and methods Lymphocyte cell cultures were divided into 5 groups, as the negative control, solvent control, positive control, hydrogen peroxide (H2O2; 150 μM) + DEX (1 μM; 2.5 μM; 5 μM), and H2O2 (150 μM) + Vit C (1 μM; 2.5 μM; 5 μM), and incubated at 37 °C for 1 h. Cell viability was measured using the Trypan blue test. DNA damage was measured using the Alkali Comet Technique and the % percent tail intensity was evaluated. Statistical analysis was performed using 1-way ANOVA and the Tukey multiple comparison test. Results It was observed that H2O2 significantly induced DNA damage in the lymphocytes and this damage was decreased significantly with Vit C and DEX. It was observed that Vit C at doses of 1 μM and 2.5 μM had a significantly stronger antioxidant effect, but there was no significant difference between the antioxidant effects of Vit C and DEX with a dose of 5 μM. The dose of 5 μM DEX was found to be the most effective in reducing oxidative DNA damage. Conclusion There is limited data on the protective effects of DEX against oxidative DNA damage. The primary effect might be cytoprotection. The results herein showed that DEX was protective against H2O2-induced in vitro oxidative DNA damage in lymphocyte cell cultures in a dose-dependent manner. DEX might have a potential therapeutic value in the prevention of oxidative DNA damage in patients.
Collapse
Affiliation(s)
- Mustafa Sirri Kotanoğlu
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ela Kadioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Esra Emerce
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Çetin Kaymak
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayşe Özcan
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Hülya Başar
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|