1
|
Chatterjee M, Gupta S, Mukherjee T, Parashar D, Kumar U, Maitra A, Das K. The role of extracellular vesicles in the pathogenesis of gynecological cancer. Front Oncol 2024; 14:1477610. [PMID: 39391238 PMCID: PMC11464257 DOI: 10.3389/fonc.2024.1477610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecological cancer, the most common form of cancers in women worldwide, initiates in the reproductive organs of females. More often, the common treatment measures, i.e. surgery, radiation, and medical oncology are found to be unsuccessful in the treatment of gynecological tumors. Emerging evidence indicates that extracellular vesicles (EVs) play a significant role in the pathogenesis of gynecological cancers by distinct mechanisms. The present review highlights how EVs contribute to the progression of different types of gynecological cancers such as cervical cancer, endometrial cancer, ovarian cancer, vaginal cancer, uterine sarcoma, gestational trophoblastic disease (GTD), and vulvar cancer. The primary focus is to understand how EVs' cargo alters the phenotypic response of the recipient cells, thereby contributing to the progression of the disease, thus can be considered as a prognostic and diagnostic biomarker. A brief discussion on the role of EVs in the diagnosis and prognosis of different gynecological cancer types is also highlighted. Targeting the biogenesis of the EVs, their inside cargo, and EVs uptake by the recipient cells could be a potential therapeutic approach in the treatment of gynecological cancer beside conventional therapeutic means.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, Ganesh Lal Agarwal (GLA) University, Mathura, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, United States
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies (IMS) Ghaziabad (University Courses Campus), Ghaziabad, Uttar Pradesh, India
| | - Arindam Maitra
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Kaushik Das
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
2
|
González Á, López-Borrego S, Sandúa A, Vales-Gomez M, Alegre E. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Crit Rev Clin Lab Sci 2024; 61:435-457. [PMID: 38361287 DOI: 10.1080/10408363.2024.2309935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.
Collapse
Affiliation(s)
- Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Amaia Sandúa
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
3
|
Espiau-Romera P, Gordo-Ortiz A, Ortiz-de-Solórzano I, Sancho P. Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:455-470. [PMID: 39697624 PMCID: PMC11648520 DOI: 10.20517/evcna.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 12/20/2024]
Abstract
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
4
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
6
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Ding J, Zhang Y, Che Y. Ovarian cancer stem cells: Critical roles in anti-tumor immunity. Front Genet 2022; 13:998220. [PMID: 36437919 PMCID: PMC9685611 DOI: 10.3389/fgene.2022.998220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer is a significant cause of cancer-related mortality in women. Over the past 3 decades, there has been a high incidence of recurrent chemoresistant disease, despite the relative effectiveness of current treatment strategies. This is partly attributed to cancer stem cells (CSC), a subpopulation that has acquired stem cell properties that allow these cells to evade standard chemotherapy and cause disease recurrence. Therefore, there is an urgent need for basic knowledge about CSC to develop innovative therapeutic approaches for ovarian cancer. These CSC subpopulations have been identified in ovarian cancer cell lines, tumors or ascites, and findings suggest that ovarian CSCs may be as heterogeneous as the disease itself. CSCs regulate the phenotype and function of immune cells involved in antitumor immunity, so a better understanding of the signaling pathways that interact between CSCs, immune cells and tumor cells will pave the way for the clinical application of CS in cancer immunotherapy. This review will focus on the markers currently used to identify and isolate these cells summarize current knowledge on the molecular and cellular mechanisms responsible for CSC-dependent regulation of antitumor immune responses. We will discuss the signaling pathways involved in CSC survival, replication, and differentiation as well as potential therapeutic targeting strategies.
Collapse
|
8
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Cammarata G, Barraco N, Giusti I, Gristina V, Dolo V, Taverna S. Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code. Cancers (Basel) 2022; 14:cancers14143404. [PMID: 35884464 PMCID: PMC9324482 DOI: 10.3390/cancers14143404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Patients with ovarian cancer have a very poor chance of long-term survival, usually due to advanced disease at the time of diagnosis. Emerging evidence suggests that extracellular vesicles contain noncoding RNAs such as microRNAs, piwiRNAs, circular RNAs, and long noncoding RNAs, with regulatory effects on ovarian cancer. In this review, we focus on ovarian cancer-associated circular RNA shuttled by extracellular vesicles as mediators of cancer progression and novel biomarkers in liquid biopsy. We propose a circular-RNA–microRNA-mRNA code that can reveal the regulatory network created by extracellular vesicles, noncoding RNAs, and mRNAs in ovarian cancer. Future research in this field will help to identify novel diagnostic biomarkers and druggable therapeutic targets, which will ultimately benefit patients. Abstract Ovarian cancer (OC) is one of the most lethal gynecologic malignancies in females worldwide. OC is frequently diagnosed at an advanced stage due to a lack of specific symptoms and effective screening tests, resulting in a poor prognosis for patients. Age, genetic alterations, and family history are the major risk factors for OC pathogenesis. Understanding the molecular mechanisms underlying OC progression, identifying new biomarkers for early detection, and discovering potential targets for new drugs are urgent needs. Liquid biopsy (LB), used for cancer detection and management, consists of a minimally invasive approach and practical alternative source to investigate tumor alterations by testing extracellular vesicles (EVs), circulating tumor cells, tumor-educated platelets, and cell-free nucleic acids. EVs are nanosize vesicles shuttling proteins, lipids, and nucleic acids, such as DNA, RNA, and non-coding RNAs (ncRNAs), that can induce phenotypic reprogramming of target cells. EVs are natural intercellular shuttles for ncRNAs, such as microRNAs (miRNAs) and circular-RNAs (circRNAs), known to have regulatory effects in OC. Here we focus on the involvement of circRNAs and miRNAs in OC cancer progression. The circRNA-microRNA-mRNA axis has been investigated with Circbank and miRwalk analysis, unraveling the intricate and detailed regulatory network created by EVs, ncRNAs, and mRNAs in OC.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| |
Collapse
|
10
|
Soroczynska K, Zareba L, Dlugolecka M, Czystowska-Kuzmicz M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022; 11:cells11091483. [PMID: 35563789 PMCID: PMC9105295 DOI: 10.3390/cells11091483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Both gynecological tumors and endometriosis require for their development a favorable environment, termed in the case of tumors a "pre-metastatic niche" and in case of endometriosis a "pro-endometriotic niche". This is characterized by chronic inflammation and immunosuppression that support the further progression of initial lesions. This microenvironment is established and shaped in the course of a vivid cross-talk between the tumor or endometrial cells with other stromal, endothelial and immune cells. There is emerging evidence that extracellular vesicles (EVs) play a key role in this cellular communication, mediating both in tumors and endometriosis similar immunosuppressive and pro-inflammatory mechanisms. In this review, we discuss the latest findings about EVs as immunosuppressive factors, highlighting the parallels between gynecological tumors and endometriosis. Furthermore, we outline their role as potential diagnostic or prognostic biomarkers as well as their future in therapeutic applications.
Collapse
Affiliation(s)
- Karolina Soroczynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Lukasz Zareba
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Malgorzata Czystowska-Kuzmicz
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Correspondence:
| |
Collapse
|
11
|
Petroušková P, Hudáková N, Maloveská M, Humeník F, Cizkova D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life (Basel) 2022; 12:life12040524. [PMID: 35455015 PMCID: PMC9032658 DOI: 10.3390/life12040524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Canine mammary cancer (CMC), similar to human breast cancer (HBC) in many aspects, is the most common neoplasm associated with significant mortality in female dogs. Due to the limited therapy options, biomarkers are highly desirable for early clinical diagnosis or cancer progression monitoring. Since the discovery of microRNAs (miRNAs or miRs) as post-transcriptional gene regulators, they have become attractive biomarkers in oncological research. Except for intracellular miRNAs and cell-free miRNAs, exosome-derived miRNAs (exomiRs) have drawn much attention in recent years as biomarkers for cancer detection. Analysis of exosomes represents a non-invasive, pain-free, time- and money-saving alternative to conventional tissue biopsy. The purpose of this review is to provide a summary of miRNAs that come from non-exosomal sources (canine mammary tumor, mammary tumor cell lines or canine blood serum) and from exosomes as promising biomarkers of CMC based on the current literature. As is discussed, some of the miRNAs postulated as diagnostic or prognostic biomarkers in CMC were also altered in HBC (such as miR-21, miR-29b, miR-141, miR-429, miR-200c, miR-497, miR-210, miR-96, miR-18a, miR19b, miR-20b, miR-93, miR-101, miR-105a, miR-130a, miR-200c, miR-340, miR-486), which may be considered as potential disease-specific biomarkers in both CMC and HBC.
Collapse
Affiliation(s)
- Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Filip Humeník
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-918-752-157
| |
Collapse
|
12
|
Liu QW, He Y, Xu WW. Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Exp Mol Med 2022; 54:216-225. [PMID: 35352001 PMCID: PMC8980040 DOI: 10.1038/s12276-022-00744-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most difficult diseases in human society. Therefore, it is urgent for us to understand its pathogenesis and improve the cure rate. Exosomes are nanoscale membrane vesicles formed by a variety of cells through endocytosis. As a new means of intercellular information exchange, exosomes have attracted much attention. Noncoding RNAs exist in various cell compartments and participate in a variety of cellular reactions; in particular, they can be detected in exosomes bound to lipoproteins and free circulating molecules. Increasing evidence has suggested the potential roles of exosomal noncoding RNAs in the progression of tumors. Herein, we present a comprehensive update on the biological functions of exosomal noncoding RNAs in the development of cancer. Specifically, we mainly focus on the effects of exosomal noncoding RNAs, including microRNAs, circular RNAs, long noncoding RNAs, small nuclear RNAs, and small nucleolar RNAs, on tumor growth, metastasis, angiogenesis, and chemoresistance. Moreover, we outline the current clinical implications concerning exosomal noncoding RNAs in cancer treatment.
Collapse
Affiliation(s)
- Qin-Wen Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis 2022; 13:64. [PMID: 35042862 PMCID: PMC8766448 DOI: 10.1038/s41419-022-04510-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Chemoresistance and metastasis are the major challenges for the current ovarian cancer treatment. Understanding the mechanisms of ovarian cancer progression and metastasis is critically important for developing novel therapies. The advances in extracellular vesicles (EVs) research in recent years have attracted extensive attention. EVs contain a variety of proteins, RNAs, DNAs, and metabolites. Accumulating evidence indicates that ovarian cancer cells secrete a large amount of EVs, playing an important role in tumor progression and recurrence. In the microenvironment of ovarian tumor, EVs participate in the information transmission between stromal cells and immune cells, promoting the immune escape of ovarian cancer cells and facilitating cancer metastasis. Here, we review the recent advances of EVs in chemoresistance, mechanisms of metastasis, and immune evasion of ovarian cancer. Furthermore, we also discuss the challenges of EV research and future application of EVs as promising biomarker sources in response to therapy and in therapy-delivery approaches for ovarian cancer patients.
Collapse
|
14
|
Soltész B, Buglyó G, Németh N, Szilágyi M, Pös O, Szemes T, Balogh I, Nagy B. The Role of Exosomes in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010008. [PMID: 35008434 PMCID: PMC8744561 DOI: 10.3390/ijms23010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection, characterization and monitoring of cancer are possible by using extracellular vesicles (EVs) isolated from non-invasively obtained liquid biopsy samples. They play a role in intercellular communication contributing to cell growth, differentiation and survival, thereby affecting the formation of tumor microenvironments and causing metastases. EVs were discovered more than seventy years ago. They have been tested recently as tools of drug delivery to treat cancer. Here we give a brief review on extracellular vesicles, exosomes, microvesicles and apoptotic bodies. Exosomes play an important role by carrying extracellular nucleic acids (DNA, RNA) in cell-to-cell communication causing tumor and metastasis development. We discuss the role of extracellular vesicles in the pathogenesis of cancer and their practical application in the early diagnosis, follow up, and next-generation treatment of cancer patients.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Correspondence: ; Tel.: +36-52416531
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Ondrej Pös
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| |
Collapse
|
15
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
16
|
Kogej K, Božič D, Kobal B, Herzog M, Černe K. Application of Dynamic and Static Light Scattering for Size and Shape Characterization of Small Extracellular Nanoparticles in Plasma and Ascites of Ovarian Cancer Patients. Int J Mol Sci 2021; 22:ijms222312946. [PMID: 34884751 PMCID: PMC8657631 DOI: 10.3390/ijms222312946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
In parallel to medical treatment of ovarian cancer, methods for the early detection of cancer tumors are being sought. In this contribution, the use of non-invasive static (SLS) and dynamic light scattering (DLS) for the characterization of extracellular nanoparticles (ENPs) in body fluids of advanced serous ovarian cancer (OC) and benign gynecological pathology (BP) patients is demonstrated and critically evaluated. Samples of plasma and ascites (OC patients) or plasma, peritoneal fluid, and peritoneal washing (BP patients) were analyzed. The hydrodynamic radius (Rh) and the radius of gyration (Rg) of ENPs were calculated from the angular dependency of LS intensity for two ENP subpopulations. Rh and Rg of the predominant ENP population of OC patients were in the range 20–30 nm (diameter 40–60 nm). In thawed samples, larger particles (Rh mostly above 100 nm) were detected as well. The shape parameter ρ of both particle populations was around 1, which is typical for spherical particles with mass concentrated on the rim, as in vesicles. The Rh and Rg of ENPs in BP patients were larger than in OC patients, with ρ ≈ 1.1–2, implying a more elongated/distorted shape. These results show that SLS and DLS are promising methods for the analysis of morphological features of ENPs and have the potential to discriminate between OC and BP patients. However, further development of the methodology is required.
Collapse
Affiliation(s)
- Ksenija Kogej
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Correspondence:
| | - Darja Božič
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Borut Kobal
- Division of Gynecology and Obstetrics, Department of Gynecology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (B.K.); (M.H.)
- Faculty of Medicine, Department of Gynecology and Obstetrics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Maruša Herzog
- Division of Gynecology and Obstetrics, Department of Gynecology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (B.K.); (M.H.)
- Faculty of Medicine, Department of Gynecology and Obstetrics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Katarina Černe
- Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
17
|
Arishe OO, Priviero F, Wilczynski SA, Webb RC. Exosomes as Intercellular Messengers in Hypertension. Int J Mol Sci 2021; 22:ijms222111685. [PMID: 34769116 PMCID: PMC8583750 DOI: 10.3390/ijms222111685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
People living with hypertension have a higher risk of developing heart diseases, and hypertension remains a top cause of mortality. In hypertension, some detrimental changes occur in the arterial wall, which include physiological and biochemical changes. Furthermore, this disease is characterized by turbulent blood flow, increased fluid shear stress, remodeling of the blood vessels, and endothelial dysfunction. As a complex disease, hypertension is thought to be caused by an array of factors, its etiology consisting of both environmental and genetic factors. The Mosaic Theory of hypertension states that many factors, including genetics, environment, adaptive, neural, mechanical, and hormonal perturbations are intertwined, leading to increases in blood pressure. Long-term efforts by several investigators have provided invaluable insight into the physiological mechanisms responsible for the pathogenesis of hypertension, and these include increased activity of the sympathetic nervous system, overactivation of the renin-angiotensin-aldosterone system (RAAS), dysfunction of the vascular endothelium, impaired platelet function, thrombogenesis, vascular smooth muscle and cardiac hypertrophy, and altered angiogenesis. Exosomes are extracellular vesicles released by all cells and carry nucleic acids, proteins, lipids, and metabolites into the extracellular environment. They play a role in intercellular communication and are involved in the pathophysiology of diseases. Since the discovery of exosomes in the 1980s, numerous studies have been carried out to understand the biogenesis, composition, and function of exosomes. In this review, we will discuss the role of exosomes as intercellular messengers in hypertension.
Collapse
Affiliation(s)
- Olufunke Omolola Arishe
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-706-394-3582
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - Stephanie A. Wilczynski
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
18
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
19
|
The Role and Clinical Interest of Extracellular Vesicles in Pregnancy and Ovarian Cancer. Biomedicines 2021; 9:biomedicines9091257. [PMID: 34572444 PMCID: PMC8464910 DOI: 10.3390/biomedicines9091257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer and pregnancy are two states in which the host immune system is exposed to novel antigens. Indeed, both the tumor and placenta must invade tissues, remodel vasculature to establish a robust blood supply, and evade detection by the immune system. Interestingly, tumor and placenta tissue use similar mechanisms to induce these necessary changes. One mediator is emerging as a key player in invasion, vascular remodeling, and immune evasion: extracellular vesicles (EVs). Many studies have identified EVs as a key mediator of cell-to-cell communication. Specifically, the cargo carried by EVs, which includes proteins, nucleic acids, and lipids, can interact with cells to induce changes in the target cell ranging from gene expression to migration and metabolism. EVs can promote cell division and tissue invasion, immunosuppression, and angiogenesis which are essential for both cancer and pregnancy. In this review, we examine the role of EVs in ovarian cancer metastasis, chemoresistance, and immune modulation. We then focus on the role of EVs in pregnancy with special attention on the vascular remodeling and regulation of the maternal immune system. Lastly, we discuss the clinical utility of EVs as markers and therapeutics for ovarian cancer and pre-eclampsia.
Collapse
|
20
|
Croft PKD, Sharma S, Godbole N, Rice GE, Salomon C. Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells 2021; 10:cells10092272. [PMID: 34571921 PMCID: PMC8471580 DOI: 10.3390/cells10092272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most diagnosed gynecological cancers in women. Due to the lack of effective early stage screening, women are more often diagnosed at an advanced stage; therefore, it is associated with poor patient outcomes. There are a lack of tools to identify patients at the highest risk of developing this cancer. Moreover, early detection strategies, therapeutic approaches, and real-time monitoring of responses to treatment to improve survival and quality of life are also inadequate. Tumor development and progression are dependent upon cell-to-cell communication, allowing cancer cells to re-program cells not only within the surrounding tumor microenvironment, but also at distant sites. Recent studies established that extracellular vesicles (EVs) mediate bi-directional communication between normal and cancerous cells. EVs are highly stable membrane vesicles that are released from a wide range of cells, including healthy and cancer cells. They contain tissue-specific signaling molecules (e.g., proteins and miRNA) and, once released, regulate target cell phenotypes, inducing a pro-tumorigenic and immunosuppressive phenotype to contribute to tumor growth and metastasis as well as proximal and distal cell function. Thus, EVs are a “fingerprint” of their cell of origin and reflect the metabolic status. Additionally, via the capacity to evade the immune system and remain stable over long periods in circulation, EVs can be potent therapeutic agents. This review examines the potential role of EVs in the different aspects of the tumor microenvironment in OC, as well as their application in diagnosis, delivery of therapeutic agents, and disease monitoring.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Nihar Godbole
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Correspondence: ; Tel.: +61-7-3346-5500; Fax: +61-7-3346-5509
| |
Collapse
|
21
|
Yang L, Wu H, Zhu Y, Chen X, Chen Y. Plasma exosomal caveolin-1 predicts Poor Prognosis in Ovarian Cancer. J Cancer 2021; 12:5005-5012. [PMID: 34234869 PMCID: PMC8247381 DOI: 10.7150/jca.58762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: In this study, we aimed to evaluate the levels of plasma exosomal caveolin-1(CAV1) and determine its prognostic value in ovarian cancer patients. Patients and Methods: Exosome-rich fractions were isolated from the plasma of 155 patients with ovarian cancer. TEM, NTA and western blot analysis were used to confirm the exosome integrity and purification. Results: Compared with healthy controls, plasma exosomal CAV1 levels in ovarian cancer patient were significantly down-regulated (P < 0.001). The low plasma levels of exosomal CAV1 in ovarian cancer patient plasma were related to FIGO stages, grades and lymph node metastasis (all P < 0.01). Among all ovarian cancer patients, DFS was worse in patients who had low plasma exosomal CAV1 levels compared with that in patients with high plasma exosomal CAV1 levels (P < 0.001). The OS of patients with low plasma exosomal CAV1 levels was shorter than that in patients with high plasma exosomal CAV1 levels (P < 0.001). The AUROC of plasma exosomal CAV1 was 0.76 (95% CI: 0.68-0.82) for DFS prediction in ovarian cancer patients, with a sensitivity 52.9 (95% CI: 42.8-62.9) and a specificity 88.7 (95% CI: 77.0-95.7). For OS prediction in ovarian cancer patients, the AUROC of plasma exosomal CAV1 was 0.78 (95% CI: 0.70-0.84), with a sensitivity 65.1 (95% CI: 49.1-79.0) and a specificity 81.2 (95% CI: 72.8-88.0). Conclusions: Low exosomal CAV1 levels were closely related to the FIGO stages I/II, low grade, lymph node metastasis and prognosis of ovarian cancer patients. Plasma exosomal CAV1 may be a potential biomarker for the prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lijuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China.,Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Haohao Wu
- Department of Radiotherapy, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Yan Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Xiaoping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China
| |
Collapse
|
22
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
23
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
24
|
Abstract
Emerging evidences have implicated extracellular vesicles (EVs), nanoparticles secreted by cells, in regulating cancer progression. Several seminal studies on EVs have added an additional layer to the previously unanswered questions in understanding the complexity of diseases such as cancer. It has been observed that EV content is highly heterogenous and it likely reflects the dynamic state of the parent cell. Hence, these nano-sized vesicles have been proposed as reservoirs of cancer biomarkers for diagnostic and prognostic purposes. Due to their presence in almost all biological fluids, ability to display membrane, and sometimes cytosolic, cargo of its host cell and increase in their number during disease states has supported the potential utility of EVs as an alternative to current methods of cancer diagnosis. The following chapter will discuss the use of cancer cell-derived EVs as a resource of tumor specific biomarkers for the early diagnosis of disease. In addition, EVs could also be used in personalised medicine as a resource of predictive biomarkers to understand a patient's response to therapy. Overall, EVs could be exploited as a source of cancer biomarkers and could aid in treatment and stratification options to improve patient survival and quality of life.
Collapse
|
25
|
Lipid Regulatory Proteins as Potential Therapeutic Targets for Ovarian Cancer in Obese Women. Cancers (Basel) 2020; 12:cancers12113469. [PMID: 33233362 PMCID: PMC7700662 DOI: 10.3390/cancers12113469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a recognized global epidemic that is associated with numerous comorbidities including type II diabetes, cardiovascular disease, hypertension, and cancer incidence and progression. Ovarian cancer (OvCa) has a unique mechanism of intra-peritoneal metastasis, already present in 80% of women at the time of diagnosis, making it the fifth leading cause of death from gynecological malignancy. Meta-analyses showed that obesity increases the risk of OvCa progression, leads to enhanced overall and organ-specific tumor burden, and adversely effects survival of women with OvCa. Recent data discovered that tumors grown in mice fed on a western diet (40% fat) have elevated lipid levels and a highly increased expression level of sterol regulatory element binding protein 1 (SREBP1). SREBP1 is a master transcription factor that regulates de novo lipogenesis and lipid homeostasis, and induces lipogenic reprogramming of tumor cells. Elevated SREBP1 levels are linked to cancer cell proliferation and metastasis. This review will summarize recent findings to provide a current understanding of lipid regulatory proteins in the ovarian tumor microenvironment with emphasis on SREBP1 expression in the obese host, the role of SREBP1 in cancer progression and metastasis, and potential therapeutic targeting of SREBPs and SREBP-pathway genes in treating cancers, particularly in the context of host obesity.
Collapse
|
26
|
Role of Extracellular Vesicles in Epithelial Ovarian Cancer: A Systematic Review. Int J Mol Sci 2020; 21:ijms21228762. [PMID: 33228245 PMCID: PMC7699467 DOI: 10.3390/ijms21228762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.
Collapse
|
27
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
28
|
Role of extracellular vesicles in tumour microenvironment. Cell Commun Signal 2020; 18:163. [PMID: 33081785 PMCID: PMC7574205 DOI: 10.1186/s12964-020-00643-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins, and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling, and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function, thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some potential directions for future research. Video abstract.
Collapse
|
29
|
Herrero C, Abal M, Muinelo-Romay L. Circulating Extracellular Vesicles in Gynecological Tumors: Realities and Challenges. Front Oncol 2020; 10:565666. [PMID: 33178595 PMCID: PMC7591787 DOI: 10.3389/fonc.2020.565666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Although liquid biopsy can be considered a reality for the clinical management of some cancers, such as lung or colorectal cancer, it remains a promising field in gynecological tumors. In particular, circulating extracellular vesicles (cEVs) secreted by tumor cells represent a scarcely explored type of liquid biopsy in gynecological tumors. Importantly, these vesicles are responsible for key steps in tumor development and dissemination and are recognized as major players in cell-to-cell communication between the tumor and the microenvironment. However, limited work has been reported about the biologic effects and clinical value of EVs in gynecological tumors. Therefore, here we review the promising but already relatively limited data on the role of circulating EVs in promoting gynecological tumor spread and also their value as non-invasive biomarkers to improve the management of these type of tumors.
Collapse
Affiliation(s)
- Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
30
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
31
|
Jiao R, Sun S, Gao X, Cui R, Cao G, Wei H, Wang S, Zhang Z, Bai H. A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles from Culture Supernatant of Human Ovarian Cancer Cell Line A2780 and Body Fluids of High-Grade Serous Carcinoma Patients. Cancer Manag Res 2020; 12:6291-6301. [PMID: 32801874 PMCID: PMC7386806 DOI: 10.2147/cmar.s228288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Objective This study tried to evaluate whether 8% polyethylene glycol (PEG) 6000 precipitation combined with differential ultracentrifugation (PPDU) was an efficient and practical method for the enrichment and purification of extracellular vesicles (EVs) derived from the culture supernatant of human ovarian cancer cell line A2780 and from body fluids of patients with high-grade serous carcinoma (HGSC). Methods PPDU was used to enrich and purify the EVs derived from body fluids of patients with HSGC and cell culture supernatant of subclones of human ovarian cancer cell line A2780 with high/low invasive capacity (named as A-H/A-L, respectively). Transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA) were used to identificate the EVs size and distribution. Western blots (WB) were used to detect the expression of CD9, CD63, Alix and Calnexin. The high-purity EVs derived from the cell culture supernatant of A-H/A-L were detected by the protein profile. Expression of integrins (ITGs) αV, β1 and β3 in the EVs derived from body fluids of HGSC patients was also evaluated. Results The diameter of EVs was about 30–260 nm observed under the TEM. Under the NTA identification, the peak size of EVs was ranged from 70 to 159nm. EVs derived from different specimens did not significantly differ in mean size and peak size. Presence of CD9, CD63 and Alix and absence of Calnexin were confirmed in the EVs. The protein concentrations of EVs’ sample extracted from A-H/A-L cell culture supernatant were 0.36µg/µL and 0.20µg/µL, respectively. The total amount of protein obtained from 300ul EVs was 108.02ug and 61.44ug, respectively. Totally, 2397 peptides and 952 proteins were identified by isobaric tags for relative and absolute quantitation (ITRAQ). The expression of ITGαV, β1, and β3 in the EVs from plasma and ascites of HGSC patients was significantly higher than the control group (plasma: all P<0.0001; ascites: P=0.036, 0.001 and 0.004, respectively). The expression level of ITGαV and β1 in EVs of HGSC’s ascites was significantly higher than that in plasma (P= 0.004, 0.001, respectively). The expression of ITGβ3 was also slightly elevated in EVs-derived HGSC patients’ ascites (P=0.492). Conclusion PPDU was an efficient and practical method to enrich EVs from body fluids and cell culture supernatant. The characteristic expression of ITGαV, β1 and β3 in ascites and plasma EVs of patients with HGSC provided useful information on the development of EVs in HGSC.
Collapse
Affiliation(s)
- Ruili Jiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China.,Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, Beijing, People's Republic of China
| | - Shipeng Sun
- Clinical Laboratories, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaoqiong Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Huali Wei
- Department of Obstetrics and Gynecology, Emergency General Hospital, Beijing, People's Republic of China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
32
|
Zhao Q, Zheng X, Guo H, Xue X, Zhang Y, Niu M, Cui J, Liu H, Luo H, Yang D, Shi Y, Huangfu H, Wen S, Wu Y, Gao W, Wang B. Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma. J Cancer 2020; 11:5329-5344. [PMID: 32742479 PMCID: PMC7391210 DOI: 10.7150/jca.45394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
At present, no blood-based biomarkers have been used in clinical practice for laryngeal squamous cell carcinoma (LSCC). Increasing evidence suggests that circulating exosomal microRNAs (miRNAs) may serve as potential diagnostic biomarkers for various cancers. This study aims to identify and evaluate serum exosomal miRNAs for LSCC diagnosis. The ExoQuick solution (EQ), which provides a high-yield and is a highly efficient exosome isolation method, was selected to isolate serum exosomes in the current study. In LSCC samples, exosome concentrations were higher than in healthy control (HC) samples. RNA-seq analysis identified a total of 1608 miRNAs, with 34 upregulated and 41 downregulated in LSCC samples relative to HC samples. Furthermore, qRT-PCR showed that miR-941 is significantly upregulated in LSCC serum exosomes, with this same trend seen in LSCC tissues and cells. Moreover, when examining miR-941 in cell lines, miR-941 overexpression promoted proliferation and invasion, while miR-941 knockdown inhibited cell proliferation and invasion. ROC curve analysis showed that miR-941 has an area under the curve (AUC) of 0.797 (95% CI = 0.676-0.918) for distinguishing LSCC patients from HCs. In conclusion, serum exosomal miR-941 may serve as a promising oncogenic biomarker for diagnosing LSCC, and has the potential as a therapeutic target.
Collapse
Affiliation(s)
- Qinli Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongjie Luo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Dongli Yang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yong Shi
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hui Huangfu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, General Hospital of Shenzhen University, Shenzhen 518061, Guangdong, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001 Shanxi, P. R. China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| |
Collapse
|
33
|
Ojasalu K, Brehm C, Hartung K, Nischak M, Finkernagel F, Rexin P, Nist A, Pavlakis E, Stiewe T, Jansen JM, Wagner U, Gattenlöhner S, Bräuninger A, Müller-Brüsselbach S, Reinartz S, Müller R. Upregulation of mesothelial genes in ovarian carcinoma cells is associated with an unfavorable clinical outcome and the promotion of cancer cell adhesion. Mol Oncol 2020; 14:2142-2162. [PMID: 32533757 PMCID: PMC7463315 DOI: 10.1002/1878-0261.12749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
A hallmark of ovarian high‐grade serous carcinoma (HGSC) is its early and massive peritoneal dissemination via the peritoneal fluid. It is generally believed that tumor cells must breach the mesothelium of peritoneal organs to adhere to the underlying extracellular matrix (ECM) and initiate metastatic growth. However, the molecular mechanisms underlying these processes are only partially understood. Here, we have analyzed 52 matched samples of spheroids and solid tumor masses (suspected primary lesions and metastases) from 10 patients by targeted sequencing of 21 loci previously proposed as targets of HGSC driver mutations. This analysis revealed very similar patterns of genetic alterations in all samples. One exception was FAT3 with a strong enrichment of mutations in metastases compared with presumed primary lesions in two cases. FAT3 is a putative tumor suppressor gene that codes for an atypical cadherin, pointing a potential role in peritoneal dissemination in a subgroup of HGSC patients. By contrast, transcriptome data revealed clear and consistent differences between tumor cell spheroids from ascites and metastatic lesions, which were mirrored by the in vitro adherence of ascites‐derived spheroids. The adhesion‐induced transcriptional alterations in metastases and adherent cells resembled epithelial–mesenchymal transition, but surprisingly also included the upregulation of a specific subset of mesothelial genes, such as calretinin (CALB2) and podoplanin (PDPN). Consistent with this finding, calretinin staining was also observed in subsets of tumor cells in HGSC metastases, particularly at the invasive tumor edges. Intriguingly, a high expression of either CALB2 or PDPN was strongly associated with a poor clinical outcome. siRNA‐mediated CALB2 silencing triggered the detachment of adherent HGSC cells in vitro and inhibited the adhesion of detached HGSC cells to collagen type I. Our data suggest that the acquisition of a mesenchymal–mesothelial phenotype contributes to cancer cell adhesion to the ECM of peritoneal organs and HGSC progression.
Collapse
Affiliation(s)
- Kaire Ojasalu
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Corinna Brehm
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Kristin Hartung
- Institute of Pathology, Justus-Liebig University, Giessen, Germany
| | - Maximilian Nischak
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Peter Rexin
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Evangelos Pavlakis
- Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany.,Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | | | | | | | - Silke Reinartz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
34
|
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R, Reinartz S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis 2020; 11:249. [PMID: 32312959 PMCID: PMC7171168 DOI: 10.1038/s41419-020-2438-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
A central and unique aspect of high-grade serous ovarian carcinoma (HGSC) is the extensive transcoelomic spreading of tumor cell via the peritoneal fluid or malignant ascites. We and others identified tumor-associated macrophages (TAM) in the ascites as promoters of metastasis-associated processes like extracellular matrix (ECM) remodeling, tumor cell migration, adhesion, and invasion. The precise mechanisms and mediators involved in these functions of TAM are, however, largely unknown. We observed that HGSC migration is promoted by soluble mediators from ascites-derived TAM, which can be emulated by conditioned medium from monocyte-derived macrophages (MDM) differentiated in ascites to TAM-like asc-MDM. A similar effect was observed with IL-10-induced alternatively activated m2c-MDM but not with LPS/IFNγ-induced inflammatory m1-MDM. These observations provided the basis for deconvolution of the complex TAM secretome by performing comparative secretome analysis of matched triplets of different MDM phenotypes with different pro-migratory properties (asc-MDM, m2c-MDM, m1-MDM). Mass spectrometric analysis identified an overlapping set of nine proteins secreted by both asc-MDM and m2c-MDM, but not by m1-MDM. Of these, three proteins, i.e., transforming growth factor beta-induced (TGFBI) protein, tenascin C (TNC), and fibronectin (FN1), have been associated with migration-related functions. Intriguingly, increased ascites concentrations of TGFBI, TNC, and fibronectin were associated with short progression-free survival. Furthermore, transcriptome and secretome analyses point to TAM as major producers of these proteins, further supporting an essential role for TAM in promoting HGSC progression. Consistent with this hypothesis, we were able to demonstrate that the migration-inducing potential of asc-MDM and m2c-MDM secretomes is inhibited, at least partially, by neutralizing antibodies against TGFBI and TNC or siRNA-mediated silencing of TGFBI expression. In conclusion, the present study provides the first experimental evidence that TAM-derived TGFBI and TNC in ascites promote HGSC progression.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Alina Steffes
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Leah Sommerfeld
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
35
|
Kothandan VK, Kothandan S, Kim DH, Byun Y, Lee YK, Park IK, Hwang SR. Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel) 2020; 8:E172. [PMID: 32276342 PMCID: PMC7349635 DOI: 10.3390/vaccines8020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
RNA granules and exosomes produced by tumour cells under various stresses in the microenvironment act as critical determinants of cell survival by promoting angiogenesis, cancer metastasis, chemoresistance, and immunosuppression. Meanwhile, developmental cancer/testis (CT) antigens that are normally sequestered in male germ cells of the testes, but which are overexpressed in malignant tumour cells, can function as tumour antigens triggering immune responses. As CT antigens are potential vaccine candidates for use in cancer immunotherapy, they could be targeted together with crosstalk between stress granules, exosomes, and immune cells for a synergistic effect. In this review, we describe the effects of exosomes and exosomal components presented to the recipient cells under different types of stresses on immune cells and cancer progression. Furthermore, we discuss their significance for cancer immunity, as well as the outlook for their future application.
Collapse
Affiliation(s)
- Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Sangeetha Kothandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Do Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea
| | - Seung Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
36
|
Lee H, He X, Le T, Carnino JM, Jin Y. Single-step RT-qPCR for detection of extracellular vesicle microRNAs in vivo: a time- and cost-effective method. Am J Physiol Lung Cell Mol Physiol 2020; 318:L742-L749. [PMID: 32073880 DOI: 10.1152/ajplung.00430.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that extracellular vesicle (EV)-associated microRNAs (miRNAs) are a potential diagnostic tool for liquid biopsy in various human diseases. However, the experimental procedure for the detection of EV-associated miRNAs (EV-miRNAs) from body fluids is relatively complex and not cost-effective. Due to the limited amount of EVs and EV-RNAs, a column-based RNA purification, which is an expensive approach, is often used to detect EV-miRNAs via reverse transcription-quantitative real-time PCR (RT-qPCR). Here, we developed and validated a simple and cost-effective method (single-step RT-qPCR) in which we directly detect EV-miRNAs without RNA purification from the EVs. We validated this protocol using the EVs isolated from mouse broncho-alveolar lavage fluid (BALF) and serum. The obtained EVs were first lysed in the EV-lysis buffer, followed by RT-qPCR without isolation and purification of RNAs. We successfully detected the designated miRNAs from lysed EVs; 106 to 107 EVs were optimal to detect the EV-miRNAs using the single-step RT-qPCR. In our previously published work, using the conventional RT-qPCR method, we have reported that miR-142 and -223 are dramatically upregulated in both BALF and serum EVs after lung infection. Hence, we reassessed and confirmed the level of EV-miR-142/223 using the newly developed single-step RT-qPCR. Notably, inhibition of RNase activity in the lysed EVs remains crucial for the detection of EV-miRNAs. Moreover, repeated freeze-thaw cycling significantly interferes the EV-miRNA quantification. Collectively, the single-step RT-qPCR for the detection of EV-miRNAs in vivo will potentially provide a fast, accurate, and convenient way to quantify circulating and/or body fluid-derived EV-miRNAs. This method may potentially be applied to the diagnostic blood testing used in the medical centers or research laboratories.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts.,Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Xue He
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Trung Le
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
37
|
Markov O, Oshchepkova A, Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol 2019; 10:1152. [PMID: 31680949 PMCID: PMC6798004 DOI: 10.3389/fphar.2019.01152] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.
Collapse
Affiliation(s)
- Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | |
Collapse
|
38
|
Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer 2019; 18:124. [PMID: 31409361 PMCID: PMC6691526 DOI: 10.1186/s12943-019-1049-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies. Upon initial diagnosis, the majority of patients present with widespread metastatic growth within the peritoneal cavity. This metastatic growth occurs in stages, with the formation of a pre-metastatic niche occurring prior to macroscopic tumor cell invasion. Exosomes released by the primary ovarian tumor are small extracellular vesicles which prepare the distant tumor microenvironment for accelerated metastatic invasion. They regulate intercellular communication between tumor cells and normal stroma, cancer-associated fibroblasts, and local immune cells within the tumor microenvironment. In this review, we highlight the emerging roles of ovarian cancer exosomes as coordinators of pre-metastatic niche formation, biomarkers amenable to liquid biopsy, and targets of chemotherapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Dylan C. Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Francis J. Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
| | - Zhenfeng Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| |
Collapse
|
39
|
Nakamura K, Sawada K, Kobayashi M, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Kimura T. Role of the Exosome in Ovarian Cancer Progression and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:cancers11081147. [PMID: 31405096 PMCID: PMC6721530 DOI: 10.3390/cancers11081147] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
Peritoneal dissemination is a distinct form of metastasis in ovarian cancer that precedes hematogenic or lymphatic metastasis. Exosomes are extracellular vesicles of 30–150 nm in diameter secreted by different cell types and internalized by target cells. There is emerging evidence that exosomes facilitate the peritoneal dissemination of ovarian cancer by mediating intercellular communication between cancer cells and the tumor microenvironment through the transfer of nucleic acids, proteins, and lipids. Furthermore, therapeutic applications of exosomes as drug cargo delivery are attracting research interest because exosomes are stabilized in circulation. This review highlights the functions of exosomes in each process of the peritoneal dissemination of ovarian cancer and discusses their potential for cancer therapeutics.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan.
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Misa Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
40
|
Bregenzer ME, Horst EN, Mehta P, Novak CM, Repetto T, Mehta G. The Role of Cancer Stem Cells and Mechanical Forces in Ovarian Cancer Metastasis. Cancers (Basel) 2019; 11:E1008. [PMID: 31323899 PMCID: PMC6679114 DOI: 10.3390/cancers11071008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is an extremely lethal gynecologic disease; with the high-grade serous subtype predominantly associated with poor survival rates. Lack of early diagnostic biomarkers and prevalence of post-treatment recurrence, present substantial challenges in treating ovarian cancers. These cancers are also characterized by a high degree of heterogeneity and protracted metastasis, further complicating treatment. Within the ovarian tumor microenvironment, cancer stem-like cells and mechanical stimuli are two underappreciated key elements that play a crucial role in facilitating these outcomes. In this review article, we highlight their roles in modulating ovarian cancer metastasis. Specifically, we outline the clinical relevance of cancer stem-like cells, and challenges associated with their identification and characterization and summarize the ways in which they modulate ovarian cancer metastasis. Further, we review the mechanical cues in the ovarian tumor microenvironment, including, tension, shear, compression and matrix stiffness, that influence (cancer stem-like cells and) metastasis in ovarian cancers. Lastly, we outline the challenges associated with probing these important modulators of ovarian cancer metastasis and provide suggestions for incorporating these cues in basic biology and translational research focused on metastasis. We conclude that future studies on ovarian cancer metastasis will benefit from the careful consideration of mechanical stimuli and cancer stem cells, ultimately allowing for the development of more effective therapies.
Collapse
Affiliation(s)
- Michael E Bregenzer
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric N Horst
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering
| | - Caymen M Novak
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor Repetto
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering
| | - Geeta Mehta
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering.
- Macromolecular Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Mussack V, Wittmann G, Pfaffl MW. Comparing small urinary extracellular vesicle purification methods with a view to RNA sequencing-Enabling robust and non-invasive biomarker research. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100089. [PMID: 31194192 PMCID: PMC6554496 DOI: 10.1016/j.bdq.2019.100089] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023]
Abstract
Small extracellular vesicles (EVs) are 50–200 nm sized mediators in intercellular communication that reflect both physiological and pathophysiological changes of their parental cells. Thus, EVs hold great potential for biomarker detection. However, reliable purification methods for the downstream screening of the microRNA (miRNA) cargo carried within urinary EVs by small RNA sequencing have yet to be established. To address this knowledge gap, RNA extracted from human urinary EVs obtained by five different urinary EV purification methods (spin column chromatography, immunoaffinity, membrane affinity, precipitation and ultracentrifugation combined with density gradient) was analyzed by small RNA sequencing. Urinary EVs were further characterized by nanoparticle tracking analysis, Western blot analysis and transmission electron microscopy. Comprehensive EV characterization established significant method-dependent differences in size and concentration as well as variances in protein composition of isolated vesicles. Even though all purification methods captured enough total RNA to allow small RNA sequencing, method-dependent differences were also observed with respect to library sizes, mapping distributions, number of miRNA reads and diversity of transcripts. Whereas EVs obtained by immunoaffinity yielded the purest subset of small EVs, highly comparable with results attained by ultracentrifugation combined with density gradient, precipitation and membrane affinity, sample purification by spin column chromatography indicated a tendency to isolate different subtypes of small EVs, which might also carry a distinct subset of miRNAs. Based on our results, different EV purification methods seem to preferentially isolate different subtypes of EVs with varying efficiencies. As a consequence, sequencing experiments and resulting miRNA profiles were also affected. Hence, the selection of a specific EV isolation method has to satisfy the respective research question and should be well considered. In strict adherence with the MISEV (minimal information for studies of extracellular vesicles) guidelines, the importance of a combined evaluation of biophysical and proteomic EV characteristics alongside transcriptomic results was clearly demonstrated in this present study.
Collapse
Key Words
- A, spin column chromatography
- ANOVA, analysis of variance
- Ago2, argonaute-2 protein
- B, immunoaffinity
- Biomarker
- C, membrane affinity
- D, precipitation
- DGE, differential gene expression
- DTT, dithiothreitol
- E, ultracentrifugation combined with density gradient
- EV(s), extracellular vesicle(s)
- Extracellular vesicles
- FM, fluorescent mode
- Human
- MISEV, minimal information for studies of extracellular vesicles
- NTA, nanoparticle tracking analysis
- PC, principal component
- RIN, RNA integrity number
- RNA-Seq, RNA sequencing
- SM, scattering mode
- Small RNA sequencing
- TEM, transmission electron microscopy
- UCrea, urinary creatinine
- Urine
- mIgG, murine immunoglobulin G
- mRNA, messenger RNA
- miRNA, microRNA
- microRNA
- nm, nanometer(s)
- nt, nucleotide(s)
- rRNA, ribosomal RNA
- snRNA, small nuclear RNA
- snoRNA, small nucleolar RNA
- tRNA, transfer RNA
- uEVs, urinary extracellular vesicles
Collapse
Affiliation(s)
- Veronika Mussack
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Georg Wittmann
- Department for Transfusion Medicine, Cell therapeutics and Haemostaseology, University Hospital LMU, Marchioninistraße 15, 81377, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
42
|
Chang L, Ni J, Zhu Y, Pang B, Graham P, Zhang H, Li Y. Liquid biopsy in ovarian cancer: recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Am J Cancer Res 2019; 9:4130-4140. [PMID: 31281536 PMCID: PMC6592165 DOI: 10.7150/thno.34692] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
The current biomarkers available in the clinic are not enough for early diagnosis or for monitoring disease progression of ovarian cancer. Liquid biopsy is a minimally invasive test and has the advantage of early diagnosis and real-time monitoring of treatment response. Although significant progress has been made in the usage of circulating tumor cells and cell-free DNA for ovarian cancer diagnosis, their potential for early detection or monitoring progression remains elusive. Extracellular vesicles (EVs) are a heterogeneous group of lipid membranous particles released from almost all cell types. EVs contain proteins, mRNA, DNA fragments, non-coding RNAs, and lipids and play a critical role in intercellular communication. Emerging evidence suggests that EVs have crucial roles in cancer development and metastasis, thus holding promise for liquid biopsy-based biomarker discovery for ovarian cancer diagnosis. In this review, we discuss the advantages of EV-based liquid biopsy, summarize the protein biomarkers identified from EVs in ovarian cancer, and highlight the utility of new technologies recently developed for EV detection with an emphasis on their use for diagnosing ovarian cancer, monitoring cancer progression, and developing personalized medicine.
Collapse
|
43
|
Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, Yan Q, Lu J. The role of exosomal noncoding RNAs in cancer. Mol Cancer 2019; 18:37. [PMID: 30849983 PMCID: PMC6408816 DOI: 10.1186/s12943-019-0984-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) membranes enclose nanosized vesicles with a size range of 30-150 nm and are plentiful in our body in both physiological and pathological conditions. Exosomes, a type of EV, are important mediators of intracellular communication among tumor cells, immune cells, and stromal cells. They can shuttle bioactive molecules, such as proteins, lipids, RNA, and DNA; however, the precise function of EVs remains largely unknown. In recent years, tumor-associated cargo in exosomes has been a hot topic in research, especially with respect to noncoding RNAs (ncRNAs). Herein, we review the role of exosomal ncRNAs, including miRNAs and long noncoding RNAs, in tumor biological processes. Clinically, exosomal ncRNAs may eventually become novel biomarkers and therapeutic targets in cancer progression.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Wei Dang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Siwei Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Wenxing Yue
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Li Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xingyu Zhai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Jianhong Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China. .,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
44
|
Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol 2019; 54:1719-1733. [PMID: 30864689 PMCID: PMC6438431 DOI: 10.3892/ijo.2019.4742] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer remains the most lethal type of cancer among all gynecological malignancies. The majority of patients are diagnosed with ovarian cancer at the late stages of the disease. Therefore, there exists an imperative need for the development of early ovarian cancer diagnostic techniques. Exosomes, secreted by various cell types, play pivotal roles in intercellular communication, which emerge as promising diagnostic and prognostic biomarkers for ovarian cancer. In this study, we present for the first time, at least to the best of our knowledge, the proteomics profiling of exosomes derived from the plasma of patients with ovarian cancer via liquid chromatography tandem mass spectrometry (LC-MS/MS) with tandem mass tagging (TMT). The exosomes enriched from patient plasma samples were characterized by nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and western blot analysis. The size of the plasma exosomes fell into the range of 30 to 100 nm in diameter. The exosomal marker proteins, CD81 and TSG101, were clearly stained in the exosome samples; however, there was no staining for the endoplasmic reticulum protein, calnexin. A total of 294 proteins were identified with all exosome samples. Among these, 225 proteins were detected in both the cancerous and non-cancerous samples. Apart from universal exosomal proteins, exosomes derived from ovarian cancer patient plasma also contained tumor-specific proteins relevant to tumorigenesis and metastasis, particularly in epithelial ovarian carcinoma (EOC). Patients with EOC often suffer from coagulation dysfunction. The function of exosomes in coagulation was also examined. Several genes relevant to the coagulation cascade were screened out as promising diagnostic and prognostic factors that may play important roles in ovarian cancer progression and metastasis. On the whole, in this study, we successfully isolated and purified exosomes from plasma of patients with EOC, and identified a potential role of these exosomes in the coagulation cascade, as well as in the diagnosis and prognosis of patients. differentially expressed genes, functional enrichment analysis, protein-protein interaction, diagnostic and prognostic biomarkers
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaoxuan Ou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
45
|
Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20040890. [PMID: 30791364 PMCID: PMC6412350 DOI: 10.3390/ijms20040890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between cancer cells and host cells is a crucial prerequisite for tumor growth and progression. The cells from both the innate and adaptive immune systems enter into a perverse relationship with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Epithelial ovarian cancer (EOC), the most lethal of all gynecological malignancies, is characterized by a unique TME that paves the way to the formation of metastasis and mediates therapy resistance through the deregulation of immune surveillance. A characteristic feature of the ovarian cancer TME is the ascites/peritoneal fluid, a malignancy-associated effusion occurring at more advanced stages, which enables the peritoneal dissemination of tumor cells and the formation of metastasis. The standard therapy for EOC involves a combination of debulking surgery and platinum-based chemotherapy. However, most patients experience disease recurrence. New therapeutic strategies are needed to improve the prognosis of patients with advanced EOC. Harnessing the body’s natural immune defenses against cancer in the form of immunotherapy is emerging as an innovative treatment strategy. NK cells have attracted attention as a promising cancer immunotherapeutic target due to their ability to kill malignant cells and avoid healthy cells. Here, we will discuss the recent advances in the clinical application of NK cell immunotherapy in EOC.
Collapse
|
46
|
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9:19. [PMID: 30815248 PMCID: PMC6377728 DOI: 10.1186/s13578-019-0282-2] [Citation(s) in RCA: 1344] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles released into surrounding body fluids upon fusion of multivesicular bodies and the plasma membrane. They were shown to carry cell-specific cargos of proteins, lipids, and genetic materials, and can be selectively taken up by neighboring or distant cells far from their release, reprogramming the recipient cells upon their bioactive compounds. Therefore, the regulated formation of exosomes, specific makeup of their cargo, cell-targeting specificity are of immense biological interest considering extremely high potential of exosomes as non-invasive diagnostic biomarkers, as well as therapeutic nanocarriers. In present review, we outline and discuss recent progress in the elucidation of the regulatory mechanisms of exosome biogenesis, the molecular composition of exosomes, and technologies used in exosome research. Furthermore, we focus on the potential use of exosomes as valuable diagnostic and prognostic biomarkers for their cell-lineage and state-specific contents, and possibilities as therapeutic vehicles for drug and gene delivery. Exosome research is now in its infancy, in-depth understanding of subcellular components and mechanisms involved in exosome formation and specific cell-targeting will bring light on their physiological activities.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Yunfeng Liu
- Clinical Laboratory Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Haiying Liu
- Clinical Laboratory Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| |
Collapse
|
47
|
Zhao M, Nanbo A, Sun L, Lin Z. Extracellular Vesicles in Epstein-Barr Virus' Life Cycle and Pathogenesis. Microorganisms 2019; 7:microorganisms7020048. [PMID: 30754656 PMCID: PMC6406486 DOI: 10.3390/microorganisms7020048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are evolutionarily conserved phospholidpid membrane-bound entities secreted from most eukaryotic cell types. They carry bioactive cargos such as protein and nucleic acids derived from their cells of origin. Over the past 10 years, they have been attracting increased attention in many fields of life science, representing a new route for intercellular communication. In this review article, we will discuss the current knowledge of both normal and virally modified EVs in the regulation of Epstein-Barr virus (EBV)’s life cycle and its associated pathogenesis.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA 70112, USA.
| | - Asuka Nanbo
- Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan.
| | - Lichun Sun
- Department of Medicine, Peptide Research Laboratories, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA 70112, USA.
| |
Collapse
|
48
|
Detecting ovarian cancer using extracellular vesicles: progress and possibilities. Biochem Soc Trans 2019; 47:295-304. [PMID: 30700499 DOI: 10.1042/bst20180286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy. Most patients are diagnosed when they are already in the later stages of the disease. Earlier detection of OC dramatically improves the overall survival, but this is rarely achieved as there is a lack of clinically implemented biomarkers of early disease. Extracellular vesicles (EVs) are small cell-derived vesicles that have been extensively studied in recent years. They contribute to various aspects of cancer pathology, including tumor growth, angiogenesis and metastasis. EVs are released from all cell types and the macromolecular cargo they carry reflects the content of the cells from which they were derived. Cancer cells release EVs with altered cargo into biofluids, and so, they represent an excellent potential source of novel biomarkers for the disease. In this review, we describe the latest developments in EVs as potential biomarkers for earlier detection of OC. The field is still relatively young, but many studies have shown that EVs and the cargo they carry, including miRNAs and proteins, can be used to detect OC. They could also give insights into the stage of the disease and predict the likely therapeutic outcome. There remain many challenges to the use of EVs as biomarkers, but, through ongoing research and innovation in this exciting field, there is great potential for the development of diagnostic assays in the clinic that could improve patient outcome.
Collapse
|
49
|
Zhang P, Samuel G, Crow J, Godwin AK, Zeng Y. Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Transl Res 2018; 201:136-153. [PMID: 30031766 PMCID: PMC6424494 DOI: 10.1016/j.trsl.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 12/16/2022]
Abstract
Ewing sarcoma was first described in 1921 in the Proceedings of the New York Pathological Society by an eminent American pathologist from Cornell named James R. Ewing as a "diffuse endothelioma of bone." Since this initial description, more has been discovered regarding Ewing sarcoma and in the 1980's both Ewing sarcoma and peripheral primitive neuroectodermal tumors due to their similar features and shared identical genetic abnormality were grouped into a class of cancers entitled Ewing sarcoma family of tumors (ESFTs). Ewing sarcoma is the second most common pediatric osseous malignancy followed by osteosarcoma, with highest incidence among 10-20 years old. Ewing sarcoma is consistently associated with chromosomal translocation and functional fusion of the EWSR1 gene to any of several structurally related transcription factor genes of the E26 transformation-specific family. These tumor-specific molecular rearrangements are useful for primary diagnosis, may provide prognostic information, and present potential therapeutic targets. Therefore, ways to rapidly and efficiently detect these defining genomic alterations are of clinical relevance. Within the past decade, liquid biopsies including extracellular vesicles (EVs), have emerged as a promising alternative and/or complimentary approach to standard tumor biopsies. It was recently reported that fusion mRNAs from tumor-specific chromosome translocations can be detected in Ewing sarcoma cell-derived exosomes. Within this review, we overview the current advances in Ewing sarcoma and the opportunities and challenges in exploiting circulating exosomes, primarily small bioactive EVs (30-180 nm), as developing sources of biomarkers for diagnosis and therapeutic response monitoring in children and young adult patients with ESFT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, University of Kansas, Lawrence, Kansas
| | - Glenson Samuel
- Division of Hematology, Oncology and Bone Marrow Transplant, Children's Mercy Hospitals & Clinics, Kansas City, Missouri
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; University of Kansas Cancer Center, Kansas City, Kansas.
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas; University of Kansas Cancer Center, Kansas City, Kansas.
| |
Collapse
|
50
|
Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis. Stem Cells Int 2018; 2018:4837370. [PMID: 30344611 PMCID: PMC6174755 DOI: 10.1155/2018/4837370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In different biological model systems, exosomes are considered mediators of cell-cell communication between different cell populations. Exosomes, as extracellular vesicles, participate in physiological and pathological processes by transmitting signaling molecules such as proteins, nucleic acids, and lipids. The tumor's microenvironment consists of many types of cells, including cancer stem cells and mesenchymal cells. It is well known that these cells communicate with each other and thereby regulate the progression of the tumor. Recent studies have provided evidence that exosomes mediate the interactions between different types of cells in the tumor microenvironment, providing further insight into how these cells interact through exosome signaling. Cancer stem cells are a small kind of heterogeneous cells that existed in tumor tissues or cancer cell lines. These cells possess a stemness phenotype with a self-renewal ability and multipotential differentiation which was considered the reason for the failure of conventional cancer therapies and tumor recurrence. However, a highly dynamic equilibrium was found between cancer stem cells and cancer cells, and this indicates that cancer stem cells are no more special target and blocking the transformation of cancer stem cells and cancer cells seem to be a more significant therapy strategy. Whether exosomes, as an information transforming carrier between cells, regulated cancer cell transformation in cancer stem cell dynamic equilibrium and targeting exosome signaling attenuated the formation of cancer stem cells and finally cure cancers is worthy of further study.
Collapse
|