1
|
Jalali-Zefrei F, Mousavi SM, Delpasand K, Shourmij M, Farzipour S. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells. Curr Gene Ther 2025; 25:113-135. [PMID: 38676526 DOI: 10.2174/0115665232301727240422092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
Collapse
Affiliation(s)
- Fatemeh Jalali-Zefrei
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mehdi Mousavi
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Hu G, Che P, Deng L, Liu L, Liao J, Liu Q. MiR-378a-5p exerts a radiosensitizing effect on CRC through LRP8/β-catenin axis. Cancer Biol Ther 2024; 25:2308165. [PMID: 38389136 PMCID: PMC10896128 DOI: 10.1080/15384047.2024.2308165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity. METHODS The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and in vivo experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC. RESULTS The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating β-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis. CONCLUSION MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/β-catenin axis, which may be a new therapeutic target for CRC radioresistance.
Collapse
Affiliation(s)
- Guolin Hu
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Pengbiao Che
- Department of Ultrasound, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Ling Deng
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lei Liu
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Jia Liao
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Qi Liu
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| |
Collapse
|
3
|
Cantile M, Belli V, Scognamiglio G, Martorana A, De Pietro G, Tracey M, Budillon A. The role of HOTAIR in the modulation of resistance to anticancer therapy. Front Mol Biosci 2024; 11:1414651. [PMID: 38887279 PMCID: PMC11181001 DOI: 10.3389/fmolb.2024.1414651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Leading anti-tumour therapeutic strategies typically involve surgery and radiotherapy for locally advanced (non-metastatic) cancers, while hormone therapy, chemotherapy, and molecular targeted therapy are the current treatment options for metastatic cancer. Despite the initially high sensitivity rate to anticancer therapies, a large number of patients develop resistance, leading to a poor prognosis. The mechanisms related to drug resistance are highly complex, and long non-coding RNAs appear to play a crucial role in these processes. Among these, the lncRNA homeobox transcript antisense intergenic RNA (HOTAIR), widely implicated in cancer initiation and progression, likewise plays a significant role in anticancer drug resistance. It can modulate cell activities such as proliferation, apoptosis, hypoxia, autophagy, as well as epithelial-mesenchymal transition, thereby contributing to the development of resistant tumour cells. In this manuscript, we describe different mechanisms of antitumor drug resistance in which HOTAIR is involved and suggest its potential as a therapeutic predictive biomarker for the management of cancer patients.
Collapse
Affiliation(s)
- Monica Cantile
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Valentina Belli
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giosuè Scognamiglio
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Anna Martorana
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giovanna De Pietro
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maura Tracey
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
4
|
Xie M, Wang C, Sun Y, Mao Q, Sun S, Wu M, Zhu J, Li W, Jiang Z. Maimendong and Qianjinweijing Tang combined with cisplatin suppressed lung cancer through targeting lncRNA-p21. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117547. [PMID: 38135231 DOI: 10.1016/j.jep.2023.117547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maimendong and Qianjinweijing Tang (Jin formula) is a traditional Chinese medicine formula that has been proven effective in the treatment of lung cancer in long-term clinical practice. AIM OF THE STUDY To evaluate the anti-tumor effects of Jin formula combined with cisplatin (JIN + DDP) in vivo and in vitro, as well as to explore the role of long non-coding RNA (lncRNA) in the anti-lung cancer mechanism of its action. MATERIALS AND METHODS A Lewis lung cancer model was established in C57 BL/6 mice to study the in vivo anti-tumor effect of Jin formula combined with cisplatin. TUNEL staining and western blot were applied to study the effects of Jin formula combined cisplatin on apoptosis. The in vitro anti-cancer function of Jin formula combined with cisplatin was explored by cell viability assay, flow cytometry, wound healing assay and transwell assay. The changes in lncRNA expression profiles were determined by lncRNA microarray, and the differentially expressed lncRNA-p21 was verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. The expression differences of lncRNA-p21 in tumor and normal tissues were analyzed by bioinformatics, and the expression differences of lncRNA-p21 in tumor cells and normal cells were detected by qRT-PCR. The role of lncRNA-p21 in the anti-cancer effect of Jin formula combined cisplatin was investigated by knockdown or overexpression of lncRNA-p21 and a series of cell experiments. The expression of MAPK pathway-related proteins was analyzed by western blot. RESULTS Jin formula combined with cisplatin (JIN + DDP) can suppress tumor growth and promote apoptosis in Lewis lung cancer mouse model. LncRNA-p21 was significantly up-regulated in the JIN and JIN + DDP groups, and the expression of lncRNA-p21 in lung cancer tissues and cells was lower than that in normal tissues and cells. In vitro, JIN + DDP significantly induced apoptosis and inhibited the proliferation, migration, and invasion of H460 and H1650 lung cancer cells. The above effects can be enhanced by the overexpression of lncRNA-p21 and eliminated by knock-down of lncRNA-p21. Further studies revealed that JIN + DDP inhibited the expression of mitogen-activated protein kinase (MAPK) pathway-related proteins, whereas knock-down of lncRNA-p21 abrogated the inhibition of the MAPK signaling pathway. CONCLUSIONS This study showed that Jin formula combined with cisplatin could effectively inhibit the progression of lung cancer partially through targeting lncRNA-p21.
Collapse
Affiliation(s)
- Meiping Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Cheng Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yuxia Sun
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Qiuyuan Mao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shasha Sun
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Zequn Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Zhao J, Xu J, Wu M, Wang W, Wang M, Yang L, Cai H, Xu Q, Chen C, Lobie PE, Zhu T, Han X. LncRNA H19 Regulates Breast Cancer DNA Damage Response and Sensitivity to PARP Inhibitors via Binding to ILF2. Int J Mol Sci 2023; 24:ijms24119157. [PMID: 37298108 DOI: 10.3390/ijms24119157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
- Junsong Zhao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Junchao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huayong Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
6
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
7
|
Maulik A, Bandopadhyay D, Singh M. A cytosine-patch sequence motif identified in the conserved region of lincRNA-p21 interacts with the KH3 domain of hnRNPK. Curr Res Struct Biol 2023; 5:100099. [PMID: 36941955 PMCID: PMC10023864 DOI: 10.1016/j.crstbi.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Long Intergenic Non-coding RNAs (lincRNAs) are the largest class of long non-coding RNAs in eukaryotes, originating from the genome's intergenic regions. A ∼4 kb long lincRNA-p21 is derived from a transcription unit next to the p21/Cdkn1a gene locus. LincRNA-p21 plays regulatory roles in p53-dependent transcriptional and translational repression through its physical association with proteins such as hnRNPK and HuR. It is also involved in the aberrant gene expression in different cancers. In this study, we have carried out a bioinformatics-based gene analysis and annotation of lincRNA-p21 to show that it is highly conserved in primates and identified two conserved domains in its sequence at the 5' and 3' terminal regions. hnRNPK has previously been shown to interact specifically with the 5' conserved region of lincRNA-p21. hnRNPK is known to bind preferentially to the pyrimidine-rich (poly C) nucleotide sequences in RNAs. Interestingly, we observed a single occurrence of a cytosine-rich patch (C-patch) consisting of a CUCCCGC sequence in the 5' conserved region of human lincRNA-p21, making it a putative hnRNPK binding motif. Using NMR and ITC experiments, we showed that the single-stranded C-patch containing RNA sequence motif interacts specifically with the KH3 domain of hnRNPK.
Collapse
Affiliation(s)
| | | | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
8
|
Zhu C, Jiang J, Feng G, Fan S. The exciting encounter between lncRNAs and radiosensitivity in IR-induced DNA damage events. Mol Biol Rep 2023; 50:1829-1843. [PMID: 36507968 DOI: 10.1007/s11033-022-07966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| |
Collapse
|
9
|
Lee J, Kim DY, Kim Y, Shin US, Kim KS, Kim EJ. IGFL2-AS1, a Long Non-Coding RNA, Is Associated with Radioresistance in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24020978. [PMID: 36674495 PMCID: PMC9866146 DOI: 10.3390/ijms24020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Precise prediction of radioresistance is an important factor in the treatment of colorectal cancer (CRC). To discover genes that regulate the radioresistance of CRCs, we analyzed an RNA sequencing dataset of patient-originated samples. Among various candidates, IGFL2-AS1, a long non-coding RNA (lncRNA), exhibited an expression pattern that was well correlated with radioresistance. IGFL2-AS1 is known to be highly expressed in various cancers and functions as a competing endogenous RNA. To further investigate the role of IGFL2-AS1 in radioresistance, which has not yet been studied, we assessed the amount of IGFL2-AS1 transcripts in CRC cell lines with varying degrees of radioresistance. This analysis showed that the more radioresistant the cell line, the higher the level of IGFL2-AS1 transcripts-a similar trend was observed in CRC samples. To directly assess the relationship between IGFL2-AS1 and radioresistance, we generated a CRC cell line stably expressing a small hairpin RNA (shRNA) targeting IGFL2-AS1. shRNA-mediated knockdown of IGFL2-AS1 decreased radioresistance and cell migration in vitro, establishing a functional role for IGFL2-AS1 in radioresistance. We also showed that downstream effectors of the AKT pathway played crucial roles. These data suggest that IGFL2-AS1 contributes to the acquisition of radioresistance by regulating the AKT pathway.
Collapse
Affiliation(s)
- Jeeyong Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Younjoo Kim
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ui Sup Shin
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: ; Tel.: +82-2-970-1363
| |
Collapse
|
10
|
Roh J, Im M, Chae Y, Kang J, Kim W. The Involvement of Long Non-Coding RNAs in Glutamine-Metabolic Reprogramming and Therapeutic Resistance in Cancer. Int J Mol Sci 2022; 23:ijms232314808. [PMID: 36499136 PMCID: PMC9738059 DOI: 10.3390/ijms232314808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic alterations that support the supply of biosynthetic molecules necessary for rapid and sustained proliferation are characteristic of cancer. Some cancer cells rely on glutamine to maintain their energy requirements for growth. Glutamine is an important metabolite in cells because it not only links to the tricarboxylic acid cycle by producing α-ketoglutarate by glutaminase and glutamate dehydrogenase but also supplies other non-essential amino acids, fatty acids, and components of nucleotide synthesis. Altered glutamine metabolism is associated with cancer cell survival, proliferation, metastasis, and aggression. Furthermore, altered glutamine metabolism is known to be involved in therapeutic resistance. In recent studies, lncRNAs were shown to act on amino acid transporters and glutamine-metabolic enzymes, resulting in the regulation of glutamine metabolism. The lncRNAs involved in the expression of the transporters include the abhydrolase domain containing 11 antisense RNA 1, LINC00857, plasmacytoma variant translocation 1, Myc-induced long non-coding RNA, and opa interacting protein 5 antisense RNA 1, all of which play oncogenic roles. When it comes to the regulation of glutamine-metabolic enzymes, several lncRNAs, including nuclear paraspeckle assembly transcript 1, XLOC_006390, urothelial cancer associated 1, and thymopoietin antisense RNA 1, show oncogenic activities, and others such as antisense lncRNA of glutaminase, lincRNA-p21, and ataxin 8 opposite strand serve as tumor suppressors. In addition, glutamine-dependent cancer cells with lncRNA dysregulation promote cell survival, proliferation, and metastasis by increasing chemo- and radio-resistance. Therefore, understanding the roles of lncRNAs in glutamine metabolism will be helpful for the establishment of therapeutic strategies for glutamine-dependent cancer patients.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
11
|
Chuang JP, Tsai HL, Chen PJ, Chang TK, Su WC, Yeh YS, Huang CW, Wang JY. Comprehensive Review of Biomarkers for the Treatment of Locally Advanced Colon Cancer. Cells 2022; 11:3744. [PMID: 36497002 PMCID: PMC9740797 DOI: 10.3390/cells11233744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the implementation of global screening programs, colorectal cancer (CRC) remains the second leading cause of cancer-related deaths worldwide. More than 10% of patients with colon cancer are diagnosed as having locally advanced disease with a relatively poor five-year survival rate. Locally advanced colon cancer (LACC) presents surgical challenges to R0 resection. The advantages and disadvantages of preoperative radiotherapy for LACC remain undetermined. Although several reliable novel biomarkers have been proposed for the prediction and prognosis of CRC, few studies have focused solely on the treatment of LACC. This comprehensive review highlights the role of predictive biomarkers for treatment and postoperative oncological outcomes for patients with LACC. Moreover, this review discusses emerging needs and approaches for the discovery of biomarkers that can facilitate the development of new therapeutic targets and surveillance of patients with LACC.
Collapse
Affiliation(s)
- Jen-Pin Chuang
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan 70101, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Sung Yeh
- Department of Emergency Medicine, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jaw-Yuan Wang
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
13
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
14
|
Potentials of long non-coding RNAs as biomarkers of colorectal cancer. Clin Transl Oncol 2022; 24:1715-1731. [PMID: 35581419 DOI: 10.1007/s12094-022-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.
Collapse
|
15
|
Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, Ma M, Kang W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front Cell Dev Biol 2022; 10:862563. [PMID: 35517505 PMCID: PMC9065280 DOI: 10.3389/fcell.2022.862563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs (ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the field of ncRNAs increasingly expands, new complex roles have gradually emerged for ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the potential clinical significance and predictive value of ncRNAs in response to RT for guiding the individualized treatment of patients. This review can serve as a guide for the application of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of response in RT of gastrointestinal carcinoma.
Collapse
|
16
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
17
|
Zhang Y, Fang Y, Ma L, Xu J, Lv C, Deng L, Zhu G. LINC00857 regulated by ZNF460 enhances the expression of CLDN12 by sponging miR-150-5p and recruiting SRSF1 for alternative splicing to promote epithelial-mesenchymal transformation of pancreatic adenocarcinoma cells. RNA Biol 2021; 19:548-559. [PMID: 35442145 PMCID: PMC9037484 DOI: 10.1080/15476286.2021.1992995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Recent research unveiled that LINC00857 plays a regulatory role in multiple human cancers, such as lung adenocarcinoma and gastric cancer. Nevertheless, the function of LINC00857 in pancreatic adenocarcinoma (PAAD) remains unclear. This study concentrates on LINC00857 to discuss the relevant molecular mechanism of this gene in PAAD. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot were implemented for measuring the expressions of RNAs and proteins. Wound healing and Transwell assays were used to assess cell migration and invasion, and fluorescent in situ hybridization (FISH) to locate LINC00857 in PAAD cells. Additionally, mechanism assays were conducted to validate the interaction between genes. Results indicated that LINC00857 was upregulated in PAAD cells and the knockdown of LINC00857 impeded PAAD cell migration, invasion and epithelial-mesenchymal transition (EMT). Further, it was found that LNC00857 regulates CLDN12 expression by targeting miR-150-5p. Moreover, LINC00857 was confirmed to recruit serine/arginine-rich splicing factor 1 (SRSF1) to promote the alternative splicing (AS) targeting CLDN12, affecting the phenotypes of PAAD cells. In addition, the transcription factor ZNF460 was proven to positively regulate LINC00857 expression. To sum up, LINC00857 regulated by ZNF460 upregulates CLDN12 expression by sponging miR-150-5p and recruiting SRSF1 to facilitate the progression of PAAD cells.[Figure: see text].
Collapse
Affiliation(s)
- Yong Zhang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijie Ma
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jing Xu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chentao Lv
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Deng
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guanghui Zhu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
19
|
Li Z, Wang F, Zhu Y, Guo T, Lin M. Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst) 2021; 2021:9005073. [PMID: 34595090 PMCID: PMC8478560 DOI: 10.1155/2021/9005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) has severely threatened women's health worldwide. Radiotherapy is a treatment for BRCA, which applies high doses of ionizing radiation to induce cancer cell death and reduce disease recurrence. Radioresistance is one of the most important elements that affect the therapeutic efficacy of radiotherapy. Long noncoding RNAs (lncRNAs) are suggested to dominate crucial roles in regulating the biological behavior of BRCA. Currently, some studies indicate that overexpression or inhibition of lncRNAs can greatly alter the radioresistance of BRCA. In this review, we summarized the knowledge on the classification and function of lncRNAs and the molecular mechanism of BRCA radioresistance, listed lncRNAs related to the BRCA radioresistance, highlighted their underlying mechanisms, and discussed the potential application of these lncRNAs in regulating BRCA radioresistance.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Oncology, Medical College of Nantong University, Nantong, 226001 Jiangsu, China
| | - Fujin Wang
- Department of Radiology, The First People's Hospital of Yancheng, Yancheng, 224006 Jiangsu, China
| | - Yinxing Zhu
- Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300 Jiangsu Province, China
| | - Ting Guo
- Research Center of Clinical Medicine, Taizhou People's Hospital (the Affiliated Hospital 5 of Nantong University), Taizhou, 225300 Jiangsu Province, China
| | - Mei Lin
- Research Center of Clinical Medicine, Taizhou People's Hospital (the Affiliated Hospital 5 of Nantong University), Taizhou, 225300 Jiangsu Province, China
| |
Collapse
|
20
|
Biomarkers and cell-based models to predict the outcome of neoadjuvant therapy for rectal cancer patients. Biomark Res 2021; 9:60. [PMID: 34321074 PMCID: PMC8317379 DOI: 10.1186/s40364-021-00313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Rectal cancer constitutes approximately one-third of all colorectal cancers and contributes to considerable mortality globally. In contrast to colon cancer, the standard treatment for localized rectal cancer often involves neoadjuvant chemoradiotherapy. Tumour response rates to treatment show substantial inter-patient heterogeneity, indicating a need for treatment stratification. Consequently researchers have attempted to establish new means for predicting tumour response in order to assist in treatment decisions. In this review we have summarized published findings regarding potential biomarkers to predict neoadjuvant treatment response for rectal cancer tumours. In addition, we describe cell-based models that can be utilized both for treatment prediction and for studying the complex mechanisms involved.
Collapse
|
21
|
Zhao M, Wang H, Chen J, Xi Y, Wang F, Huo C, Li W, Chu Y, Xu P, Huang Q, Bu S. Expression of long non-coding RNA H19 in colorectal cancer patients with type 2 diabetes. Arch Physiol Biochem 2021; 127:228-234. [PMID: 31232113 DOI: 10.1080/13813455.2019.1628068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study was to explore the lncRNAs expression in colorectal cancer (CRC) patients with type 2 diabetes (T2DM) and evaluate the diagnostic value of lncRNAs expression in CRC patients with T2DM. The present study was conducted on two cohorts with CRC patients. The tissues levels of lncRNAs were measured by real-time PCR analysis. The results showed that H19 and MALAT1 expression were higher in CRC tissues than in normal colorectal mucosa (p = 1.59 × 10-6 and p = 6.95 × 10-9, respectively), whereas lincRNA-p21 showed lower expression in CRC tissues (p = 1.10 × 10-4). Logistic regression analysis results indicated that the expression of H19 was significantly lower in CRC patients with T2DM compared with CRC patients without T2DM (p = .032). H19 expression in CRC group without T2DM was significantly associated with hypertension (p = .040). Additionally, the area under the receiver operating characteristic curve of H19 was 0.672 of the group CRC with T2DM, which suggests that H19 could be a useful biomarker and predictive targets for diagnosis of T2DM in CRC patients.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingbo Chen
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Xi
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| | - Fuyan Wang
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| | - Cuilan Huo
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenwen Li
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yudong Chu
- Department of Nephrology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, China
- The Second Section within Ninghai Second Hospital, Ningbo, China
| | - Pengjie Xu
- Department of Nephrology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, China
- The Second Section within Ninghai Second Hospital, Ningbo, China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
De Martino M, Esposito F, Pallante P. Long non-coding RNAs regulating multiple proliferative pathways in cancer cell. Transl Cancer Res 2021; 10:3140-3157. [PMID: 35116622 PMCID: PMC8797882 DOI: 10.21037/tcr-21-230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) belong to an extremely heterogeneous class of non-coding RNAs with a length ranging from 200 to 100,000 bp. They modulate a series of cellular pathways in both physiological and pathological context. It is no coincidence that they are expressed in an aberrant way in pathologies such as cancer, so as to deserve to be subclassified as oncogenes or tumor suppressors. These molecules are also involved in the regulation of cancer cell proliferation. Several lncRNAs are able to modulate cell growth both positively and negatively, and in this review we have focused on a small group of them, characterized by the simultaneous action on different pathways regulating cell proliferation. They have been considered in the light of their behavior in three different subtypes of proliferative pathways that we can define as (I) tumor suppressor, (II) oncogenic and (III) transcriptionally-driven. More specifically, we have characterized some lncRNAs considered oncogenes (such as H19, linc-ROR, MALAT1, HULC, HOTAIR and ANRIL), tumor suppressors (such as MEG3 and lincRNA-p21), and both oncogenes/tumor suppressors (UCA1 and TUG1) in a little more detail. As can be understood from the review, the interactions between lncRNAs and their molecular targets, only in the context of controlling cell proliferation, give rise to an intricate molecular network, the understanding of which, in the future, will certainly be of help for the treatment of molecular diseases such as cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
23
|
Wang H, He F, Liang B, Jing Y, Zhang P, Liu W, Zhao H. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res 2021; 14:426-440. [PMID: 33169349 DOI: 10.1007/s12265-020-10074-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the functional role of p53-lincRNA-p21 in atherosclerosis (AS) by mediating the microRNA-17-5p (miR-17-5p)/SIRT7 axis. Peripheral blood was collected from AS patients, and an ApoE-/- mouse model of AS (AS-M) was induced by high-fat diet. The relationship among p53, lincRNA-p21, miR-17-5p, and SIRT7 was validated, and their effects on AS progression and vascular smooth muscle cell (VSMC) functions were analyzed using gain- and loss-of-function experiments in AS mice and human and mouse VSMCs. p53, lincRNA-p21, and SIRT7 were downregulated, and miR-17-5p was upregulated in AS-M and peripheral blood of AS patients. p53 positively regulated lincRNA-p21, while miR-17-5p, reversely targeted by lincRNA-p21, could target SIRT7. Overexpressing p53, lincRNA-p21, or SIRT7 contributed to impaired proliferation and promoted apoptosis of VSMCs in vitro as well as reducing the vulnerable plaque and lipid accumulation in AS mice. Collectively, p53-dependent lincRNA-p21 expression downregulated miR-17-5p, which consequently protecting against AS progression via SIRT7 elevation. Graphical abstract Collectively, p53-dependent lincRNA-p21 expression downregulated miR-17-5p, whichconsequently protecting against AS progression via SIRT7 elevation.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Proliferation
- Disease Models, Animal
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Sirtuins/genetics
- Sirtuins/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Haojie Wang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Fei He
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Bing Liang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Yuanhu Jing
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Pei Zhang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Weichao Liu
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Hui Zhao
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China.
| |
Collapse
|
24
|
Benitez JC, Campayo M, Díaz T, Ferrer C, Acosta-Plasencia M, Monzo M, Cirera L, Besse B, Navarro A. Lincp21-RNA as Predictive Response Marker for Preoperative Chemoradiotherapy in Rectal Cancer. J Pers Med 2021; 11:jpm11050420. [PMID: 34065723 PMCID: PMC8156811 DOI: 10.3390/jpm11050420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Preoperative chemoradiotherapy (CRT) is a standard treatment for locally advanced rectal cancer (RC) patients, but its use in non-responders can be associated with increased toxicities and resection delay. LincRNA-p21 is a long non-coding RNA involved in the p53 pathway and angiogenesis regulation. We aimed to study whether lincRNA-p21 expression levels can act as a predictive biomarker for neoadjuvant CRT response. We analyzed RNAs from pretreatment biopsies from 70 RC patients treated with preoperative CRT. Pathological response was classified according to the tumor regression grade (TRG) Dworak classification. LincRNA-p21 expression was determined by RTqPCR. The results showed that lincRNA-p21 was upregulated in stage III tumors (p = 0.007) and in tumors with the worst response regarding TRG (p = 0.027) and downstaging (p = 0.016). ROC curve analysis showed that lincRNA-p21 expression had the capacity to distinguish a complete response from others (AUC:0.696; p = 0.014). LincRNA-p21 was shown as an independent marker of preoperative CRT response (p = 0.047) and for time to relapse (TTR) (p = 0.048). In conclusion, lincRNA-p21 is a marker of advanced disease, worse response to neoadjuvant CRT, and shorter TTR in locally advanced RC patients. The study of lincRNA-p21 may be of value in the individualization of pre-operative CRT in RC.
Collapse
Affiliation(s)
- Jose Carlos Benitez
- Department of Cancer Medicine, Gustave Roussy Cancer Center, 94805 Villejuif, France; (J.C.B.); (B.B.)
- Department of Medical Oncology, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain;
| | - Marc Campayo
- Department of Medical Oncology, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain;
- Correspondence: (M.C.); (A.N.)
| | - Tania Díaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (T.D.); (M.A.-P.); (M.M.)
| | - Carme Ferrer
- Department of Pathology, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Barcelona, Spain;
| | - Melissa Acosta-Plasencia
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (T.D.); (M.A.-P.); (M.M.)
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (T.D.); (M.A.-P.); (M.M.)
| | - Luis Cirera
- Department of Medical Oncology, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain;
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy Cancer Center, 94805 Villejuif, France; (J.C.B.); (B.B.)
- Faculty of Science, Orsay Campus, Paris-Saclay University, 91400 Orsay, France
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (T.D.); (M.A.-P.); (M.M.)
- Correspondence: (M.C.); (A.N.)
| |
Collapse
|
25
|
Zhu D, Shi C, Jiang Y, Zhu K, Wang X, Feng W. Cisatracurium inhibits the growth and induces apoptosis of ovarian cancer cells by promoting lincRNA-p21. Bioengineered 2021; 12:1505-1516. [PMID: 33944652 PMCID: PMC8806207 DOI: 10.1080/21655979.2021.1916271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As a common muscle relaxant, cisatracurium has shown good antitumor effect on some tumors. Recent studies reported that cisatracurium could inhibit the progression of colon cancer by upregulating tumor suppressor gene p53. However, its role in ovarian cancer and its regulatory effect on p53 and p53 downstream targeting gene long intergenic noncoding RNA p21 (lincRNA-p21) is still unknown. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) was used to assess the expression of p53, lincRNA-p21 and miR-181b. Cell viability and proliferation were detected by CCK-8 assay and Edu staining, respectively. Wound-healing and Transwell assays were performed to determine the abilities of cell migration and invasion. Apoptosis was evaluated by TUNEL staining. Luciferase reporter assay was conducted to detect the relationship between lincRNA-p21 and miR-181b. As a result, cisatracurium could increase the expressions of p53 and lincRNA-p21 of ovarian cancer cell line (OVCAR-3) in a dose-dependent manner. In addition, cisatracurium significantly inhibited the proliferation, migration and invasion of OVACR-3 cells, and induced apoptosis. However, these above changes in biological function can be attenuated by lincRNA-p21 knockdown. Next, lincRNA-p21 could directly target miR-181b and negatively regulate its expression by luciferase reporter assay. In conclusion, cisatracurium inhibited the progression of OVCAR-3 cells through upregulation of lincRNA-p21 expression activated by p53 inhibiting miR-181b expression. The experimental results provide a new research idea for the application of cisatracurium in ovarian cancer.
Collapse
Affiliation(s)
- Dezhang Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Caifeng Shi
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanan Jiang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kongjuan Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangzhen Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Wang XC, Liu Y, Long FW, Liu LR, Fan CW. Identification of a lncRNA prognostic signature-related to stem cell index and its significance in colorectal cancer. Future Oncol 2021; 17:3087-3100. [PMID: 33910362 DOI: 10.2217/fon-2020-1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: The relationship between long noncoding RNAs (lncRNAs) and the mRNA stemness index (mRNAsi) in colorectal cancer (CRC) is still unclear. Materials & methods: The mRNAsi, mRNAsi-related lncRNAs and their clinical significance were analyzed by bioinformatic approaches in The Cancer Genome Atlas (TCGA)-COREAD dataset. Results: mRNAsi was negatively related to pathological features but positively related to overall survival and recurrence-free survival in CRC. A five mRNAsi-related lncRNAs prognostic signature was further developed and showed independent prognostic factors related to overall survival in CRC patients, due to the five mRNAsi-related lncRNAs involved in several pathways of the cancer stem cells and malignant cancer cell phenotypes. Conclusion: The present study highlights the potential roles of mRNAsi-related lncRNAs as alternative prognostic markers.
Collapse
Affiliation(s)
- Xiao-Cheng Wang
- Department of Day Surgery Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya Liu
- Department of Internal Medicine, Chengdu City Jinniu District No. 2 People's Hospital, Chengdu, 610036, China
| | - Fei-Wu Long
- Department of Gastrointestinal Surgery & Breast & Thyroid Surgery, Minimally Invasive Surgery, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang-Ren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuan-Wen Fan
- Department of Gastrointestinal Surgery & Breast & Thyroid Surgery, Minimally Invasive Surgery, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.,Department of Oncology & Department of Biomedical & Clinical Sciences, Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
27
|
Yang Y, Yan X, Li X, Ma Y, Goel A. Long non-coding RNAs in colorectal cancer: Novel oncogenic mechanisms and promising clinical applications. Cancer Lett 2021; 504:67-80. [PMID: 33577977 PMCID: PMC9715275 DOI: 10.1016/j.canlet.2021.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy and ranks as the second leading cause of cancer-related deaths worldwide. Despite the improvements in CRC diagnosis and treatment approaches, a considerable proportion of CRC patients still suffers from poor prognosis due to late disease detections and lack of personalized disease managements. Recent evidences have not only provided important molecular insights into their mechanistic behaviors but also indicated that identification of cancer-specific long non-coding RNAs (LncRNAs) could benefit earlier disease detections and improve treatment outcomes in patients suffering from CRC. LncRNAs have raised extensive attentions as they participate in various hallmarks of CRC. The mechanistic evidence gleaned in the recent decade clearly reveals that lncRNAs exert their oncogenic roles by regulating autophagy, epigenetic modifications, enhancing stem phenotype and modifying tumor microenvironment. In view of their pleiotropic functional roles in malignant progression, and their frequently dysregulated expression in CRC patients, they have great potential to be reliable diagnostic and prognostic biomarkers, as well as therapeutic targets for CRC. In the present review, we will focus on the oncogenic roles of lncRNAs and related mechanisms in CRC as well as discuss their clinical potential in the early diagnosis, prognostic prediction and therapeutic translation in patients with this malignancy.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
28
|
Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenkо NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int 2021; 45:1583-1598. [PMID: 33760334 DOI: 10.1002/cbin.11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, chennai, India
| | - Laith A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Najaf, Iraq
| | | | | | - Yulianna Ivanovna Enina
- Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Natalya A Yushchenkо
- Department of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Michail V Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
30
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
31
|
Chen X, Liu Y, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Liu J. Exosomal miR-590-3p derived from cancer-associated fibroblasts confers radioresistance in colorectal cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 24:113-126. [PMID: 33738143 PMCID: PMC7943971 DOI: 10.1016/j.omtn.2020.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapeutic resistance is a major obstacle for the effective treatment of colorectal cancer (CRC). MicroRNAs (miRNAs) play a critical role in chemoresistance and radioresistance. Here, we aimed to investigate whether miR-590-3p participates in the radioresistance of CRC. High expression of miR-590-3p and low expression of CLCA4 were found in both CRC tissues and cell lines. CLCA4 was indicated to be a target gene of miR-590-3p. CAF-derived exosomes were extracted and co-cultured with CRC cells, which were then exposed to radiation. CRC cells were transfected with plasmids and injected into nude mice to detect the in vivo effect of CAF-derived exosomes. Treatment with CAF-derived exosomes decreased the sensitivity of CRC cells to radiation. CAF-derived exosomes overexpressing miR-590-3p increased cell survival and the ratio of p-PI3K/PI3K and p-AKT/AKT while lowering the expressions of cleaved-PARP, cleaved-caspase 3, and γH2AX in cells. Furthermore, in vivo experimental results confirmed that CAF-derived exosomal miR-590-3p stimulated tumor growth in mice following radiotherapy. Our results demonstrate that miR-590-3p delivery via exosomes derived from CAFs enhances radioresistance in CRC through the positive regulation of the CLCA4-dependent PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xijuan Chen
- Department of Radiation Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yingqiang Liu
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Qinglan Zhang
- Department of Hematology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Baoxing Liu
- Department of Chest Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yan Cheng
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Yonglei Zhang
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yanan Sun
- Department of Radiation Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Junqi Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
32
|
Ketley RF, Gullerova M. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem 2020; 64:721-735. [PMID: 32618336 PMCID: PMC7592198 DOI: 10.1042/ebc20200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
The mechanisms by which RNA acts in the DNA damage response (DDR), specifically in the repair of DNA double-strand breaks (DSBs), are emerging as multifaceted and complex. Different RNA species, including but not limited to; microRNA (miRNA), long non-coding RNA (lncRNA), RNA:DNA hybrid structures, the recently identified damage-induced lncRNA (dilncRNA), damage-responsive transcripts (DARTs), and DNA damage-dependent small RNAs (DDRNAs), have been shown to play integral roles in the DSB response. The diverse properties of these RNAs, such as sequence, structure, and binding partners, enable them to fulfil a variety of functions in different cellular contexts. Additionally, RNA can be modified post-transcriptionally, a process which is regulated in response to cellular stressors such as DNA damage. Many of these mechanisms are not yet understood and the literature contradictory, reflecting the complexity and expansive nature of the roles of RNA in the DDR. However, it is clear that RNA is pivotal in ensuring the maintenance of genome integrity. In this review, we will discuss and summarise recent evidence which highlights the roles of these various RNAs in preserving genomic integrity, with a particular focus on the emerging role of RNA in the DSB repair response.
Collapse
Affiliation(s)
- Ruth F Ketley
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
33
|
Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y, Xie N, Ren W, Li C, Liu Y, Hu H, Xu X, Yao H. Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/ β-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000915. [PMID: 32999837 PMCID: PMC7509644 DOI: 10.1002/advs.202000915] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/17/2020] [Indexed: 05/28/2023]
Abstract
Resistance to radiotherapy is frequently encountered in clinic, leading to poor prognosis of cancer patients. Long noncoding RNAs (lncRNAs) play important roles in the development of radioresistance due to their functions in regulating the expression of target genes at both transcriptional and posttranscriptional levels. Exploring key lncRNAs and elucidating the mechanisms contributing to radioresistance are crucial for the development of effective strategies to reverse radioresistance, which however remains challenging. Here, actin filament-associated protein 1 antisense RNA1 (lncAFAP1-AS1) is identified as a key factor in inducing radioresistance of triple-negative breast cancer (TNBC) via activating the Wnt/β-catenin signaling pathway. Considering the generation of a high concentration of reduction agent glutathione (GSH) under radiation, a reduction-responsive nanoparticle (NP) platform is engineered for effective lncAFAP1-AS1 siRNA (siAFAP1-AS1) delivery. Systemic delivery of siAFAP1-AS1 with the reduction-responsive NPs can synergistically reverse radioresistance by silencing lncAFAP1-AS1 expression and scavenging intracellular GSH, leading to a dramatically enhanced radiotherapy effect in both xenograft and metastatic TNBC tumor models. The findings indicate that lncAFAP1-AS1 can be used to predict the outcome of TNBC radiotherapy and combination of systemic siAFAP1-AS1 delivery with radiotherapy can be applied for the treatment of recurrent TNBC patients.
Collapse
Affiliation(s)
- Zhuofei Bi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qingjian Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoxiao Dinglin
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ying Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Kaiyun You
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Huangming Hong
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qian Hu
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Wei Zhang
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chenchen Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yujie Tan
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ning Xie
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Wei Ren
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chuping Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yimin Liu
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
34
|
Li Y, Castellano JJ, Moreno I, Martínez-Rodenas F, Hernandez R, Canals J, Diaz T, Han B, Muñoz C, Biete A, Monzo M, Navarro A. LincRNA-p21 Levels Relates to Survival and Post-Operative Radiotherapy Benefit in Rectal Cancer Patients. Life (Basel) 2020; 10:life10090172. [PMID: 32878005 PMCID: PMC7555220 DOI: 10.3390/life10090172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
LincRNA-p21 is a long non-coding RNA involved in the p53 pathway and angiogenesis regulation that acts as prognostic marker in several tumors. In the present study, we aimed to analyze the clinical value of lincRNA-p21 in 177 resected stage I–III colorectal cancer (CRC) patients. Tumor and normal paired tissue and plasma samples from tumor-draining mesenteric veins and paired peripheral veins were analyzed. LincRNA-p21 expression was determined by RTqPCR and correlated with disease-free (DFS) and overall survival (OS). LincRNA-p21 was downregulated in tumor versus normal tissue (p = 0.0012). CRC patients with high lincRNA-p21 expression had shorter DFS (p = 0.0372) and shorter OS (p = 0.0465). Of note, the major prognostic impact was observed in the subset of rectal cancer patients where patients with high lincRNA-p21 levels had worse DFS (p = 0.0226) and OS (p = 0.0457). Interestingly, rectal cancer patients with high lincRNA-p21 benefited from post-operative chemoradiotherapy, as indicated by a longer OS in the group of high lincRNA-p21 patients receiving post-operative chemoradiotherapy (p = 0.04). Finally, patients with high lincRNA-p21 levels in mesenteric vein (MV) had shorter OS (p = 0.0329). LincRNA-p21 is a marker of advanced disease and worse outcome in CRC. Moreover, rectal cancer patients with high lincRNA-p21 levels could benefit from post-operative chemoradiotherapy, and plasmatic-lincRNA-p21 is a promising liquid biopsy biomarker.
Collapse
Affiliation(s)
- Yan Li
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Joan J. Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Isabel Moreno
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Francisco Martínez-Rodenas
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Raquel Hernandez
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Jordi Canals
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Tania Diaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Bing Han
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Albert Biete
- Radiation Oncology Department, Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Correspondence: ; Tel.: +34-934021903
| |
Collapse
|
35
|
Zuo Z, Ji S, He L, Zhang Y, Peng Z, Han J. LncRNA TTN-AS1/miR-134-5p/PAK3 axis regulates the radiosensitivity of human large intestine cancer cells through the P21 pathway and AKT/GSK-3β/β-catenin pathway. Cell Biol Int 2020; 44:2284-2292. [PMID: 32749739 DOI: 10.1002/cbin.11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 01/09/2023]
Abstract
Radiotherapy is an important adjuvant treatment for large intestine cancer even though it does not cause any response in many patients. The present study aimed to investigate the effects of the TTN antisense RNA 1 (TTN-AS1) long noncoding RNA (lncRNA) on radiotherapy dynamics of large intestine cancer cells and to explore the underlying molecular mechanisms. TTN-AS1 expression was evaluated by reverse-transcription quantitative polymerase chain reaction, western blot, and cellular immunofluorescence, and flow cytometry analysis was used to measure apoptosis. Radiotherapy was simulated in vitro by exposing cancer cells to X-ray. TTN-AS1 was highly expressed in large intestine cancer cells after an X-ray exposition for 24 hr. TTN-AS1 knockdown improved the radiosensitivity of large intestine cancer cells and promoted apoptosis by increasing Bax/Bcl2 protein expression and the active-caspase 3/caspase 3 ratios following X-ray treatment. In addition, TTN-AS1 negatively regulated miR-134-5p expression, and miR-134-5p-mimic transfection decreased PAK3 protein expression in large intestine cancer cells. Importantly, TTN-AS1 promoted PAK3 and P21 protein expression in HT29 cells after X-ray treatment. Moreover, the knockdown of P21 protein expression improved radiosensitivity and promoted X-ray-induced apoptosis of HT29 cells. Finally, PAK3 knockdown expression decreased the p-AKT/AKT and p-GSK-3β/GSK-3β ratios and promoted the β-catenin transfer from the nucleus to the cytoplasm. These data suggest that the TTN-AS1 lncRNA promoted resistance to radiotherapy of large intestine cancer cells by increasing PAK3 expression via miR-134-5p inhibition, and this may be related to the P21 and AKT/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Zhenkui Zuo
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shuling Ji
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lulu He
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zining Peng
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiarui Han
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int J Mol Sci 2020; 21:E5311. [PMID: 32726923 PMCID: PMC7432436 DOI: 10.3390/ijms21155311] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide, despite progress made in detection and management through surgery, chemotherapy, radiotherapy, and immunotherapy. Novel therapeutic agents have improved survival in both the adjuvant and advanced disease settings, albeit with an increased risk of toxicity and cost. However, metastatic disease continues to have a poor long-term prognosis and significant challenges remain due to late stage diagnosis and treatment failure. Biomarkers are a key tool in early detection, prognostication, survival, and predicting treatment response. The past three decades have seen advances in genomics and molecular pathology of cancer biomarkers, allowing for greater individualization of therapy with a positive impact on survival outcomes. Clinically useful predictive biomarkers aid clinical decision making, such as the presence of KRAS gene mutations predicting benefit from epidermal growth factor receptor (EGFR) inhibiting antibodies. However, few biomarkers have been translated into clinical practice highlighting the need for further investigation. We review a range of protein, DNA and RNA-based biomarkers under investigation for diagnostic, predictive, and prognostic properties for CRC. In particular, long non-coding RNAs (lncRNA), have been investigated as biomarkers in a range of cancers including colorectal cancer. Specifically, we evaluate the potential role of lncRNA plasmacytoma variant translocation 1 (PVT1), an oncogene, as a diagnostic, prognostic, and therapeutic biomarker in colorectal cancer.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Fahad Mahmood
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| | - Akinfemi Akingboye
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| |
Collapse
|
37
|
Shi L, Chen Q, Ge X. Long intergenic non-coding RNA 00337 confers progression of esophageal cancer by mediating microrna-145-dependent fscn1. FASEB J 2020; 34:11431-11443. [PMID: 32654289 DOI: 10.1096/fj.202000470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/30/2020] [Indexed: 11/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been highlighted as prominent genetic modulators involved in multiple important biological processes of cancer cells, especially in esophageal cancer (EC). We tried to elucidate the potential role of LINC00337 in the progression of EC. Based on TCGA database analysis and Reverse transcription quantitative polymerase chain reaction determination, high expression of LINC00337 and FSCN1 was detected, while miR-145 exhibited a low expression in EC. LINC00337 was identified to bind to miR-145 to impair the miR-145-dependent FSCN1 inhibition. The underlying regulatory mechanisms were evaluated by transfection with LINC00337 overexpression plasmid, siRNA against LINC00337, miR-145 mimic, or anta-miR-145. Downregulation of LINC00337 results in increased Bax level, decreased FSCN1, Bcl-2, VEGF, and p53 levels, in addition to diminished cell proliferation, migration, invasion and tumor growth, with accelerated cell apoptosis by upregulating miR-145. Taken together, the findings obtained provided evidence suggesting that LINC00337 acts as a tumor promoter in EC, providing insight and advancements for EC treatment.
Collapse
Affiliation(s)
- Lixia Shi
- Department of General Surgery, Linyi People's Hospital, Linyi, P.R. China
| | - Qing Chen
- Department of General Surgery, Linyi People's Hospital, Linyi, P.R. China
| | - Xiaofen Ge
- Infectious Diseases Clinic, Linyi People's Hospital, Linyi, P.R. China
| |
Collapse
|
38
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
39
|
Amirinejad R, Rezaei M, Shirvani-Farsani Z. An update on long intergenic noncoding RNA p21: a regulatory molecule with various significant functions in cancer. Cell Biosci 2020; 10:82. [PMID: 32582435 PMCID: PMC7310005 DOI: 10.1186/s13578-020-00445-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA p21 was mapped on the human chromosome 6p21.2. Accordingly, it was firstly described by promoting the p53-dependent apoptosis in the mouse. Also, it is a new lncRNA playing some vital roles in the cell cycle, apoptosis, cell proliferation, tumorigenesis, invasion, metastasis, and angiogenesis. In this regard, it was shown that, lincRNA-p21 regulates these biological processes involved in carcinogenesis through various signaling pathways including Notch signaling, JAK2/STAT3, and AKT/mTOR pathways. Another mechanism by that lincRNA-p21 can affect these processes is a cross-talk with different miRNAs. In vitro and in vivo studies revealed dysregulation of lincRNA-p21 in various human cancers. In addition, emerging evidence demonstrated that, lincRNA-p21 can be considered as a potential prognostic and therapeutic biomarker in cancers. Also, lincRNA-p21 enhances the response to radiotherapy for colorectal cancer. However, the molecular mechanisms of lincRNA-p21 in carcinogenesis have not been fully elucidated so far. So, this review summarizes the function of lincRNA-p21, as a tumor suppressor factor in different biological processes implicated in cancers.
Collapse
Affiliation(s)
- Roya Amirinejad
- Genetics Department, Breast Cancer Research Center, Motamed Center Institute, ACECR, Tehran, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| |
Collapse
|
40
|
Chaleshi V, Irani S, Alebouyeh M, Mirfakhraie R, Aghdaei HA. Association of lncRNA-p53 regulatory network (lincRNA-p21, lincRNA-ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol Lett 2020; 19:3937-3949. [PMID: 32391102 PMCID: PMC7204634 DOI: 10.3892/ol.2020.11518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/10/2019] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a common intestinal cancer with a high mortality rate. Early detection of this type of cancer is fundamental to the prevention of the disease, which results in improved survival rates. In the human colon tissue, transition from normal epithelium to adenoma is considered to be caused by unknown molecular incidents occurring over 5-10 years. The detection of CRC has proved problematic when in the early stages of disease. In addition, identifying suitable biomarkers for the detection of CRC progress in patients remains one of the most significant challenges. Long non-coding RNAs have been demonstrated to contribute to the promotion of CRC. The aim of the present study was to investigate the clinical and biological significance of long intergenic non-coding (linc)RNA-p21, lincRNA-regulator of reprogramming (ROR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the colon tumor and polyp tissue, and the association that these have with the expression of p53 at the mRNA level. Neoplastic and paired adjacent normal tissue samples were obtained from 72 patients (46 polyps and 26 tumors). Reverse transcription-quantitative PCR was performed to determine the relative fold changes in the expression of lincRNA-p21, lincRNA-RoR, MALAT1 and p53 in the samples. A significant association was observed between the levels of MALAT1 and p53 in neoplasm tissues (R=0.073; P<0.05). The relative expression of the MALAT1 gene revealed a statistically significant difference between the different polyp types and number of polyps (P=0.0028 and 0.022, respectively). Adjuvant therapy in patients with tumors revealed an association between the levels of lincRNA-ROR and lincRNA-p21 expression (P=0.015 and 0.038, respectively). MALAT1 may be selected as an early detection biomarker for CRC. Furthermore, lincRNA-ROR and lincRNA-p21 may serve as prognostic and therapeutic biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Vahid Chaleshi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| |
Collapse
|
41
|
Chen X, Zhang Z, Ma Y, Su H, Xie P, Ran J. LINC02381 Promoted Cell Viability and Migration via Targeting miR-133b in Cervical Cancer Cells. Cancer Manag Res 2020; 12:3971-3979. [PMID: 32547232 PMCID: PMC7261661 DOI: 10.2147/cmar.s237285] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background It has been proved that lncRNAs could function as CeRNA for miRNAs in tumor growth and metastasis for cervical cancer. This paper aims to identify the role of LINC02381 in cervical cancer cells. Materials and Methods RT-qPCR was utilized to measure the expression levels of LINC02381 in cervical cancer tissues and cells. MTT, colony formation assay, transwell assay, RT-qPCR, and Western blotting were performed to investigate the roles of LINC02381 in cervical cancer cells. RegRNA 2.0 was used to predict the miRNA-binding sites of LINC02381. Luciferase reporter assay and RT-qPCR were employed to confirm the sponging effect between miR-133b and LINC02381. Results This study showed that LINC02381 was up-regulated in cervical cancer cells and acted as an oncogene in the development of cervical cancer. LINC02381 promoted cell viability and metastasis via sponging miR-133b. Moreover, miR-133b could target its downstream mediator of RhoA and inhibit its expression. Conclusion Overall, our results indicated that LINC02381 functions as an oncogene in cervical cancer and could serve as a novel target for cervical cancer therapies in the future.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Zhuxiang Zhang
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Yan Ma
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Hongxin Su
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Peng Xie
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Juntao Ran
- Department Of Radiation Therapy, First Hospital Of Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| |
Collapse
|
42
|
He Q, Long J, Yin Y, Li Y, Lei X, Li Z, Zhu W. Emerging Roles of lncRNAs in the Formation and Progression of Colorectal Cancer. Front Oncol 2020; 9:1542. [PMID: 32010629 PMCID: PMC6978842 DOI: 10.3389/fonc.2019.01542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the primary cause of cancer-related death worldwide; however, specific and sensitive tools for the early diagnosis and targeted therapy of CRC are currently lacking. High-throughput sequencing technology revealed that gene expression of long-chain non-coding RNAs (lncRNAs) in a number of cancers directly or indirectly interferes with various biological processes. Emerging evidence suggests that lncRNAs regulate target genes and play an important role in the biological processes of malignancies, including CRC. Many carcinostatic/oncogenic lncRNAs have been identified as biomarkers for metastasis and prognosis in CRC; hence, they serve as therapeutic tools. In this article, we systematically review the literature on the disordered lncRNAs in CRC from four aspects: DNA transcription, RNA level regulation, post-translational level, and the translation of lncRNAs into polypeptides. Subsequently, we analyze the mechanism through which lncRNAs participate in the biological process of CRC. Finally, we discuss the application and prospects of these lncRNAs in CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jiali Long
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan Hospital of Southern Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
43
|
Dai DP, Yu LZ, Ye MF. LincRNA-p21 reverses irinotecan resistance in colon cancer cells via the PI3K/AKT signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:1356-1364. [DOI: 10.11569/wcjd.v27.i22.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irinotecan (camptothecin-11, CPT-11) is a first-line chemotherapy drug for advanced colon cancer, but CPT-11 resistance limits its efficacy. Studying the mechanism of CPT-11 resistance in colon cancer and restoring the sensitivity of colon cancer cells to CPT-11 are of great clinical value in prolonging the life time of colon cancer patients.
AIM To investigate the effect and mechanism of long intergenic non-coding RNA-p21 (lincRNA-p21) on CPT-11 resistance in colon cancer cells.
METHODS HCT-8 and SW480 cells were used to construct irinotecan-resistant HCT-8/CPT-11 and SW480/CPT-11 cell lines by continuously exposing them to increasing concentrations of CPT-11, and the expression of lincRNA-p21 in the cells was detected by real-time quantitative polymerase chain reaction (RT-qPCR). After transfection with pcDNA-lincRNA-p21 or si-lincRNA-p21, the effect of CPT-11 on the viability of HCT-8/CPT-11 cells or SW480/CPT-11 cells was measured by cell counting kit-8 (CCK-8) assay. The regulatory effect of lincRNA-p21 on the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was preliminarily analyzed by Western blot. After pretreatment with PI3K/AKT pathway inhibitor LY294002 prior to transfection with si-lincRNA-p21, or pretreatment with PI3K/AKT pathway agonist Recilisib prior to transfection with pcDNA-lincRNA-p21, the effect of CPT-11 on cell viability in HCT-8/CPT-11 cells or SW480/CPT-11 cells was measured by CCK-8 assay.
RESULTS LincRNA-p21 expression in CPT-11 resistant cells was significantly lower than that in parental cells. Overexpression of lincRNA-p21 inhibited the resistance of HCT-8/CPT-11 cells and SW480/CPT-11 cells to CPT-11, while knockdown of lincRNA-p21 enhanced the resistance of HCT-8/CPT-11 cells and SW480/CPT-11 cells to CPT-11. Western blot results showed that overexpression of lincRNA-p21 inhibited the activity of the PI3K/AKT pathway, while knockdown of lincRNA-p21 enhanced the activity of the PI3K/AKT pathway. LY294002 inhibited the promotive effect of lincRNA-p21 knockdown on CPT-11 resistance, while Recilisib inhibited the inhibitive effect of lincRNA-p21 overexpression on CPT-11 resistance.
CONCLUSION Up-regulation of lincRNA-p21 can inhibit the CPT-11 resistance of colorectal cancer cells, while down-regulation of lincRNA-p21 can promote their CPT-11 resistance, which may be related to the regulation of the PI3K/AKT signaling activity by lincRNA-p21.
Collapse
Affiliation(s)
- Dan-Ping Dai
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| | - Ling-Zhi Yu
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| | - Meng-Fei Ye
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| |
Collapse
|
44
|
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene 2019; 39:1891-1903. [PMID: 31748715 PMCID: PMC7044111 DOI: 10.1038/s41388-019-1070-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Collapse
|
45
|
Hanly D, Esteller M, Berdasco M. Altered Long Non-coding RNA Expression in Cancer: Potential Biomarkers and Therapeutic Targets? ACTA ACUST UNITED AC 2019. [DOI: 10.1007/7355_2019_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, Igaz P, Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol 2019; 25:5026-5048. [PMID: 31558855 PMCID: PMC6747286 DOI: 10.3748/wjg.v25.i34.5026] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. LncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Barbara K Barták
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Zsófia B Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Krisztina A Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Peter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| |
Collapse
|
47
|
Long non-coding RNAs as regulators of Wnt/β catenin pathway. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Zhu J, Chen S, Yang B, Mao W, Yang X, Cai J. Molecular mechanisms of lncRNAs in regulating cancer cell radiosensitivity. Biosci Rep 2019; 39:BSR20190590. [PMID: 31391206 PMCID: PMC6712435 DOI: 10.1042/bsr20190590] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the main modalities of cancer treatment. However, tumor recurrence following radiotherapy occurs in many cancer patients. A key to solving this problem is the optimization of radiosensitivity. In recent years, long non-coding RNAs (lncRNAs), which affect the occurrence and development of tumors through a variety of mechanisms, have become a popular research topic. LncRNAs have been found to influence radiosensitivity by regulating various mechanisms, including DNA damage repair, cell cycle arrest, apoptosis, cancer stem cells regulation, epithelial-mesenchymal transition, and autophagy. LncRNAs are expected to become a potential therapeutic target for radiotherapy in the future. This article reviews recent advances in the role and mechanism of lncRNAs in tumor radiosensitivity.
Collapse
Affiliation(s)
- Jiamin Zhu
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Weidong Mao
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| |
Collapse
|
49
|
Xiong W, Qin J, Cai X, Xiong W, Liu Q, Li C, Ju Y, Wang Q, Li Y, Yang Y. Overexpression LINC01082 suppresses the proliferation, migration and invasion of colon cancer. Mol Cell Biochem 2019; 462:33-40. [PMID: 31432387 DOI: 10.1007/s11010-019-03607-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators in human cancer. LINC01082 was expressed as decreased in colon cancer by previous lncRNA-seq result and TCGA database, however, the role and function of LINC0182 is not clear in colon cancer. Here, we aimed to explore the role of LINC01082 in colon cancer for exploring the etiopathogenesis of colon cancer. RT-qPCR for LINC01082 expression in tissues (colon cancer vs. their matched adjacent non-cancerous tissues, ANT, n = 39) and cells (colon cancer cells vs. normal colon cells, n = 4) were performed. CCK-8 assay for proliferation of colon cancer, Transwell assay for migration and invasion were carried out in sw480 and sw620 cells. The results revealed that LINC01082 was significantly decreased in tissues and cell lines of colon cancer. Overexpressed LINC01082 significantly suppressed the proliferation ability of colon cancer cells. The migration and invasion of colon cancer cells were also suppressed after LINC01082 overexpression. These findings demonstrated that LINC01082 may act in suppressing the incidence and development of colon cancer via suppressing cell proliferation, migration and invasion, indicating that LINC01082 may act as a new tumor suppressor and may be a promising therapy target for colon cancer.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Jiyong Qin
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Xinyi Cai
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Wei Xiong
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiuyan Liu
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Cheng Li
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunhe Ju
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiaoli Wang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| | - Yi Yang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| |
Collapse
|
50
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan Z, Xiao N, Yao J, Li Z. Research Progress on Long Non-Coding RNA and Radiotherapy. Med Sci Monit 2019; 25:5757-5770. [PMID: 31375656 PMCID: PMC6690404 DOI: 10.12659/msm.915647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Danghui Xu
- Department of Medical Imaging, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuejun Zhou
- Department of Medical Imaging, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Peng Peng
- Department of Nursing, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Department of Basic Medicine, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Li
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|