1
|
Ferreres JR, Vinyals A, Campos‐Martin R, Espín R, Podlipnik S, Ramos R, Bertran E, Carrera C, Marcoval J, Malvehy J, Fabregat I, Puig S, Fabra À. PRRX1 silencing is required for metastatic outgrowth in melanoma and is an independent prognostic of reduced survival in patients. Mol Oncol 2024; 18:2471-2494. [PMID: 38978350 PMCID: PMC11459042 DOI: 10.1002/1878-0261.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Paired related homeobox 1 (PRRX1) is an inducer of epithelial-to-mesenchymal transition (EMT) in different types of cancer cells. We detected low PRRX1 expression in nevus but increased levels in primary human melanoma and cell lines carrying the BRAFV600E mutation. High expression of PRRX1 correlates with invasiveness and enrichment of genes belonging to the EMT programme. Conversely, we found that loss of PRRX1 in metastatic samples is an independent prognostic predictor of poor survival for melanoma patients. Here, we show that stable depletion of PRRX1 improves the growth of melanoma xenografts and increases the number of distant spontaneous metastases, compared to controls. We provide evidence that loss of PRRX1 counteracts the EMT phenotype, impairing the expression of other EMT-related transcription factors, causing dysregulation of the ERK and signal transducer and activator of transcription 3 (STAT3) signaling pathways, and abrogating the invasive and migratory properties of melanoma cells while triggering the up-regulation of proliferative/melanocytic genes and the expression of the neural-crest-like markers nerve growth factor receptor (NGFR; also known as neurotrophin receptor p75NTR) and neural cell adhesion molecule L1 (L1CAM). Overall, our results indicate that loss of PRRX1 triggers a switch in the invasive programme, and cells de-differentiate towards a neural crest stem cell (NCSC)-like phenotype that accounts for the metastatic aggressiveness.
Collapse
Affiliation(s)
- Josep R. Ferreres
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
- Dermatology Service, IDIBELLHospital Universitari de BellvitgeBarcelonaSpain
| | - Antònia Vinyals
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Rafael Campos‐Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and PsychotherapyUniversity of CologneGermany
| | - Roderic Espín
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Oncobell Program (IDIBELL)BarcelonaSpain
| | - Sebastian Podlipnik
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Raquel Ramos
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Esther Bertran
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Joaquim Marcoval
- Dermatology Service, IDIBELLHospital Universitari de BellvitgeBarcelonaSpain
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Isabel Fabregat
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Àngels Fabra
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Quadri M, Palazzo E. The Role of the Neurotrophin Network in Skin Squamous Cell Cancer and the Novel Use of the Zebrafish System. JID INNOVATIONS 2024; 4:100295. [PMID: 39100386 PMCID: PMC11296245 DOI: 10.1016/j.xjidi.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer. An increasing number of cSCCs are associated with dysregulation of key molecules that control skin homeostasis. These observations have increased interest in the role of neurotrophins and their receptors in the pathogenesis of cSCC. They have been demonstrated to have a considerable impact on the aggressiveness potential of skin cancer by both in vitro and in vivo models. In this context, mouse models are classically used to dissect proliferation versus differentiation balance, but they have some limitations in terms of time, space, and costs. Recently, zebrafish models have been implemented as a new tool to obtain information regarding the invasive capacity and metastasis of neoplastic cells. By xenotransplantation technique, cSCC cells from a patient's biopsy or cell line can be successfully characterized, with or without the presence of genetic manipulation or treatments. In addition, the evaluation of the immune microenvironment contributes to potentially identifying connections and homologies with humans. In this review, we retrace the role of the neurotrophin network in healthy and pathological skin, particularly in cSCC. We review how zebrafish models can be important tools for studying cSCC development, growth, and potential treatments.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
da Silva G, Milan TM, Leopoldino AM. The accumulation of sphingosine kinase 2 disrupts the DNA damage response and promotes resistance to genotoxic agents. Gene 2024; 897:148063. [PMID: 38048970 DOI: 10.1016/j.gene.2023.148063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
There is a known correlation between cancer and changes in sphingolipids, specifically the production of sphingosine-1-phosphate (S1P) by sphingosine kinases 1 and 2 (SPHK1/SPHK2). However, a potential relationship between bioactive lipid molecules, SPHK, and the response to DNA damage is unknown. We aimed to evaluate the response of oral keratinocytes and head and neck cancer cell lines with SPHK2/S1P alterations to DNA damage. This assessment is intended to establish a link between these alterations and tumorigenesis as well as resistance to therapy. SPHK2 overexpression in oral squamous cells promoted evasion of apoptosis and cell cycle control, which increased the resistance to genotoxic agents (chemical and physical). Cells that have SPHK2 overexpression are more prone to DNA damage, which allows those damaged cells to survive and multiply. This is associated with a decrease in overall DNA methylation. These discoveries help to clarify the connection between SPHK2 and the response to DNA damage, as well as its capacity to aid in the resistance against genotoxic agents, including those used in cancer treatment.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - Thaís Moré Milan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
4
|
Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, Wu Q, Xu S, Zhou Q, Liu L, Peng M, Cheng X, Yan T. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol 2024; 13:1324819. [PMID: 38239657 PMCID: PMC10795532 DOI: 10.3389/fonc.2023.1324819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the incidence and mortality rate of ESCC in our country are also higher than those in the rest of the world. Despite advances in the treatment department method, patient survival rates have not obviously improved, which often leads to treatment obstruction and cancer repeat. ESCC has special cells called cancer stem-like cells (CSLCs) with self-renewal and differentiation ability, which reflect the development process and prognosis of cancer. In this review, we evaluated CSLCs, which are identified from the expression of cell surface markers in ESCC. By inciting EMTs to participate in tumor migration and invasion, stem cells promote tumor redifferentiation. Some factors can inhibit the migration and invasion of ESCC via the EMT-related pathway. We here summarize the research progress on the surface markers of CSLCs, EMT pathway, and the microenvironment in the process of tumor growth. Thus, these data may be more valuable for clinical applications.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meilan Peng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Wolfmeier H, Heindl S, Platzl C, Kaser-Eichberger A, Nematian-Ardestani E, Strohmaier C, Pruszak J, Schroedl F. Targeted surface marker screening on neuronal structures in the human choroid. Exp Eye Res 2023; 227:109368. [PMID: 36586549 DOI: 10.1016/j.exer.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.
Collapse
Affiliation(s)
- H Wolfmeier
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - S Heindl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - A Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - E Nematian-Ardestani
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - J Pruszak
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - F Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
6
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2022; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Dhanyamraju PK, Schell TD, Amin S, Robertson GP. Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Res 2022; 82:2503-2514. [PMID: 35584245 PMCID: PMC9296591 DOI: 10.1158/0008-5472.can-21-3844] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
8
|
Duan X, Yang L, Wang L, Liu Q, Zhang K, Liu S, Liu C, Gao Q, Li L, Qin G, Zhang Y. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci 2022; 12:60. [PMID: 35568876 PMCID: PMC9107638 DOI: 10.1186/s13578-022-00798-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epitranscriptomics studies have contributed greatly to the development of research on human cancers. In recent years, N6-methyladenosine (m6A), an RNA modification on the N-6 position of adenosine, has been found to play a potential role in epigenetic regulation. Therefore, we aimed to evaluate the regulation of cancer progression properties by m6A. RESULTS We found that m6A demethylase fat mass and obesity-associated protein (FTO) was highly expressed in esophageal cancer (EC) stem-like cells, and that its level was also substantially increased in EC tissues, which was closely correlated with a poor prognosis in EC patients. FTO knockdown significantly inhibited the proliferation, invasion, stemness, and tumorigenicity of EC cells, whereas FTO overexpression promoted these characteristics. Furthermore, integrated transcriptome and meRIP-seq analyses revealed that HSD17B11 may be a target gene regulated by FTO. Moreover, FTO promoted the formation of lipid droplets in EC cells by enhancing HSD17B11 expression. Furthermore, depleting YTHDF1 increased the protein level of HSD17B11. CONCLUSIONS These data indicate that FTO may rely on the reading protein YTHDF1 to affect the translation pathway of the HSD17B11 gene to regulate the formation of lipid droplets in EC cells, thereby promoting the development of EC. The understanding of the role of epitranscriptomics in the development of EC will lay a theoretical foundation for seeking new anticancer therapies.
Collapse
Affiliation(s)
- Xiaoran Duan
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China
| | - Liuya Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qinghua Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Kai Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Chaojun Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
9
|
Wang C, Qin S, Pan W, Shi X, Gao H, Jin P, Xia X, Ma F. mRNAsi-related genes can effectively distinguish hepatocellular carcinoma into new molecular subtypes. Comput Struct Biotechnol J 2022; 20:2928-2941. [PMID: 35765647 PMCID: PMC9207218 DOI: 10.1016/j.csbj.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies have shown that the mRNA expression-based stemness index (mRNAsi) can accurately quantify the similarity of cancer cells to stem cells, and mRNAsi-related genes are used as biomarkers for cancer. However, mRNAsi-driven tumor heterogeneity is rarely investigated, especially whether mRNAsi can distinguish hepatocellular carcinoma (HCC) into different molecular subtypes is still largely unknown. Methods Using OCLR machine learning algorithm, weighted gene co-expression network analysis, consistent unsupervised clustering, survival analysis and multivariate cox regression etc. to identify biomarkers and molecular subtypes related to tumor stemness in HCC. Results We firstly demonstrate that the high mRNAsi is significantly associated with the poor survival and high disease grades in HCC. Secondly, we identify 212 mRNAsi-related genes that can divide HCC into three molecular subtypes: low cancer stemness cell phenotype (CSCP-L), moderate cancer stemness cell phenotype (CSCP-M) and high cancer stemness cell phenotype (CSCP-H), especially over-activated ribosomes, spliceosomes and nucleotide metabolism lead to the worst prognosis for the CSCP-H subtype patients, while activated amino acids, fatty acids and complement systems result in the best prognosis for the CSCP-L subtype. Thirdly, we find that three CSCP subtypes have different mutation characteristics, immune microenvironment and immune checkpoint expression, which may cause the differential prognosis for three subtypes. Finally, we identify 10 robust mRNAsi-related biomarkers that can effectively predict the survival of HCC patients. Conclusions These novel cancer stemness-related CSCP subtypes and biomarkers in this study will be of great clinical significance for the diagnosis, prognosis and targeted therapy of HCC patients.
Collapse
Affiliation(s)
- Canbiao Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shijie Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Xuejia Shi
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Hanyu Gao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Corresponding authors.
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China
- Corresponding authors.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Corresponding authors.
| |
Collapse
|
10
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
11
|
Saltari A, Dzung A, Quadri M, Tiso N, Facchinello N, Hernández-Barranco A, Garcia-Silva S, Nogués L, Stoffel CI, Cheng PF, Turko P, Eichhoff OM, Truzzi F, Marconi A, Pincelli C, Peinado H, Dummer R, Levesque MP. Specific Activation of the CD271 Intracellular Domain in Combination with Chemotherapy or Targeted Therapy Inhibits Melanoma Progression. Cancer Res 2021; 81:6044-6057. [PMID: 34645608 PMCID: PMC9397645 DOI: 10.1158/0008-5472.can-21-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
CD271 (NGFR) is a neurotrophin receptor that belongs to the tumor necrosis receptor (TNFR) family. Upon ligand binding, CD271 can mediate either survival or cell death. Although the role of CD271 as a marker of tumor-initiating cells is still a matter of debate, its role in melanoma progression has been well documented. Moreover, CD271 has been shown to be upregulated after exposure to both chemotherapy and targeted therapy. In this study, we demonstrate that activation of CD271 by a short β-amyloid-derived peptide (Aβ(25-35)) in combination with either chemotherapy or MAPK inhibitors induces apoptosis in 2D and 3D cultures of eight melanoma cell lines. This combinatorial treatment significantly reduced metastasis in a zebrafish xenograft model and led to significantly decreased tumor volume in mice. Administration of Aβ(25-35) in ex vivo tumors from immunotherapy- and targeted therapy-resistant patients significantly reduced proliferation of melanoma cells, showing that activation of CD271 can overcome drug resistance. Aβ(25-35) was specific to CD271-expressing cells and induced CD271 cleavage and phosphorylation of JNK (pJNK). The direct protein-protein interaction of pJNK with CD271 led to PARP1 cleavage, p53 and caspase activation, and pJNK-dependent cell death. Aβ(25-35) also mediated mitochondrial reactive oxygen species (mROS) accumulation, which induced CD271 overexpression. Finally, CD271 upregulation inhibited mROS production, revealing the presence of a negative feedback loop in mROS regulation. These results indicate that targeting CD271 can activate cell death pathways to inhibit melanoma progression and potentially overcome resistance to targeted therapy. SIGNIFICANCE: The discovery of a means to specifically activate the CD271 death domain reveals unknown pathways mediated by the receptor and highlights new treatment possibilities for melanoma.
Collapse
Affiliation(s)
- Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Marika Quadri
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Nicola Facchinello
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susana Garcia-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Corinne Isabelle Stoffel
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Ossia M. Eichhoff
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland.,Corresponding Author: Mitchell P. Levesque, Department of Dermatology, University Hospital of Zurich, Wagistrasse 18, Zurich 8952, Switzerland. E-mail:
| |
Collapse
|
12
|
Bashir N, Ishfaq M, Mazhar K, Khan JS, Shahid R. Upregulation of CD271 transcriptome in breast cancer promotes cell survival via NFκB pathway. Mol Biol Rep 2021; 49:487-495. [PMID: 34755264 DOI: 10.1007/s11033-021-06900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Biological treatment of many cancers currently targets membrane bound receptors located on a cell surface. We are in a great to need identify novel membrane proteins associated with migration and metastasis of breast cancer cells. CD271, a single transmembrane protein belongs to tumor necrosis factor receptor family acts and play its role in proliferation of cancer cell. The purpose of this study is to investigate the role of CD271 in breast cancer. METHODS AND RESULTS In this study we analyzed the mRNA expression of CD271 in breast tumor tissue, breast cancer cell line MCF7 and isolated cancer stem cells (MCF7-CSCs) by RT-qPCR. We also measured the protein levels through western blotting in MCF-7 cell line. CD271 was upregulated in breast cancer patients among all age groups. Within the promoter region of CD271, there is a binding site for NF-κB1 which overlaps a putative quadraplex forming sequence. While CD271 also activates NF-κB pathway, down regulation of CD271 through quadraplex targeting resulted in inhibition of NF-κB and its downstream targets Nanog and Sox2. CONCLUSION In conclusion, our data shows that CD271 and NF-κB are regulated in interdependent manner. Upon CD271 inhibition, the NF-κB expression also reduces which in turn affects the cell proliferation and migration. These results suggest that CD271 is playing a crucial rule in cancer progression by regulating NF-κB and is a good candidate for the therapeutic targeting.
Collapse
Affiliation(s)
- Nabiha Bashir
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Mehreen Ishfaq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Kehkashan Mazhar
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital Islamabad, Islamabad, Pakistan
| | - Jahangir Sarwar Khan
- Department of General Surgery, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| |
Collapse
|
13
|
Xuan Y, Sheng Y, Zhang D, Zhang K, Zhang Z, Ping Y, Wang S, Shi X, Lian J, Liu K, Zhang Y, Li F. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models. Transl Oncol 2021; 14:101138. [PMID: 34052626 PMCID: PMC8176370 DOI: 10.1016/j.tranon.2021.101138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4-1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.
Collapse
Affiliation(s)
- Yujing Xuan
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Daiqun Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Kai Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Shumin Wang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Xiaojuan Shi
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Jingyao Lian
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China; China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
| | - Yi Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
| | - Feng Li
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Jing N, Gao WQ, Fang YX. Regulation of Formation, Stemness and Therapeutic Resistance of Cancer Stem Cells. Front Cell Dev Biol 2021; 9:641498. [PMID: 33898430 PMCID: PMC8058412 DOI: 10.3389/fcell.2021.641498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past 20 years cancer stem cells (CSCs) have been proposed as key players in the tumorigenesis and progression, which are closely related to the initiation, metastasis and therapeutic resistance of cancer. Evidences have been provided that both genetic and epigenetic factors contribute to the regulation of the formation and stemness maintenance as well as the therapeutic resistance of CSCs via affecting various signal pathways. In addition, the interaction between CSCs and tumor microenvironment has also been revealed to be involved in the above-described processes. With the aim of targeting CSCs to improve treatment outcome, we herein discuss the mechanisms that orchestrate the characteristic of CSCs by the three elements and potential therapeutic strategies. We also summarize how several key regulatory factors function in the regulation of not only the formation and stemness maintenance, but also the therapeutic resistance of CSCs. Thus, future studies focusing on these key factors would be helpful for the development of novel drugs targeting CSCs.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Osrodek M, Rozanski M, Czyz M. Insulin Reduces the Efficacy of Vemurafenib and Trametinib in Melanoma Cells. Cancer Manag Res 2020; 12:7231-7250. [PMID: 32982400 PMCID: PMC7501594 DOI: 10.2147/cmar.s263767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the progress made in the clinical management of metastatic melanoma, a patient's response to treatment cannot be fully predicted, and intrinsic or acquired resistance that is developed in most melanoma patients warrants further research efforts. In addition to genetic factors, microenvironmental input should be considered to explain the diversity of response to treatment among melanoma patients. In this study, we evaluated the impact of insulin on patient-derived BRAFV600E melanoma cells, either untreated or treated with vemurafenib or trametinib, inhibitors of BRAFV600 and MEK1/2, respectively. METHODS Cells were cultured in serum-free conditions, either with or without insulin. The activity of the MAPK/ERK and PI3K/AKT pathways was assessed by Western blotting, cell viability, and percentages of Ki-67- and NGFR-positive cells by flow cytometry. Transcript levels were analyzed using qRT-PCR, and γ-H2AX levels by immunoblotting and confocal microscopy. A luminescence-based assay was used to measure glutathione content. RESULTS While insulin did not influence the MAPK/ERK pathway activity, it had a strong influence on melanoma cells, in which this pathway was suppressed by either vemurafenib or trametinib. In the presence of insulin, both drugs were much less efficient in 1) inhibiting proliferation and reducing the percentage of Ki-67-positive cells, and 2) inducing apoptosis and phosphorylation of histone H2AX in melanoma cells. Changes induced by vemurafenib and trametinib in glutathione homeostasis and DNA repair gene expression were also attenuated by insulin. Moreover, insulin impaired the combined effects of targeted drugs and doxorubicin in melanoma cells. In addition to insulin-induced PI3K/AKT activity, which was either transient or sustainable depending on the cell line, an insulin-triggered increase in the percentage of cells expressing NGFR, a marker of neural crest stem-like cells, may contribute to the reduced drug efficacy. CONCLUSION Our results demonstrate the role of insulin in reducing the efficacy of vemurafenib and trametinib. This needs clinical assessment.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:1481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China
| | - Patrick S Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Hans A Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
17
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
18
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Relevance of Neurotrophin Receptors CD271 and TrkC for Prognosis, Migration, and Proliferation in Head and Neck Squamous Cell Carcinoma. Cells 2019; 8:cells8101167. [PMID: 31569361 PMCID: PMC6830344 DOI: 10.3390/cells8101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and often has a poor prognosis. The present study investigated the role of the low affinity nerve growth factor receptor CD271 as a putative therapy target in HNSCC. Neurotrophins that bind to CD271 also have a high affinity for the tropomyosin receptor kinase family (Trk), consisting of TrkA, TrkB, and TrkC, which must also be considered in addition to CD271. A retrospective study and functional in vitro cell line tests (migration assay and cell sorting) were conducted in order to evaluate the relevance of CD271 expression alone and with regard to Trk expression. CD271 and Trks were heterogeneously expressed in human HNSCC. The vast majority of tumors exhibited CD271 and TrkA, whereas only half of the tumors expressed TrkB and TrkC. High expression of CD271-positive cells predicted a bad clinical outcome of patients with HNSCC and was associated with distant metastases. However, the human carcinomas that also expressed TrkC had a reduced correlation with distant metastases and better survival rates. In vitro, CD271 expression marked a subpopulation with higher proliferation rates, but proliferation was lower in tumor cells that co-expressed CD271 and TrkC. The CD271 inhibitor LM11A 31 suppressed cell motility in vitro. However, neither TrkA nor TrkB expression were linked to prognosis or cell proliferation. We conclude that CD271 is a promising candidate that provides prognostic information for HNSCC and could be a putative target for HNSCC treatment.
Collapse
|
20
|
CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Sci Rep 2019; 9:7696. [PMID: 31118427 PMCID: PMC6531451 DOI: 10.1038/s41598-019-42773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of signaling networks controlling self-renewal and migration of developmental cell lineages is closely linked to the proliferative and invasive properties of tumors. Identification of such signaling pathways and their critical regulators is vital for successful design of effective targeted therapies against neoplastic tissue growth. The neurotrophin receptor (CD271/NGFR/p75NTR) is a key regulator of the melanocytic cell lineage through its ability to mediate cell growth, survival, and differentiation. Using clinical melanoma samples, normal melanocytes and global gene expression profiling we have investigated the role of CD271 in rewiring signal transduction networks of melanoma cells during neoplastic transformation. Our analysis demonstrates that depending on the cell fate of tumor initiation vs normal development, elevated levels of CD271 can serve as a switch between proliferation/survival and differentiation/cell death. Two divergent arms of neurotrophin signaling hold the balance between positive regulators of tumor growth controlled by E2F, MYC, SREBP1 and AKT3 pathways on the one hand, and differentiation, senescence, and apoptosis controlled by TRAF6/IRAK-dependent activation of AP1 and TP53 mediated processes on the other hand. A molecular network map revealed in this study uncovers CD271 as a context-specific molecular switch between normal development and malignant transformation.
Collapse
|
21
|
Freddolino L, Yang J, Momen-Roknabadi A, Tavazoie S. Stochastic tuning of gene expression enables cellular adaptation in the absence of pre-existing regulatory circuitry. eLife 2018; 7:e31867. [PMID: 29620524 PMCID: PMC5919758 DOI: 10.7554/elife.31867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cells adapt to familiar changes in their environment by activating predefined regulatory programs that establish adaptive gene expression states. These hard-wired pathways, however, may be inadequate for adaptation to environments never encountered before. Here, we reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse conditions without relying on external sensory information or genetically predetermined cis-regulation. Instead, individual genes achieve optimal expression levels through a stochastic search for improved fitness. By focusing on improving the overall health of the cell, the proposed stochastic tuning mechanism discovers global gene expression states that are fundamentally new and yet optimized for novel environments. We provide experimental evidence for stochastic tuning in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.
Collapse
Affiliation(s)
- Lydia Freddolino
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Jamie Yang
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Amir Momen-Roknabadi
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Saeed Tavazoie
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| |
Collapse
|
22
|
Yu T, Jia W, An Q, Cao X, Xiao G. Bioinformatic Analysis of GLI1 and Related Signaling Pathways in Chemosensitivity of Gastric Cancer. Med Sci Monit 2018; 24:1847-1855. [PMID: 29596399 PMCID: PMC5890825 DOI: 10.12659/msm.906176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study assessed the prognostic value of GLI1 in gastric cancer and analyzed the possible GLI1-related signaling network in chemosensitivity. Material/Methods Bioinformatic data mining was performed by using data in the TCGA-Stomach Cancer (TCGA-STAD) and the Kaplan-Meier plotter. GLI1 co-expressed genes in TCGA-STAD were subjected to KEGG pathway analysis. The genes enriched in the KEGG pathways were further subjected to Protein-Protein Interaction (PPI) analysis. Results In TCGA-STAD, high GLI1 gene/exon expression was associated with significantly worse survival (p=0.016 and 0.0023 respectively). In the Kaplan-Meier plotter, high GLI1 expression was associated with unfavorable overall survival (OS) (HR: 1.68, 95%CI: 1.42–2, p<0.0001) and first progression-free survival (FPS) (HR: 1.72, 95%CI: 1.4–2.11, p<0.0001). In TCGA-STAD, 600 GLI1 co-expressed genes were identified (absolute Pearson’s r ≥0.5). The most significant pathways were pathways in cancer (p=230.0E-12) and the Hedgehog signaling pathway (p=6.9E-9). PI3K-AKT pathway (p=17.0E-9) has the largest proportion of gene enrichment. Some GLI1 co-expressed genes in the PI3K-AKT pathway are central nodes in the PPI network and also play important roles in chemosensitivity of gastric cancer. Nevertheless, the mechanisms underlying their co-expression are still largely unexplored. Conclusions High GLI1 expression is associated with unfavorable OS and FPS in patients with gastric cancer. As a member of the Hedgehog signaling pathway, GLI1 co-expressed genes are also largely enriched in PI3K/AKT pathway in gastric cancer, which is closely related to chemoresistance. The underlying mechanisms are still largely unexplored and need further study.
Collapse
Affiliation(s)
- Tao Yu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Qi An
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Xianglong Cao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Gang Xiao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| |
Collapse
|
23
|
Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer. Oncotarget 2018; 8:36149-36160. [PMID: 28193907 PMCID: PMC5482645 DOI: 10.18632/oncotarget.15254] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer is one of the most common malignant tumors of the digestive tract. The greatest obstacle to the curing of esophageal cancer is its propensity to spread and metastasize. Esophageal cancer stem cells are considered the source for recurrence and metastasis of the tumors. While clinical evidence suggested that continuous up-regulation of CXCL12/CXCR4 was significantly associated with poor prognosis in patients with esophageal cancer, but the role and mechanism of CXCL12/CXCR4 in the invasion and metastasis of esophageal cancer has not been reported by far. This study found that esophageal cancer stem cells not only autocrine a great amount of CXCL12, but also high expression of its corresponding receptor CXCR4. Most importantly, the ability of esophageal cancer stem cells to spread and metastasize could be inhibited by blockage of CXCR4 with inhibitors or shRNA approaches both in vivo and in vitro studies. The important role of CXCL12 in the invasion and metastasis of esophageal cancer stem cells was also confirmed by loss-of-function and gain-of-function strategies. Mechanistically, we demonstrated that CXCL12/CXCR4 activated the ERK1/2 pathway and thereby ultimately maintained the characteristics of high-level invasion and metastasis of esophageal cancer stem cells. Taken together, our findings suggested that autocrine CXCL12/CXCR4 was one of the major mechanisms underlying the metastatic property of esophageal cancer stem cells through ERK1/2 signaling pathway, and might serve as a therapeutic target for esophageal cancer patients.
Collapse
|
24
|
Abstract
Melanoma cell expression of the nerve growth factor receptor CD271 is associated with stem-like properties. However, the contributing role of the receptor in melanoma cell migration is elusive. Here, we explored extracranial (skin, soft tissue, lymph node and liver, n = 13) and matched brain metastases (BM, n = 12) and observed a heterogeneous distribution of phenotypically distinct subsets of CD271+ cells. In addition, we observed that CD271 expression gradually rises along with melanoma progression and metastasis by exploration of publicly available expression data of nevi, primary melanoma (n = 31) and melanoma metastases (n = 54). Furthermore, we observed highest levels of CD271 in BM. Sub-clustering identified 99 genes differentially expressed among CD271high and CD271low (p < 0.05) BM-subgroups. Comparative analysis of subsets revealed increased ( ≥ 1.5fold, log2) expression of migration-associated genes and enrichment of CD271-responsible genes involved in DNA-repair and stemness. Live cell-imaging based scratch-wound assays of melanoma cells with stable knock-down of CD271 revealed a significantly reduced cell migration (3.9fold, p = 1.2E-04) and a reduced expression of FGF13, CSPG4, HMGA2 and AKT3 major candidate regulatory genes of melanoma cell migration. In summary, we provide new insights in melanoma cell migration and suggest that CD271 serves as a candidate regulator, sufficient to determine cellular properties of melanoma brain metastatic cells.
Collapse
|
25
|
Qin G, Lian J, Yue D, Chen X, Nan S, Qi Y, Li B, Cui G, Li X, Zhao S, Zhang Y. Musashi1, a potential prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2017; 38:1724-1732. [PMID: 28713964 PMCID: PMC5549024 DOI: 10.3892/or.2017.5809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer ranks as the sixth leading cause of cancer-related deaths worldwide. Cancer stemness is mainly considered to be the key factor for cancer recurrence particularly in esophageal cancer. It is important to identify cancer stem cell markers as targets in future therapies. The present study aimed to investigate the expression of putative cancer stem cell-related marker musashi1 (Msi1) and assess the correlation with clinicopathologcal status of esophageal squamous cell carcinoma (ESCC) cases. We then clarified the role of Msi1 in esophageal cancer cells during proliferation, apoptosis, sphere formation and migration. Finally, we investigated the relationship of Msi1 with the prognosis of ESCC patients. ESCC tissue samples from 93 patients and 20 paired histologically normal tissues were procured for immunohistochemical analysis. We analyzed the characteristics of Msi1, using sphere formation and anchorage independent growth. Moreover, using flow cytometry and Cell Counting Kit-8 (CCK-8) assay, we investigated the role of Msi1 in cancer cell proliferation and apoptosis. Furthermore, we clarified the role of Msi1 in the process of sphere formation and migration of ESCC cells through knockdown of Msi1 expression by siRNA in ESCC cell lines. The results revealed that there was a higher expression of Msi1 in ESCC specimens compared with normal tissues. In addition, Msi1 expression was significantly associated with clinical stage and lymph node metastasis. Most importantly, the increased immunocytochemical staining of Msi1 in spheroid cells revealed the stemness characteristics of Msi1 in ESCC. In addition, we found that silencing of Msi1 decreased cell proliferation, migration and induced apoptosis in TE-7 and KYSE70 cells. Furthermore, downregulation of Msi1 attenuated the sphere formation ability of ESCC cells. Patients with higher expression of Msi1 had a shorter survival. In conclusion, Msi1 acts as a stemness-associated gene in esophageal cancer cell lines and could serve as a prognostic marker in patients with ESCC.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Shufeng Nan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Bing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Guanghui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol 2017; 44:60-66. [DOI: 10.1016/j.semcancer.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
27
|
Kojima H, Okumura T, Yamaguchi T, Miwa T, Shimada Y, Nagata T. Enhanced cancer stem cell properties of a mitotically quiescent subpopulation of p75NTR-positive cells in esophageal squamous cell carcinoma. Int J Oncol 2017; 51:49-62. [PMID: 28534989 PMCID: PMC5467780 DOI: 10.3892/ijo.2017.4001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mitotically quiescent cancer stem cells (CSCs) possess higher malignant potential than other CSCs, indicating their higher contribution to therapeutic resistance than that of other CSCs. In esophageal squamous cell carcinoma (ESCC), p75 neurotrophin receptor (p75NTR) is expressed in a candidate CSC population showing high tumorigenicity and chemoresistance. In the present study, we isolated and characterized quiescent CSCs population in ESCC based on p75NTR expression and cell cycle status. Expression of p75NTR and Ki-67 in ESCC cell lines (KYSE cells) and surgically resected ESCC specimens was detected by performing immunocytochemical analysis. p75NTR-positive KYSE cells were fractionated into quiescent and proliferating cells by performing flow cytometry with a fluorescent DNA-staining dye to determine their CSC phenotype. Immunocytochemical analysis showed that 21.8 and 36.5% of the p75NTR-positive cells were Ki-67-negative (G0), which accounted for 11.4 and 15.7% of cells in KYSE-30 and KYSE-140 cell lines, respectively. Flow cytometric cell sorting showed that p75NTR-positive cells in the G0-G1 phase (p75NTR-positive/G0-1 cells) but not in the S-G2-M phase (p75NTR-positive/S-G2-M cells) showed strong expression of stem cell-related genes Nanog, BMI-1, and p63; high colony formation ability; high tumorigenicity in a mouse xenograft model; and strong chemoresistance against cisplatin because of the expression of drug resistance genes ABCG2 and ERCC1. Label-retention assay showed that 3.4% p75NTR-positive cells retained fluorescent cell-tracing dye, but p75NTR-negative cells did not. Immunohistochemical analysis of ESCC specimens showed p75NTR expression in 39 of 95 (41.1%) patients, with a median of 13.2% (range, 3.0-80.1%) p75NTR-positive/Ki-67-negative cells, which were found to be associated with poorly differentiated histology. Our results suggest that p75NTR-positive/G0-1 cells represent quiescent CSCs in ESCC and indicate that these cells can be used as targets to investigate molecular processes regulating CSC phenotype and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Kojima
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Takeshi Miwa
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Kumar D, Gorain M, Kundu G, Kundu GC. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer 2017; 16:7. [PMID: 28137308 PMCID: PMC5282877 DOI: 10.1186/s12943-016-0578-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/25/2016] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gautam Kundu
- Deapartment of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|
29
|
Andreucci E, Bianchini F, Biagioni A, Del Rosso M, Papucci L, Schiavone N, Magnelli L. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med (Berl) 2016; 95:97-108. [PMID: 27558498 DOI: 10.1007/s00109-016-1463-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. KEY MESSAGE FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
30
|
Abstract
Over the last decade, the treatment of metastatic melanoma has been revolutionized by the translation of molecular insights into therapeutic benefit for patients. These include advances in immunotherapeutic and small-molecule approaches aimed at destroying cells with immunogenic antigens or gene mutations. Despite these advances, the limited durability of clinical response and eventual disease progression underscores a need for better understanding of mechanisms underlying tumor development. Current targeted therapies are developed partly based on the rationale that tumors are primarily clonal with respect to mutant oncogene or cell surface antigen target. However, with the advancement of cell isolation and transplantation approaches coupled with deep sequencing and mutation detection techniques, it has become increasingly clear that tumors are polyclonal. As a result, sensitive malignant cells are eradicated by treatment while the remaining tumor cell populations are conferred varying degrees of resistance and survival advantages by harbouring or acquiring certain epigenetic and genetic abnormalities. Tumor heterogeneity thus represents a major obstacle to the successful application of current therapies. Gaining insights into the cellular and molecular aspects of tumor diversity will not only facilitate the development and selection of therapeutic targets but also promote the evolution of precision medicine. In this viewpoint, we will discuss the implications of tumor heterogeneity for the treatment of metastatic melanoma and propose approaches to accelerate the translation of scientific discovery into improved clinical outcomes.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Research Center, CIRM Institute, University of California –Irvine, Irvine, CA 92697
| | - Alexander D. Boiko
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Research Center, CIRM Institute, University of California –Irvine, Irvine, CA 92697
- Correspondence should be addressed to Alexander D. Boiko ()
| |
Collapse
|
31
|
He J, Zhou M, Chen X, Yue D, Yang L, Qin G, Zhang Z, Gao Q, Wang D, Zhang C, Huang L, Wang L, Zhang B, Yu J, Zhang Y. Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2016; 35:98. [PMID: 27329034 PMCID: PMC4915037 DOI: 10.1186/s13046-016-0378-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Growing evidence suggests that SALL4 plays a vital role in tumor progression and metastasis. However, the molecular mechanism of SALL4 promoting esophageal squamous cell carcinoma (ESCC) remains to be elucidated. METHODS The gene and protein expression profiles- were examined by using quantitative real-time PCR, immunohistochemistry and western blotting. Small hairpin RNA was used to evaluate the role of SALL4 both in cell lines and in animal models. Cell proliferation, apoptosis and invasion were assessed by CCK8, flow cytometry and transwell-matrigel assays. Sphere formation assay was used for cancer stem cell derivation and characterization. RESULTS Our study showed that the transcription factor SALL4 was overexpressed in a majority of human ESCC tissues and closely correlated with a poor outcome. We established the lentiviral system using short hairpin RNA to knockdown SALL4 in TE7 and EC109 cells. Silencing of SALL4 inhibited the cell proliferation, induced apoptosis and the G1 phase arrest in cell cycle, decreased the ability of migration/invasion, clonogenicity and stemness in vitro. Besides, down-regulation of SALL4 enhanced the ESCC cells' sensitivity to cisplatin. Xenograft tumor models showed that silencing of SALL4 decreased the ability to form tumors in vivo. Furthermore, our study demonstrated that SALL4 played a vital role in modulating the stemness of ESCC cells via Wnt/β-catenin signaling pathway and in epithelial-mesenchymal transition. CONCLUSIONS Our results revealed that SALL4 might serve as a functional marker for ESCC cancer stem cell, a crucial marker for prognosis and an attractive candidate for target therapy of ESCC.
Collapse
Affiliation(s)
- Jing He
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Mingxia Zhou
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Xinfeng Chen
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
- />Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Dongli Yue
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
- />Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Li Yang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Guohui Qin
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
- />Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Zhen Zhang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Qun Gao
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Dan Wang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Chaoqi Zhang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Lan Huang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Liping Wang
- />Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Bin Zhang
- />Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, IL60611 USA
| | - Jane Yu
- />Department of Internal Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 USA
| | - Yi Zhang
- />Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
- />Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
- />School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 China
- />Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052 China
| |
Collapse
|
32
|
Ballotti R. Identification of melanoma initiating cells: does CD271 have a future? Future Oncol 2016; 11:1587-90. [PMID: 26043212 DOI: 10.2217/fon.15.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Islam F, Gopalan V, Wahab R, Smith RA, Lam AKY. Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Crit Rev Oncol Hematol 2015; 96:9-19. [PMID: 25913844 DOI: 10.1016/j.critrevonc.2015.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a vital subpopulation of cells to target for the treatment of cancers. In oesophageal squamous cell carcinoma (ESCC), there are several markers such as CD44, ALDH, Pygo2, MAML1, Twist1, Musashi1, Side population (SP), CD271 and CD90 that have been proposed to identify the cancer stem cells in individual cancer masses. It has also been demonstrated that stem cell markers like ALDH1, HIWI, Oct3/4, ABCG2, SOX2, SALL4, BMI-1, NANOG, CD133 and podoplanin are associated with patient's prognosis, pathological stages, cancer recurrence and therapy resistance. Finding new cancer stem cell targets or designing drugs to manipulate the known molecular targets in CSCs could be useful for improvements in clinical outcomes of the disease. To conclude, data suggest that CSCs in oesophageal squamous cell carcinoma are related to resistance to therapy and poor prognosis of patients with ESCC. Therefore, innovative insights into CSC biology and CSC-targeted therapies will help to achieve more effective management of patients with oesophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
34
|
Oh JH, Deasy JO. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief Bioinform 2015. [PMID: 26220932 DOI: 10.1093/bib/bbv053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance.
Collapse
|