1
|
Huang H, Ding C, Zhao WH, Zhang HB, Zhao ZX, Li XG, Wang YJ, Chen PJ, Li BS, Li XB, Li YW, Liu HY, Chen J. Nicotine promotes the progression and metastasis of non-small cell lung cancer by modulating the OTUB1-c-Myc-EZH2 axis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01527-5. [PMID: 40169782 DOI: 10.1038/s41401-025-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Smoking has been identified as a major risk factor for the development and progression of non-small cell lung cancer (NSCLC). As a key component of tobacco smoke, nicotine is believed to play a significant role in promoting NSCLC growth and progression. EZH2 is an epigenetic regulator highly expressed in the tumor tissues of smokers. However, whether and how nicotine regulates the expression of EZH2 and the underlying mechanisms remain unclear. Bioinformatics analysis and immunohistochemistry were used to compare the expression of EZH2 in NSCLC samples between smokers and nonsmokers. Western blotting, real-time quantitative PCR, and immunofluorescence were employed to confirm the effects of nicotine on EZH2 expression. Cell Counting Kit-8 assays, colony formation assays, 5-ethynyl-2-deoxyuridine staining, and Transwell assays were conducted to analyze the proliferation and metastasis of A549 and H1650 cells treated with siRNA or EZH2 inhibitors. Real-time quantitative PCR and chromatin immunoprecipitation assays were performed to assess the regulatory effect of nicotine on EZH2 transcript levels via c-Myc. Coimmunoprecipitation and ubiquitination assays were used to assess the deubiquitination of c-Myc by OTUB1. Finally, a nude mouse model was used to evaluate the impact of combined c-Myc and EZH2 inhibitors on tumor proliferation and metastasis in vivo. EZH2 is expressed at relatively high levels in NSCLC patients, as determined by both bioinformatic and IHC analyses. Nicotine upregulates EZH2 expression and promotes the proliferation and metastatic ability of lung cancer cells. Inhibition of EZH2 with either DZNep or EPZ6438, EZH2 inhibitors, or siRNA significantly decreased the proliferative and metastatic capacity of NSCLC cells induced by nicotine treatment. Moreover, the study revealed that nicotine induces OTUB1 expression, stabilizes the c-Myc protein via deubiquitination, and enables c-Myc-mediated transcriptional activation of EZH2. Furthermore, the c-Myc inhibitor 10058-F4 exhibited synergistic effects with the EZH2 inhibitor DZNep in suppressing NSCLC cell proliferation and metastasis both in vitro and in vivo.Nicotine regulates the c-Myc/EZH2 signaling pathway via OTUB1-mediated deubiquitination, thereby promoting the proliferation and metastasis of NSCLC cells. This research reveals novel molecular mechanisms of nicotine in the development of NSCLC, providing a theoretical foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen-Hao Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hong-Bing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ze-Xia Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuan-Guang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying-Jie Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei-Jie Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo-Shi Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Bing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Wen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hong-Yu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Loroña NC, Himbert C, Ose J, Cohen SA, Strehli I, Ulrich CM, Cobos S, Baptiste EJ, Bloomer AM, Figueiredo JC, Gigic B, Hardikar S, Karchi M, Mutch M, Peoples AR, Schneider M, Shibata D, Siegel EM, Toriola AT, Wood EH, Li CI. Alcohol Consumption and Smoking History at the Time of Diagnosis and the Risk of Colorectal Cancer Recurrence and Mortality: Results from the ColoCare Study. Cancer Epidemiol Biomarkers Prev 2025; 34:59-66. [PMID: 39373623 PMCID: PMC11717602 DOI: 10.1158/1055-9965.epi-24-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Findings from studies investigating the impacts of alcohol use and smoking on colorectal cancer outcomes are inconclusive. This study aimed to investigate associations between alcohol use and smoking status at the time of diagnosis on recurrence and overall mortality among patients with colorectal cancer. METHODS The present study included 2,216 stage I-IV patients with colorectal cancer from the longitudinal multicenter ColoCare Study, with available data on recurrence and colorectal cancer-specific mortality. Cox proportional hazards models adjusted for age, sex, race, ethnicity, stage, tumor site, treatment, comorbidities, body mass index, and study site were fit, with imputations for missing data. RESULTS We observed 235 recurrences and 308 colorectal cancer-specific deaths over an average of 3 years of follow-up. After adjusting for confounders, current alcohol consumption and ever smoking, relative to not current consumption and never smoking, respectively, were not statistically significantly associated with colorectal cancer recurrence [alcohol-HR, 0.95. 95% confidence interval (CI), 0.71-1.29; ever smoking-HR, 0.98, 95% CI, 0.75-1.29] or colorectal cancer-specific mortality (alcohol-HR, 0.95. 95% CI, 0.74-1.22; ever smoking-HR, 0.98, 95% CI, 0.77-1.24). CONCLUSIONS No associations were observed between alcohol and smoking at diagnosis and clinical outcomes in this well-annotated longitudinal cohort. IMPACT Our cohort study reports no significant associations; however, limiting alcohol use and avoiding smoking are health behaviors recommended for colorectal cancer survivors for prevention of other cancers and chronic conditions.
Collapse
Affiliation(s)
- Nicole C Loroña
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles CA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Caroline Himbert
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- University of Applied Sciences and Arts, Department of Media, Information, and Design, Hannover, Germany
| | - Stacey A Cohen
- Division of Hematology/Oncology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ildiko Strehli
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Sofia Cobos
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Esther Jean Baptiste
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Non-Therapeutic Research Office, Moffitt Cancer Center, Tampa, FL, USA
| | - Amanda M Bloomer
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles CA, USA
- Department of Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sheetal Hardikar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Meghana Karchi
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Matthew Mutch
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, Giessen University Hospital, Giessen, Germany
| | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erin M. Siegel
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Non-Therapeutic Research Office, Moffitt Cancer Center, Tampa, FL, USA
| | - Adetunji T Toriola
- Siteman Cancer Center, St. Louis, MO, USA
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
4
|
Hu J, Wu Y, Dong X, Zeng Y, Wang Y. The Diagnostic and Prognostic Value of Neurotransmitter Receptor-Related Genes in Colon Adenocarcinoma. Mol Biotechnol 2024; 66:2934-2945. [PMID: 37833465 DOI: 10.1007/s12033-023-00910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor with high morbidity and mortality in the world. This study aimed to find receptor-related genes (NRGs) with diagnostic and prognostic value in colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) and the Human Protein Atlas database databases were applied to find differential expression NRGs between COAD and normal colonic tissues. Subsequently, Cox regression analysis and minimum absolute contraction and selection operator algorithm were used to construct a prognosis nomogram based on TCGA and Gene Expression Omnibus databases. Expression levels of 35 NRGs were significant differences in COAD and normal colonic tissues. ROC curves showed that 24 NRGs had high diagnostic accuracy (AUC > 0.850) in COAD. Risk score was constructed based on 10 NRGs for the first time. Cox regression analysis revealed risk score was an independent risk factor and a higher risk score predicts a later TNM stage. Finally, a prognostic nomogram containing risk score and clinical features was established. Calibration curves and C-index suggested the powerful predictable value of the model. This study identified the NRGs with diagnostic value and prognostic value, providing a direction for treatment of COAD patients.
Collapse
Affiliation(s)
- Jia Hu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Research Center of Digestive Disease, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun Wu
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xiaoping Dong
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yong Zeng
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Research Center of Digestive Disease, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Wang J, Wang X, Liu Z, Li S, Yin W. IGFBP7 promotes gastric cancer by facilitating epithelial-mesenchymal transition of gastric cells. Heliyon 2024; 10:e30986. [PMID: 38778944 PMCID: PMC11108983 DOI: 10.1016/j.heliyon.2024.e30986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Gastric cancer (GC) with high morbidity and mortality is one major cause of tumor-related death. Mechanisms underlying GC invasion and metastasis remain unclear. IGFBP7 exerted variable effects in different cancers and its role in GC is controversial. Here, IGFBP7 was found to be upregulated and elevated IGFBP7 expression represented a poorer overall survival in GC using bioinformatics analysis. Moreover, IGFBP7 was up-regulated in human GC specimens and promoted tumor growth in xenograft tumor animals. For GC cell lines, we found that IGFBP7 was also upregulated and facilitated the cell malignant behavior and EMT of GC cells, which may involve NF-κB and ERK signaling pathways. This research may provide new avenues for GC therapy.
Collapse
Affiliation(s)
- Jinqing Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Xinxin Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Zhaorui Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Sheng Li
- Shandong University Cancer Center, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenbin Yin
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Kodan A, Njei LP, Raufman JP. Cholinergic Mechanisms in Gastrointestinal Neoplasia. Int J Mol Sci 2024; 25:5316. [PMID: 38791353 PMCID: PMC11120676 DOI: 10.3390/ijms25105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asha Kodan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Lea-Pearl Njei
- Department of Biological Science, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Sun Q, Jin C. Cell signaling and epigenetic regulation of nicotine-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123426. [PMID: 38295934 PMCID: PMC10939829 DOI: 10.1016/j.envpol.2024.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/22/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Nicotine, a naturally occurring tobacco alkaloid responsible for tobacco addiction, has long been considered non-carcinogenic. However, emerging evidence suggests that nicotine may possess carcinogenic properties in mice and could be a potential carcinogen in humans. This review aims to summarize the potential molecular mechanisms underlying nicotine-induced carcinogenesis, with a specific focus on epigenetic regulation and the activation of nicotinic acetylcholine receptors (nAChRs) in addition to genotoxicity and excess reactive oxygen species (ROS). Additionally, we explore a novel hypothesis regarding nicotine's carcinogenicity involving the downregulation of stem-loop binding protein (SLBP), a critical regulator of canonical histone mRNA, and the polyadenylation of canonical histone mRNA. By shedding light on these mechanisms, this review underscores the need for further research to elucidate the carcinogenic potential of nicotine and its implications for human health.
Collapse
Affiliation(s)
- Qi Sun
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110013, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Chunyuan Jin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Peng Z, Xu S, Zhang Q, Yang X, Yuan W, Wang Y, Li Y, Zhu P, Wu X, Jiang Z, Li F, Fan X. FAXDC2 inhibits the proliferation and invasion of human liver cancer HepG2 cells. Exp Ther Med 2024; 27:27. [PMID: 38125362 PMCID: PMC10728893 DOI: 10.3892/etm.2023.12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
The reprogramming of lipid metabolism serves an important role in occurrence and development of liver cancer. Fatty acid hydroxylase domain containing 2 (FAXDC2) is a hydroxylase involved in the synthesis of cholesterol and sphingomyelin and downregulated in various types of cancer. There are no reports on the relationship between FAXDC2 and liver carcinogenesis. The present study used multiple portals and publicly available tools to explore its correlation with liver cancer. The results showed that the expression of FAXDC2 decreased in liver cancer and the methylation level near the promoter increased. Patients with liver cancer and with low expression of FAXDC2 had a poor prognosis. Gain of function and loss of function strategies were performed to evaluate its roles in liver cancer cells. CCK-8 assay showed that overexpression of FAXDC2 inhibited the viability of liver cancer cells (HepG2). Flow cytometry analysis indicated that HepG2 cells with overexpressing FAXDC2 showed an S phase arrest, associated with cyclin-dependent kinase 2 decreased. Transwell experiments showed that increasing FAXDC2 inhibited HepG2 cell invasion ability, accompanied by the upregulation of E-cadherin. Notably, knockdown of FAXDC2 had no significant effect on cell cycle and invasion functions. Based on the cBioPortal platform, FAXDC2 was predicted to closely correlate to the ERK signal in tumorigenesis. Western blotting results showed that overexpression of FAXDC2 decreased the phosphorylation level of ERK in liver cancer cells. The present study first identified FAXDC2 as a liver cancer suppressor, which might inhibit the proliferation and invasion of liver cancer cells through the mechanism associated with ERK signaling. The present study provided a possible new target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Siting Xu
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xueting Yang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wuzhou Yuan
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yuequn Wang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqing Li
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong 510100, P.R. China
| | - Xiushan Wu
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong 510100, P.R. China
| | - Zhigang Jiang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Fang Li
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiongwei Fan
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
9
|
Kuol N, Godlewski J, Kmiec Z, Vogrin S, Fraser S, Apostolopoulos V, Nurgali K. Cholinergic signaling influences the expression of immune checkpoint inhibitors, PD-L1 and PD-L2, and tumor hallmarks in human colorectal cancer tissues and cell lines. BMC Cancer 2023; 23:971. [PMID: 37828429 PMCID: PMC10568879 DOI: 10.1186/s12885-023-11410-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Cancer cells express immunosuppressive molecules, such as programmed death ligands (PD-L)1 and PD-L2, enabling evasion from the host's immune system. Cancer cells synthesize and secrete acetylcholine (ACh), acting as an autocrine or paracrine hormone to promote their proliferation, differentiation, and migration. METHODS We correlated the expression of PD-L1, PD-L2, cholinergic muscarinic receptor 3 (M3R), alpha 7 nicotinic receptor (α7nAChR), and choline acetyltransferase (ChAT) in colorectal cancer (CRC) tissues with the stage of disease, gender, age, risk, and patient survival. The effects of a muscarinic receptor blocker, atropine, and a selective M3R blocker, 4-DAMP, on the expression of immunosuppressive and cholinergic markers were evaluated in human CRC (LIM-2405, HT-29) cells. RESULTS Increased expression of PD-L1, M3R, and ChAT at stages III-IV was associated with a high risk of CRC and poor survival outcomes independent of patients' gender and age. α7nAChR and PD-L2 were not changed at any CRC stages. Atropine and 4-DAMP suppressed the proliferation and migration of human CRC cells, induced apoptosis, and decreased PD-L1, PD-L2, and M3R expression in CRC cells via inhibition of EGFR and phosphorylation of ERK. CONCLUSIONS The expression of immunosuppressive and cholinergic markers may increase the risk of recurrence of CRC. These markers might be used in determining prognosis and treatment regimens for CRC patients. Blocking cholinergic signaling may be a potential therapeutic for CRC through anti-proliferation and anti-migration via inhibition of EGFR and phosphorylation of ERK. These effects allow the immune system to recognize and eliminate cancer cells.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA.
| | | | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Sara Vogrin
- Department of Medicine Western Health, University of Melbourne, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute of Musculoskeletal Sciences, Melbourne, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne, Australia
- Regenerative Medicine Program, Australian Institute of Musculoskeletal Sciences, Melbourne, Australia
| |
Collapse
|
10
|
Zou M, Zhang YS, Feng JK, Tu H, Gui MB, Wang YN, Yang ZJ, Yang ZQ, Xu M, Wu WQ, Gao F. Serum metabolomics analysis of biomarkers and metabolic pathways in patients with colorectal cancer associated with spleen-deficiency and qi-stagnation syndrome or damp-heat syndrome: a prospective cohort study. Front Oncol 2023; 13:1190706. [PMID: 37771438 PMCID: PMC10523394 DOI: 10.3389/fonc.2023.1190706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Objective To profile the serum metabolites and metabolic pathways in colorectal cancer (CRC) patients associated with spleen-deficiency and qi-stagnation syndrome (SDQSS) or damp-heat syndrome (DHS). Methods From May 2020 to January 2021, CRC patients diagnosed with traditional Chinese medicine (TCM) syndromes of SDQSS or DHS were enrolled. The clinicopathological data of the SDQSS and DHS groups were compared. The serum samples were analyzed by liquid chromatography-mass spectrometry (LC-MS). The variable importance in the projection >1, fold change ≥3 or ≤0.333, and P value ≤0.05 were used to identify differential metabolites between the two groups. Furthermore, areas under the receiver operating characteristic (ROC) curve > 0.9 were applied to select biomarkers with good predictive performance. The enrichment metabolic pathways were searched through the database of Kyoto Encyclopedia of Genes and Genomes. Results 60 CRC patients were included (30 SDQSS and 30 DHS). The level of alanine aminotransferase was marginally significantly higher in the DHS group than the SDQSS group (P = 0.051). The other baseline clinicopathological characteristics were all comparable between the two groups. 23 differential serum metabolites were identified, among which 16 were significantly up-regulated and 7 were significantly down-regulated in the SDQSS group compared with the DHS group. ROC curve analysis showed that (S)-3-methyl-2-oxopentanoic acid, neocembrene, 1-aminocyclopropanecarboxylic acid, 3-methyl-3-hydroxypentanedioate, and nicotine were symbolic differential metabolites with higher predictive power. The top five enrichment signalling pathways were valine, leucine and isoleucine biosynthesis; lysosome; nicotine addiction; fructose and mannose metabolism; and pertussis. Conclusion Our study identifies the differential metabolites and characteristic metabolic pathways among CRC patients with SDQSS or DHS, offering the possibility of accurate and objective syndrome differentiation and TCM treatment for CRC patients.
Collapse
Affiliation(s)
- Min Zou
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Yan-Sheng Zhang
- Department of Obstetrics and Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Hao Tu
- Department of Colorectal Surgery, Chongqing Qijiang District People’s Hospital, Chongqing, China
| | - Ming-Bin Gui
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Ya-Nan Wang
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Zi-Jie Yang
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Zeng-Qiang Yang
- Department of Colorectal Surgery, Gansu Provincial Central Hospital, Lanzhou, China
| | - Ming Xu
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Wei-Qiang Wu
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
11
|
Hardin LT, Vang D, Thor D, Han X, Mashkoor F, Alpagot T, Ojcius DM, Xiao N. Cigarette smoking exposure disrupts the regenerative potential of dental pulp stem cells. Tob Induc Dis 2023; 21:101. [PMID: 37533959 PMCID: PMC10392041 DOI: 10.18332/tid/168125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Smoking is known to alter the regenerative and immunomodulatory properties of many types of mesenchymal stem cells (MSCs). This study investigates the impact of cigarette smoke exposure on the regenerative potential of dental pulp stem cells (DPSCs). METHODS DPSCs were treated with various doses of cigarette smoke condensate (CSC) or nicotine. Cell proliferation and survival were evaluated by a water-soluble tetrazolium salt (WST-1) and a survival assay. DPSC migration, cytokine expression, mutagenesis, and the signaling pathway were also measured during CSC and nicotine treatment. RESULTS Low concentrations of CSC and nicotine did not impair cell proliferation, but higher concentrations reduced cell proliferation. CSC and nicotine could impede DPSC survival and migration in a dose-dependent manner. In addition, the cytokine secretion expression profile was altered with CSC or nicotine treatments. In particular, secretion of IL-6, TNF-α, and IL-10 significantly increased, while TGF-β1 levels showed different patterns after exposure to CSC or nicotine, as shown by ELISA and quantitative PCR. Nicotine treatment increased AKT (also known as protein kinase B) and extracellular signal-regulated kinase (ERK) phosphorylation. Finally, CSC induced higher levels of mutagenicity than nicotine, as shown by the Ames test. CONCLUSIONS These findings suggest that cigarette smoke exposure alters the regenerative abilities of DPSCs in various ways. Future studies are warranted to further characterize the underlying molecular mechanisms of smoking-mediated damage to DPSCs, which will guide the personalized stem cell treatment plan for smoking patients.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Fatima Mashkoor
- Department of Oral and Maxillofacial Surgery, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| |
Collapse
|
12
|
Kuol N, Davidson M, Karakkat J, Filippone RT, Veale M, Luwor R, Fraser S, Apostolopoulos V, Nurgali K. Blocking Muscarinic Receptor 3 Attenuates Tumor Growth and Decreases Immunosuppressive and Cholinergic Markers in an Orthotopic Mouse Model of Colorectal Cancer. Int J Mol Sci 2022; 24:596. [PMID: 36614038 PMCID: PMC9820315 DOI: 10.3390/ijms24010596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Tumor cells have evolved to express immunosuppressive molecules allowing their evasion from the host's immune system. These molecules include programmed death ligands 1 and 2 (PD-L1 and PD-L2). Cancer cells can also produce acetylcholine (ACh), which plays a role in tumor development. Moreover, tumor innervation can stimulate vascularization leading to tumor growth and metastasis. The effects of atropine and muscarinic receptor 3 (M3R) blocker, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), on cancer growth and spread were evaluated in vitro using murine colon cancer cell line, CT-26, and in vivo in an orthotopic mouse model of colorectal cancer. In the in vitro model, atropine and 4-DAMP significantly inhibited CT-26 cell proliferation in a dose dependent manner and induced apoptosis. Atropine attenuated immunosuppressive markers and M3R via inhibition of EGFR/AKT/ERK signaling pathways. However, 4-DAMP showed no effect on the expression of PD-L1, PD-L2, and choline acetyltransferase (ChAT) on CT-26 cells but attenuated M3R by suppressing the phosphorylation of AKT and ERK. Blocking of M3R in vivo decreased tumor growth and expression of immunosuppressive, cholinergic, and angiogenic markers through inhibition of AKT and ERK, leading to an improved immune response against cancer. The expression of immunosuppressive and cholinergic markers may hold potential in determining prognosis and treatment regimens for colorectal cancer patients. This study's results demonstrate that blocking M3R has pronounced antitumor effects via several mechanisms, including inhibition of immunosuppressive molecules, enhancement of antitumor immune response, and suppression of tumor angiogenesis via suppression of the AKT/ERK signaling pathway. These findings suggest a crosstalk between the cholinergic and immune systems during cancer development. In addition, the cholinergic system influences cancer evasion from the host's immunity.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557, USA
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
| | - Jimsheena Karakkat
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
| | | | - Margaret Veale
- La Trobe Institute of Molecule Science, La Trobe University, Melbourne 3086, Australia
| | - Rodney Luwor
- Royal Melbourne Hospital, University of Melbourne, Melbourne 3010, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Sciences, Melbourne 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne 3011, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Sciences, Melbourne 3021, Australia
| |
Collapse
|
13
|
Khalil Hajiasgharzadeh, Doustvandi MA, Khiabani NA, Mohammadi M, Dastmalchi N, Jafarlou M, Baradaran B. The Effects of siRNA-Mediated Gene Silencing of Alpha-7 Nicotinic Acetylcholine Receptors on Drug Resistance to Oxaliplatin in Colorectal Cancer Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Battaglin F, Jayachandran P, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Roussos Torres ET, Shih JC, Mumenthaler SM, Neman J, Lenz HJ. Neurotransmitter signaling: a new frontier in colorectal cancer biology and treatment. Oncogene 2022; 41:4769-4778. [PMID: 36182970 PMCID: PMC10591256 DOI: 10.1038/s41388-022-02479-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
The brain-gut axis, a bidirectional network between the central and enteric nervous system, plays a critical role in modulating the gastrointestinal tract function and homeostasis. Recently, increasing evidence suggests that neuronal signaling molecules can promote gastrointestinal cancers, however, the mechanisms remain unclear. Aberrant expression of neurotransmitter signaling genes in colorectal cancer supports the role of neurotransmitters to stimulate tumor growth and metastatic spread by promoting cell proliferation, migration, invasion, and angiogenesis. In addition, neurotransmitters can interact with immune and endothelial cells in the tumor microenvironment to promote inflammation and tumor progression. As such, pharmacological targeting of neurotransmitter signaling represent a promising novel anticancer approach. Here, we present an overview of the current evidence supporting the role of neurotransmitters in colorectal cancer biology and treatment.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Annika Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Josh Neman
- Department of Neurological Surgery, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Sun Q, Chen D, Raja A, Grunig G, Zelikoff J, Jin C. Downregulation of Stem-Loop Binding Protein by Nicotine via α7-Nicotinic Acetylcholine Receptor and Its Role in Nicotine-Induced Cell Transformation. Toxicol Sci 2022; 189:186-202. [PMID: 35929799 PMCID: PMC9801712 DOI: 10.1093/toxsci/kfac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The use of electronic-cigarettes (e-cigs) has increased substantially in recent years, particularly among the younger generations. Liquid nicotine is the main component of e-cigs. Previous studies have shown that mice exposed to e-cig aerosols developed lung adenocarcinoma and bladder hyperplasia. These findings implicated a potential role for e-cig aerosols and nicotine in cancer development, although the underlying mechanisms are not fully understood. Here we report that exposure to liquid nicotine or nicotine aerosol generated from e-cig induces downregulation of Stem-loop binding protein (SLBP) and polyadenylation of canonical histone mRNAs in human bronchial epithelial cells and in mice lungs. Canonical histone mRNAs typically do not end in a poly(A) tail and the acquisition of such a tail via depletion of SLBP has been shown to causes chromosome instability. We show that nicotine-induced SLBP depletion is reversed by an inhibitor of α7-nicotinic acetylcholine receptors (α7-nAChR) or siRNA specific for α7-nAChR, indicating a nAChR-dependent reduction of SLBP by nicotine. Moreover, PI3K/AKT pathway is activated by nicotine exposure and CK2 and probably CDK1, 2 kinases well known for their function for SLBP phosphorylation and degradation, are shown to be involved, α7-nAChR-dependently, in nicotine-induced SLBP depletion. Importantly, nicotine-induced anchorage-independent cell growth is attenuated by inhibition of α7-nAChR and is rescued by overexpression of SLBP. We propose that the SLBP depletion and polyadenylation of canonical histone mRNAs via activation of α7-nAChR and a series of downstream signal transduction pathways are critical for nicotine-induced cell transformation and potential carcinogenesis.
Collapse
Affiliation(s)
- Qi Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA,Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning 110013, China
| | - Danqi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Amna Raja
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA,Department of Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Judith Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Chunyuan Jin
- To whom correspondence should be addressed at Department of Environmental Medicine, New York University Grossman School of Medicine, 341E 25th Street, New York, NY 10010, USA. E-mail:
| |
Collapse
|
16
|
Jo S, Hee Im S, Seo D, Ryu H, Hoon Kim S, Baek D, Baek A, Cho SR. Low-frequency repetitive magnetic stimulation suppresses neuroblastoma progression by downregulating the Wnt/β-catenin signaling pathway. Bioelectrochemistry 2022; 147:108205. [DOI: 10.1016/j.bioelechem.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
|
17
|
Español A, Sanchez Y, Salem A, Obregon J, Sales ME. Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells. World J Clin Oncol 2022; 13:505-519. [PMID: 35949430 PMCID: PMC9244968 DOI: 10.5306/wjco.v13.i6.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets. Resistance to chemotherapy complicates the course of patients’ treatment. Several authors have highlighted the participation of nicotinic acetylcholine receptors (nAChR) in the modulation of conventional chemotherapy treatment in cancers of the airways. However, in breast cancer, less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.
AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.
METHODS Cells were treated with paclitaxel alone or in combination with nicotine, administered for one or three 48-h cycles. The effect of the addition of nicotine (at a concentration similar to that found in passive smokers’ blood) on the treatment with paclitaxel (at a therapeutic concentration) was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The signaling mediators involved in this effect were determined using selective inhibitors. We also investigated nAChR expression, and ATP “binding cassette” G2 drug transporter (ABCG2) expression and its modulation by the different treatments with Western blot. The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.
RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functional α7 and α9 nAChRs in these cells. The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C, mitogen-activated protein kinase, extracellular signal-regulated kinase, and NF-κB signaling pathways, and to an up-regulation of ABCG2 protein expression. We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment. Moreover, the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.
CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors. Thus, nAChRs should be considered as targets in smoking patients.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jaqueline Obregon
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Maria Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
18
|
Chivero ET, Sil S, Singh S, Thangaraj A, Gordon L, Evah-Nzoughe GB, Ferguson N, Callen S, Buch S. Protective Role of Lactobacillus rhamnosus Probiotic in Reversing Cocaine-Induced Oxidative Stress, Glial Activation and Locomotion in Mice. J Neuroimmune Pharmacol 2022; 17:62-75. [PMID: 34628571 DOI: 10.1007/s11481-021-10020-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022]
Abstract
Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lila Gordon
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Grace B Evah-Nzoughe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Pashirzad M, Khorasanian R, Fard MM, Arjmand MH, Langari H, Khazaei M, Soleimanpour S, Rezayi M, Ferns GA, Hassanian SM, Avan A. The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer. Curr Cancer Drug Targets 2021; 21:932-943. [PMID: 34732116 DOI: 10.2174/1568009621666211103113339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
The MAPK/ERK signaling pathway regulates cancer cell proliferation, apoptosis, inflammation, angiogenesis, metastasis and drug resistance. Mutations and up-regulation of components of the MAPK/ERK signaling pathway, as well as over-activation of this critical signaling pathway, are frequently observed in colorectal carcinomas. Targeting the MAPK/ERK signaling pathway, using specific pharmacological inhibitors, elicits potent anti-tumor effects, supporting the therapeutic potential of these inhibitors in the treatment of CRC. Several drugs have recently been developed for the inhibition of the MEK/ERK pathway in preclinical and clinical settings, such as MEK162 and MK-2206. MEK1/2 inhibitors demonstrate promising efficacy and anticancer activity for the treatment of this malignancy. This review summarizes the current knowledge on the role of the MAPK/ERK signaling pathway in the pathogenesis of CRC and the potential clinical value of synthetic inhibitors of this pathway in preventing CRC progression for a better understanding, and hence, better management of colorectal cancer.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Reihaneh Khorasanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Maryam Mahmoudi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Hadis Langari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Majid Rezayi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Gordon A Ferns
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO. United States
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
21
|
Xu W, Wang B, Gao Y, Cai Y, Zhang J, Wu Z, Wei J, Guo C, Yuan C. Alkaloids exhibit a meaningful function as anticancer agents by restraining cellular signaling pathways. Mini Rev Med Chem 2021; 22:968-983. [PMID: 34620048 DOI: 10.2174/1389557521666211007114935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Alkaloids are nitrogen-containing organic compounds widely found in natural products, which play an essential role in clinical treatment. Cellular signaling pathways in tumors are a series of enzymatic reaction pathways that convert extracellular signals into intracellular signals to produce biological effects. The ordered function of cell signaling pathways is essential for tumor cell proliferation, differentiation, and programmed death. This review describes the antitumor progression mediated by various alkaloids after inhibiting classical signaling pathways; related studies are systematically retrieved and collected through PubMed. We selected the four currently most popular pathways for discussion and introduced the molecular mechanisms mediated by alkaloids in different signaling pathways, including the NF-kB signaling pathway, PI3K/AKT signaling pathway, MAPK signaling pathway, and P53 signaling pathway. The research progress of alkaloids related to tumor signal transduction pathways and the realization of alkaloids as cancer prevention drugs by targeting signal pathways remains.
Collapse
Affiliation(s)
- Wen Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuxuan Cai
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Zhiyin Wu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Jiameng Wei
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
22
|
Devi AR, Sengupta M, Barman DM, Choudhury Y. Oral Nicotine Induces Oxidative Stress and Inflammation but Does Not Subvert Tumor Suppressor and DNA Repair Responses in Mice. Indian J Clin Biochem 2021; 36:296-303. [PMID: 34220004 PMCID: PMC8215012 DOI: 10.1007/s12291-020-00903-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 01/03/2023]
Abstract
Nicotine, responsible for the addictive properties of tobacco, is widely used in nicotine replacement therapy for tobacco use cessation. We investigated the time-dependent effect of treatment with nicotine on the tumor suppressor, DNA repair and immune responses. Swiss Albino mice (laca strain) of both sexes received nicotine dissolved at a dose of 100 µg/ml in 2% sucrose for 24 weeks, by oral gavage, while age- and gender-matched controls received only 2% sucrose for the same period. Nicotine-treated and control mice were sacrificed 6, 16 and 24 weeks post-treatment, and their tissues evaluated for alterations in histology, oxidative stress, TNF-α levels, nitric oxide (NO) and myeloperoxidase (MPO) release, tumor suppressor response and DNA repair response. Statistical significance of results was determined using Students' t test. The tissues of nicotine treated mice exhibited a large number of multinucleated and binucleated cells, enlarged nuclei and non-uniform distribution of cells, significant increase in expression of TNF-α gene and serum TNF-α, and time-dependent significant increase in lipid peroxidation, protein carbonylation, NO and MPO release when compared to age-and gender-matched controls. The mRNA expression of the tumor suppressor gene p53, its primary regulator Mdm2, and the DNA repair genes Brca2 and Ape1 were significantly elevated, but the corresponding protein levels remained largely unaltered. In conclusion, treatment with nicotine caused oxidative stress and inflammation which can cause widespread cellular damage from the very onset of treatment, without subverting the tumor suppressor and DNA repair responses.
Collapse
Affiliation(s)
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, 788011 India
| | - Dipu Mani Barman
- Department of Biotechnology, Assam University, Silchar, 788011 India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar, 788011 India
| |
Collapse
|
23
|
Ross C, Szczepanek K, Lee M, Yang H, Peer CJ, Kindrick J, Shankarappa P, Lin ZW, Sanford JD, Figg WD, Hunter KW. Metastasis-Specific Gene Expression in Autochthonous and Allograft Mouse Mammary Tumor Models: Stratification and Identification of Targetable Signatures. Mol Cancer Res 2020; 18:1278-1289. [PMID: 32513899 PMCID: PMC7483845 DOI: 10.1158/1541-7786.mcr-20-0046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer metastasis is a leading cause of cancer-related death of women in the United States. A hurdle in advancing metastasis-targeted intervention is the phenotypic heterogeneity between primary and secondary lesions. To identify metastasis-specific gene expression profiles we performed RNA-sequencing of breast cancer mouse models; analyzing metastases from models of various drivers and routes. We contrasted the models and identified common, targetable signatures. Allograft models exhibited more mesenchymal-like gene expression than genetically engineered mouse models (GEMM), and primary culturing of GEMM-derived metastatic tissue induced mesenchymal-like gene expression. In addition, metastasis-specific transcriptomes differed between tail vein and orthotopic injection of the same cell line. Gene expression common to models of spontaneous metastasis included sildenafil response and nicotine degradation pathways. Strikingly, in vivo sildenafil treatment significantly reduced metastasis by 54%, while nicotine significantly increased metastasis by 46%. These data suggest that (i) actionable metastasis-specific pathways can be readily identified, (ii) already available drugs may have great potential to alleviate metastatic incidence, and (iii) metastasis may be influenced greatly by lifestyle choices such as the choice to consume nicotine products. In summary, while mouse models of breast cancer metastasis vary in ways that must not be ignored, there are shared features that can be identified and potentially targeted therapeutically. IMPLICATIONS: The data we present here exposes critical variances between preclinical models of metastatic breast cancer and identifies targetable pathways integral to metastatic spread. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/9/1278/F1.large.jpg.
Collapse
Affiliation(s)
- Christina Ross
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Karol Szczepanek
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, NIH, Bethesda, Maryland
| | - Jessica Kindrick
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, NIH, Bethesda, Maryland
| | - Priya Shankarappa
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, NIH, Bethesda, Maryland
| | - Zhi-Wei Lin
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, NIH, Bethesda, Maryland
| | - Jack D Sanford
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, NCI, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, NIH, Bethesda, Maryland
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
24
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
25
|
Gregory E, Dugan R, David G, Song YH. The biology and engineered modeling strategies of cancer-nerve crosstalk. Biochim Biophys Acta Rev Cancer 2020; 1874:188406. [PMID: 32827578 DOI: 10.1016/j.bbcan.2020.188406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
A recent finding critical to cancer aggravation is the interaction between cancer cells and nerves. There exist two main modes of cancer-nerve interaction: perineural invasion (PNI) and tumor innervation. PNI occurs when cancer cells infiltrate the adjacent nerves, and its relative opposite, tumor innervation, occurs when axons extend into tumor bodies. Like most cancer studies, these crosstalk interactions have mostly been observed in patient samples and animal models at this point, making it difficult to understand the mechanisms in a controlled manner. As such, in recent years in vitro studies have emerged that have helped identify various microenvironmental factors responsible for cancer-nerve crosstalk, including but not limited to neurotrophic factors, neurotransmitters, chemokines, cancer-derived exosomes, and Schwann cells. The versatility of in vitro systems warrants continuous development to increase physiological relevance to study PNI and tumor innervation, for example by utilizing biomimetic three-dimensional (3D) culture systems. Despite the wealth of 3D in vitro cancer models, comparatively there exists a lack of 3D in vitro models of nerve, PNI, and tumor innervation. Native-like 3D in vitro models of cancer-nerve interactions may further help develop therapeutic strategies to curb nerve-mediated cancer aggravation. As such, we provide an overview of the key players of cancer-nerve crosstalk and current in vitro models of the crosstalk, as well as cancer and nerve models. We also discuss a few future directions in cancer-nerve crosstalk research.
Collapse
Affiliation(s)
- Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Reagan Dugan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Gabriel David
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
26
|
Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol 2020; 23:669-681. [PMID: 32770391 DOI: 10.1007/s12094-020-02465-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The nervous system plays an important role in cancer initiation and progression. Accumulated evidences clearly show that the sympathetic nervous system exerts stimulatory effects on carcinogenesis and cancer growth. However, the role of the parasympathetic nervous system in cancer has been much less elucidated. Whereas retrospective studies in vagotomized patients and experiments employing vagotomized animals indicate the parasympathetic nervous system has an inhibitory effect on cancer, clinical studies in patients with prostate cancer indicate it has stimulatory effects. Therefore, the aim of this paper is a critical evaluation of the available data related to the role of the parasympathetic nervous system in cancer.
Collapse
|
27
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
28
|
Liu X, Zhou ZH, Li W, Zhang SK, Li J, Zhou MJ, Song JW. Heparanase Promotes Tumor Growth and Liver Metastasis of Colorectal Cancer Cells by Activating the p38/MMP1 Axis. Front Oncol 2019; 9:216. [PMID: 31001480 PMCID: PMC6454005 DOI: 10.3389/fonc.2019.00216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023] Open
Abstract
Heparanase (HPSE), the only known mammalian endoglycosidase responsible for heparan sulfate cleavage, is a multi-faceted protein affecting multiple malignant behaviors in cancer cells. In this study, we examined the expression of HPSE in different colorectal cancer (CRC) cell lines. Gene manipulation was applied to reveal the effect of HPSE on proliferation, invasion, and metastasis of CRC. Knockdown of HPSE resulted in decreased cell proliferation in vitro, whereas overexpression of HPSE resulted in the opposite phenomenon. Consistently, in vivo data showed that knockdown of HPSE suppressed tumor growth of CRC. Furthermore, knockdown of HPSE inhibited invasion and liver metastasis in vitro and in vivo. RNA-sequencing analysis was performed upon knockdown of HPSE, and several pathways were identified that are closely associated with invasion and metastasis. In addition, HPSE is positively correlated with MMP1 expression in CRC, and HPSE regulates MMP1 expression via p38 MAPK signaling pathway. In conclusion, our data demonstrate that HPSE knockdown attenuated tumor growth and liver metastasis in CRC, implying that HPSE might serve as a potential therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shi-Kun Zhang
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China.,Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
29
|
Chen L, Wang H. eIF4E is a critical regulator of human papillomavirus (HPV)-immortalized cervical epithelial (H8) cell growth induced by nicotine. Toxicology 2019; 419:1-10. [PMID: 30836163 DOI: 10.1016/j.tox.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Tobacco smoke is known as a cofactor in the development of cervical precancer and cancer caused by human papillomavirus (HPV). The main component in cigarette smoke, nicotine, can be concentrated more strongly in cervical mucus than in blood and it has been implicated as a cocarcinogen that promotes a serial of cancers development through multiple prosurvival pathways. Although the mechanisms of nicotine-induced cell proliferation have been well studied in some epithelial cells, the molecular mechanism of its action in cervical epithelial cells is still unclear. The aims of this study were to investigate the detailed mechanism by which nicotine could induce cervical cancer growth. We found that nicotine simultaneously activates AKT/mTOR pathway in HPV-immortalized cervical epithelial (H8) cell line, followed by elevation of 4EBP1/eIF4E axis expression and its translational activity with dose-dependent and time-dependent manners. Besides, nicotine decreases eIF4E-4EBP1 binding activity in H8 cell line, which is associated with increased expression of phospho-4EBP1 at threonine 70. We therefore chose to evaluate whether this effect on eIF4E was involved in nicotine-induced proliferation. Remarkably, eIF4E knockdown by small interfering RNA diminishes its translation activity to the downstream targets including c-Myc, VEGF, CyclinD1 and Bcl-2. What is more, eIF4E knockdown inhibits cellular growth and colony formation after nicotine treatment. Note as well that eIF4E-specific siRNA could also suppress cell proliferation by decelerating the G0/G1-S transition of H8 cell treated with nicotine. Taken together, it can be concluded that nicotine promotes H8 cell proliferation by activating AKT/mTOR pathway, as well as 4EBP1/eIF4E axis and its translational activity. Furthermore, phosphorylation of 4EBP1 induced by nicotine has been shown to cause dissociation of 4EBP1/eIF4E and eIF4E may serve as a promising determinant of nicotine activity in vitro.
Collapse
Affiliation(s)
- Lu Chen
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi, 330006, PR China
| | - Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
30
|
Shulepko MA, Kulbatskii DS, Bychkov ML, Lyukmanova EN. Human Nicotinic Acetylcholine Receptors: Part II. Non-Neuronal Cholinergic System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Hamada T, Nowak JA, Masugi Y, Drew DA, Song M, Cao Y, Kosumi K, Mima K, Twombly TS, Liu L, Shi Y, da Silva A, Gu M, Li W, Nosho K, Keum N, Giannakis M, Meyerhardt JA, Wu K, Wang M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst 2019; 111:42-51. [PMID: 30312431 PMCID: PMC6335108 DOI: 10.1093/jnci/djy137] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Evidence indicates not only carcinogenic effect of cigarette smoking but also its immunosuppressive effect. We hypothesized that the association of smoking with colorectal cancer risk might be stronger for tumors with lower anti-tumor adaptive immune response. Methods During follow-up of 134 981 participants (3 490 851 person-years) in the Nurses' Health Study and Health Professionals Follow-up Study, we documented 729 rectal and colon cancer cases with available data on T-cell densities in tumor microenvironment. Using the duplication-method Cox regression model, we examined a differential association of smoking status with risk of colorectal carcinoma subclassified by densities of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells. All statistical tests were two-sided. Results The association of smoking status with colorectal cancer risk differed by CD3+ cell density (Pheterogeneity = .007). Compared with never smokers, multivariable-adjusted hazard ratios for CD3+ cell-low colorectal cancer were 1.38 (95% confidence interval = 1.09 to 1.75) in former smokers and 1.59 (95% confidence interval = 1.14 to 2.23) in current smokers (Ptrend = .002, across smoking status categories). In contrast, smoking status was not associated with CD3+ cell-high cancer risk (Ptrend = .52). This differential association appeared consistent in strata of microsatellite instability, CpG island methylator phenotype, or BRAF mutation status. There was no statistically significant differential association according to densities of CD8+ cells, CD45RO+ cells, or FOXP3+ cells (Pheterogeneity > .04, with adjusted α of 0.01). Conclusions Colorectal cancer risk increased by smoking was stronger for tumors with lower T-lymphocyte response, suggesting an interplay of smoking and immunity in colorectal carcinogenesis.
Collapse
Affiliation(s)
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in Molecular Pathological Epidemiology, Department of Pathology
| | | | - David A Drew
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | | | - Li Liu
- Department of Oncologic Pathology
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | | | - Mancang Gu
- Department of Oncologic Pathology
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | | | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - NaNa Keum
- Department of Nutrition
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Medicine, and Channing Division of Network Medicine
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Kana Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Molin Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T Chan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT
- Department of Medicine, Yale School of Medicine, New Haven, CT
- Smilow Cancer Hospital, New Haven, CT
| | - Reiko Nishihara
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Nutrition
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xuehong Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Epidemiology
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
32
|
Lei Z, Xiaomin Y, He H, Jian C, Xiaowu X. Nicotine downregulates microRNA‐200c to promote metastasis and the epithelial–mesenchymal transition in human colorectal cancer cells. J Cell Physiol 2018; 234:1369-1379. [PMID: 30076725 DOI: 10.1002/jcp.26933] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Zhou Lei
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Yang Xiaomin
- Department of Pathology Wenzhou People’s Hospital Wenzhou China
| | - Huang He
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Chen Jian
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Xu Xiaowu
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
33
|
Yang XY, Liu QR, Wu LM, Zheng XL, Ma C, Na RS. Overexpression of secretagogin promotes cell apoptosis and inhibits migration and invasion of human SW480 human colorectal cancer cells. Biomed Pharmacother 2018; 101:342-347. [PMID: 29499408 DOI: 10.1016/j.biopha.2018.01.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE In order to investigate the effect of secretagogin (SCGN) on colorectal cancer (CRC) cells apoptosis, invasion and migration in vitro. METHODS Expression of SCGN in CRC tissues and the paired adjacent non-tumorous tissues (n = 36) and four human CRC cell lines (HT29, HCT116, SW480 and SW620) were detected. SW480 cells were transfected with the SCGN overexpression plasmid (eGFP-SCGN), si-SCGN-773, and the corresponding negative controls (NCs). Then, cell-cycle distribution, cell apoptosis, migration, invasion and expression of apoptosis- and metastasis-related proteins were detected. RESULTS SCGN was significantly downregulated in CRC tissues as compared with the adjacent non-tumorous tissues. The expression of SCGN in HT29 and SW480 cells were lower than those in HT116 and SW620 cells. We transfected SW480 cells with SCGN overexpression plasmid eGFP-SCGN and found the increased cell apoptosis, with cell arresting at G0/G1 phase. SW480 cells with SCGN overexpression showed wider wound width and fewer invaded cells than control and blank cells, with upregulated Bax, cleaved Caspase 3 and E-cadherin, and downregulated Bcl-2 and Vimentin. We also transfected SW480 cells with si-SCGN-773 and found si-SCGN increased cell migration and invasion, but did not affect cell apoptosis and expression of related proteins. CONCLUSION We concluded that the overexpression of SCGN in SW480 cells promoted cell apoptosis and inhibited cell migration and invasion.
Collapse
Affiliation(s)
- Xiang-Yi Yang
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Qiao-Rui Liu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Li-Ming Wu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Xu-Lei Zheng
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Cong Ma
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Ri-Su Na
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China.
| |
Collapse
|
34
|
Juan TK, Liu KC, Kuo CL, Yang MD, Chu YL, Yang JL, Wu PP, Huang YP, Lai KC, Chung JG. Tetrandrine suppresses adhesion, migration and invasion of human colon cancer SW620 cells via inhibition of nuclear factor-κB, matrix metalloproteinase-2 and matrix metalloproteinase-9 signaling pathways. Oncol Lett 2018; 15:7716-7724. [PMID: 29731901 PMCID: PMC5921181 DOI: 10.3892/ol.2018.8286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Tetrandrine (TET) exhibits biological activities, including anticancer activity. In Chinese medicine, TET has been used to treat hypertensive and arrhythmic conditions and has been demonstrated to induce cytotoxic effects on human cancer cell lines. However, to the best of the author's knowledge, no previous studies have revealed that TET affects cell metastasis in SW620 human colon cancer cells. The present study demonstrated that TET decreased the cell number and inhibited cell adhesion and mobility of SW620 cells. Furthermore, a wound healing assay was performed to demonstrate that TET suppressed cell movement, and Transwell chamber assays were used to reveal that TET suppressed the cell migration and invasion of SW620 cells. Western blotting demonstrated that TET significantly reduced protein expression levels of SOS Ras/Rac guanine nucleotide exchange factor 1, phosphatidylinositol 3-kinase, growth factor receptor bound protein 2, phosphorylated (p)-c Jun N-terminal kinase 1/2, p-p38, p38, 14-3-3, Rho A, β-catenin, nuclear factor-κB p65, signal transducer and activator of transcription-1 and cyclooxygenase-2, in comparison with untreated SW620 cells. Overall, the results of the present study suggested that TET may be used as a novel anti-metastasis agent for the treatment of human colon cancer in the future.
Collapse
Affiliation(s)
- Ta-Kuo Juan
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Jiun-Long Yang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuang-Chi Lai
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C.,Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin 651, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan, R.O.C
| |
Collapse
|
35
|
Throm VM, Männle D, Giese T, Bauer AS, Gaida MM, Kopitz J, Bruckner T, Plaschke K, Grekova SP, Felix K, Hackert T, Giese NA, Strobel O. Endogenous CHRNA7-ligand SLURP1 as a potential tumor suppressor and anti-nicotinic factor in pancreatic cancer. Oncotarget 2018; 9:11734-11751. [PMID: 29545933 PMCID: PMC5837762 DOI: 10.18632/oncotarget.24312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023] Open
Abstract
Smoking is associated with increased risk and poorer prognosis of pancreatic ductal adenocarcinoma (PDAC). Nicotine acts through cholinergic nicotinic receptors, preferentially α7 (CHRNA7) that also binds the endogenous ligand SLURP1 (Secreted Ly-6/uPAR-Related Protein 1). The clinical significance of SLURP1 and its interaction with nicotine in PDAC are unclear. We detected similar levels of SLURP1 in sera from healthy donors and patients with chronic pancreatitis or PDAC; higher preoperative values were associated with significantly better survival in patients with resected tumors. Pancreatic tissue was not a source of circulating SLURP1 but contained diverse CHRNA7-expressing cells, preferentially epithelial and immune, whereas stromal stellate cells and a quarter of the tumor cells lacked CHRNA7. The CHRNA7 mRNA levels were decreased in PDAC, and CHRNA7high-PDAC patients lived longer. In CHRNA7high COLO357 and PANC-1 cultures, opposing activities of SLURP1 (anti-malignant/CHRNA7-dependent) and nicotine (pro-malignant/CHRNA7-infidel) were exerted without reciprocally interfering with receptor binding or downstream signaling. These data suggested that the ligands act independently and abolish each other’s effects through a mechanism resembling functional antagonism. Thus, SLURP1 might represent an inborn anti-PDAC defense being sensitive to and counteracting nicotine. Boosting SLURP1-CHRNA7 interaction might represent a novel strategy for treatment in high-risk individuals, i.e., smokers with pancreatic cancer.
Collapse
Affiliation(s)
- Verena M Throm
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - David Männle
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea S Bauer
- Department of Functional Genomics, DKFZ, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juergen Kopitz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics/IMBI, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstanze Plaschke
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Svetlana P Grekova
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Felix
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A Giese
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
37
|
Hsu CY, Chang GC, Chen YJ, Hsu YC, Hsiao YJ, Su KY, Chen HY, Lin CY, Chen JS, Chen YJ, Hong QS, Ku WH, Wu CY, Ho BC, Chiang CC, Yang PC, Yu SL. FAM198B Is Associated with Prolonged Survival and Inhibits Metastasis in Lung Adenocarcinoma via Blockage of ERK-Mediated MMP-1 Expression. Clin Cancer Res 2017; 24:916-926. [PMID: 29217529 DOI: 10.1158/1078-0432.ccr-17-1347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/20/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The comprehensive understanding of mechanisms involved in the tumor metastasis is urgently needed for discovering novel metastasis-related genes for developing effective diagnoses and treatments for lung cancer.Experimental Design: FAM198B was identified from an isogenic lung cancer metastasis cell model by microarray analysis. To investigate the clinical relevance of FAM198B, the FAM198B expression of 95 Taiwan lung adenocarcinoma patients was analyzed by quantitative real-time PCR and correlated to patients' survivals. The impact of FAM198B on cell invasion, metastasis, and tumor growth was examined by in vitro cellular assays and in vivo mouse models. In addition, the N-glycosylation-defective FAM198B mutants generated by site-directed mutagenesis were used to study protein stability and subcellular localization of FAM198B. Finally, the microarray and pathway analyses were used to elucidate the underlying mechanisms of FAM198B-mediated tumor suppression.Results: We found that the high expression of FAM198B was associated with favorable survival in Taiwan lung adenocarcinoma patients and in a lung cancer public database. Enforced expression of FAM198B inhibited cell invasion, migration, mobility, proliferation, and anchorage-independent growth, and FAM198B silencing exhibited opposite activities in vitro FAM198B also attenuated tumor growth and metastasis in vivo We further identified MMP-1 as a critical downstream target of FAM198B. The FAM198B-mediated MMP-1 downregulation was via inhibition of the phosphorylation of ERK. Interestingly deglycosylation nearly eliminated the metastasis suppression activity of FAM198B due to a decrease of protein stability.Conclusions: Our results implicate FAM198B as a potential tumor suppressor and to be a prognostic marker in lung adenocarcinoma. Clin Cancer Res; 24(4); 916-26. ©2017 AACR.
Collapse
Affiliation(s)
- Chia-Ying Hsu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yi-Jing Hsiao
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Yu Lin
- Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery and Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Qi-Sheng Hong
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Hui Ku
- Taipei Institute of Pathology, Taipei, Taiwan
| | - Chih-Ying Wu
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Bing-Ching Ho
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Cheng Chiang
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Fei R, Zhang Y, Wang S, Xiang T, Chen W. α7 nicotinic acetylcholine receptor in tumor-associated macrophages inhibits colorectal cancer metastasis through the JAK2/STAT3 signaling pathway. Oncol Rep 2017; 38:2619-2628. [PMID: 28901507 PMCID: PMC5780013 DOI: 10.3892/or.2017.5935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/23/2017] [Indexed: 01/19/2023] Open
Abstract
Considerable evidence has implied that α7 nicotinic receptor subtypes play an important role in chronic inflammatory and neuropathic pain signaling. The aim of the present study was to determine the role of endogenous α7nAChR signaling in tumor-associated macrophages (TAMs) in human colorectal cancer (CRC) metastasis and prognosis. α7nAChR expression in primary tumor cells and adjacent stroma cells especially in TAMs in 51 CRC patients was observed. Using a human monocyte THP-derived macrophages (TMs) with α7nAChR-siRNA knockdown (TMα7-/-) and a CRC cell Transwell co-culture model, the migration and invasion of two CRC cells, LoVo and SW620, were determined. Western blotting was carried out to investigate the expression of multiple molecules involved in the NF-κB, STAT3, PI3K signaling pathways in mimic TAMs, i.e., TMs exposed to in-direct LoVo cell stimulation. A nicotinic α7 receptor antagonist [α-bungarotoxin (α-Btx)] and three pharmaceutical inhibitors: AG490 (JAK2/STAT3 inhibitor), LY294002 (PI3K inhibitor) and Bay 11-7082 (NF-κB inhibitor) were applied to evaluate whether these signaling pathways were associated with the enhanced migration of CRC cells when co-cultured with α7nAChR knockdown TMs. The results revealed that the expression of α7nAChR in TAMs differed in patients. However, CRC patients who had a high incidence of hepatic metastasis showed no or low expression of α7nAChR in TAMs. TMs with α7nAChR-siRNA knockdown (TMα7-/-) significantly enhanced the migration and invasion of the two CRC cell lines LoVo and SW620. α7nAChR knockdown in TMs significantly downregulated phosphorylation of STAT3, PI3K p85 and NF-κB p65 after co-culturing with LoVo cells. Inhibition of JAK2/STAT3 prevented the TMα7-/--enhanced migration of LoVo cells. α7nAChR expressed in TAMs in human CRC patients plays an important role in preventing metastasis and could be a prognostic marker in CRCs, which may be regulated by the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Rushan Fei
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yuanwei Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Saisai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
39
|
Wang C, Xu X, Jin H, Liu G. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 2017; 13:3479-3486. [PMID: 28521453 PMCID: PMC5431205 DOI: 10.3892/ol.2017.5899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
To investigate the effects and the possible underlying mechanisms of nicotine stimulation on tongue squamous cell carcinoma (TSCC) progression, a TSCC cell line Cal27 and 34 samples of paraffin-embedded TSCC were examined. Immunofluorescence, western blot analysis, and TOP/FOP flash, CCK-8, wound healing and Transwell invasion assays were used to evaluate Cal27 in response to nicotine stimulation. We also investigated expression levels of related proteins of Wnt/β-catenin and Wnt/PCP pathways in paraffin-embedded TSCC samples with or without a history of smoking by immunohistochemistry. Nicotine stimulation can promote proliferation, migration, and invasion of TSCC cells in vitro, downregulate E-cadherin, and activate the Wnt/β-catenin and Wnt/PCP pathways, which could be antagonized by the α7 nicotine acetylcholine receptor (α7 nAChR) inhibitor α-BTX. Moreover, the expression levels of β-catenin, Wnt5a and Ror2 were higher in TSCC patients with a history of smoking than those without a history of smoking. Our results suggest nicotine may promote tongue squamous carcinoma cells progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways and may play a significant role in the progression and metastasis of smoking-related TSCC.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hairu Jin
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gangli Liu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
Kim CW, Go RE, Lee HM, Hwang KA, Lee K, Kim B, Lee MY, Choi KC. Cigarette smoke extracts induced the colon cancer migration via regulating epithelial mesenchymal transition and metastatic genes in human colon cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:690-704. [PMID: 27087172 DOI: 10.1002/tox.22271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Non-Human Primate, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Moo-Yeol Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Dongguk University, Goyang, Gyeonggi-Do, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
41
|
Lan X, Lederman R, Eng JM, Shoshtari SSM, Saleem MA, Malhotra A, Singhal PC. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress. PLoS One 2016; 11:e0167071. [PMID: 27907022 PMCID: PMC5132002 DOI: 10.1371/journal.pone.0167071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular mechanisms involved in smoking associated progression of chronic kidney disease.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| | - Rivka Lederman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Judith M. Eng
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Seyedeh Shadafarin Marashi Shoshtari
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Moin A. Saleem
- Academic Renal Unit, Southmead Hospital, Bristol, United Kingdom
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Pravin C. Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| |
Collapse
|
42
|
Li G, He Y, Yao J, Huang C, Song X, Deng Y, Xie S, Ren J, Jin M, Liu H. Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol Rep 2016; 36:3504-3512. [PMID: 27748898 DOI: 10.3892/or.2016.5166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Angelicin is a member of a well-known class of chemical photosensitizes that have anticancer proper-ties in several cancer cell lines. However, the effects and the potential underlying mechanisms of angelicin action on human lung cancer cells remain unclear. Here, we report that angelicin has an essential role in inhibiting human lung carcinoma growth and metastasis. We found that angelicin markedly induced cell apoptosis and arrested the cell cycle in vitro. Angelicin also inhibited the migration of non-small cell lung cancer (NSCLC) A549 cells in a Transwell assay in a dose-dependent manner. In addition, after angelicin treatment, the expression levels of Bax, cleaved caspase-3 and cleaved caspase-9 were increased, and Bcl-2 expression was decreased. Moreover, our results indicate that angelicin inhibits NSCLC growth not only by downregulating cyclin B1, cyclin E1 and Cdc2, which are related to the cell cycle, but also by reducing MMP2 and MMP9 and increasing E-cadherin expression levels. Furthermore, extracellular signal-regulated kinase (ERK)1/2 and c-Jun NH2-terminal protein kinase (JNK)1/2 phosphorylation increased in parallel with the angelicin treatments. The inhibition of ERK1/2 and JNK1/2 by specific inhibitors significantly abrogated angelicin-induced cell apoptosis, cell cycle arrest and migration inhibition. We established in vivo A549 cell transplant and metastasis models and found that angelicin exerted a significant inhibitory effect on A549 cell growth and lung metastasis. Overall, our results suggested that angelicin is able to inhibit NSCLC A549 cell growth and metastasis by targeting ERK and JNK signaling, which demonstrates potential for NSCLC therapy.
Collapse
Affiliation(s)
- Guangcai Li
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan He
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jun Yao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Chuying Huang
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xiusheng Song
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yan Deng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Sheng Xie
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jie Ren
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Meng Jin
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Huiguo Liu
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
43
|
Lee HM, Kim CW, Hwang KA, Choi DW, Choi KC. Three components of cigarette smoke altered the growth and apoptosis of metastatic colon cancer cells via inducing the synthesis of reactive oxygen species and endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:80-9. [PMID: 27262990 DOI: 10.1016/j.etap.2016.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Cigarette smoke (CS) is a well-known risk factor for carcinogenesis and has been found to be related to the occurrence and development of colon cancer. In this study, the effect of formaldehyde (FA), benzene (Bz), and isoprene (IP), which are included in main components of CS, on cell viability and apoptosis of SW620 colorectal cancer cells was examined to identify the connection between CS components and colon cancer. In cell viability assay, FA, Bz, and IP decreased cell viability of SW620 cells in a dose dependent manner. In Western blot assay, the protein expression of cell cycle related genes, cyclin D1 & E1, was decreased by FA, Bz, and IP, which corresponded to their inhibitory effect on cell viability. In addition, FA, Bz, and IP increased the protein expression of pro-apoptotic genes, C/EBP homologous protein (CHOP) and Bax, and reduced the protein expression of anti-apoptotic gene, Bcl-2. In reactive oxygen species (ROS) assay using dichlorofluorescin diacetate (DCFH-DA), FA, Bz, and IP increased the ROS production in SW620 cells. In the measurement of apoptotic cells, the numbers of apoptotic cells were increased by the treatment of FA, Bz, and IP. As CHOP is an endoplasmic reticulum (ER)-stress related apoptosis marker of which production is induced by ROS, it was considered that these CS components induce apoptosis of SW620 cells by increasing ROS synthesis and ER-stress. Taken together, these results showed that CS components, i.e., FA, Bz, and IP, inhibited the cell viability of SW620 cells by down-regulating the protein expression of cyclin D1 & E1 and induced apoptosis of SW620 cells by increasing ROS production and simultaneously activating ER-stress.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dal-Woong Choi
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|