1
|
Yan X, Jiang P, Li C, Liu F, Fu P, Liu D, Du X, Ma L, Wang T, Yuan X, Ye S, Wang Z. Intravenous immunoglobulin ameliorates doxorubicin-induced intestinal mucositis by inhibiting the Syk/PI3K/Akt axis and ferroptosis. Apoptosis 2025; 30:734-750. [PMID: 39720979 DOI: 10.1007/s10495-024-02064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chemotherapy-induced mucositis (CIM) significantly impacts quality of life and reduces survival in patients treated with specific chemotherapeutic agents. However, effective clinical treatments for CIM remain limited. Intravenous immunoglobulin (IVIg), a therapeutic derived from pooled human plasma, is widely used to treat inflammatory diseases. This study aimed to evaluate the therapeutic efficacy and underlying mechanisms of IVIg in CIM. METHODS A murine model of doxorubicin (Dox)-induced intestinal mucositis and an organoid model of small intestinal injury were used to explore the protective effects of IVIg on CIM. Immunostaining, transmission electron microscopy (TEM), western blotting (WB), and proteomic analysis were used to further investigate ferroptosis in intestinal epithelial cells and the underlying mechanisms. RESULTS In the murine model of Dox-induced intestinal mucositis, intestinal epithelial barrier was destroyed and ferroptosis increased, characterized by weight loss, hematological injury, inflammation, mitochondrial atrophy in intestinal epithelial cells, lipid peroxidation, impairment of tight junctions, and damage to intestinal microvilli. IVIg treatment significantly ameliorated intestinal epithelial barrier damage and reduced ferroptosis both in vitro and in vivo. Proteomic analysis revealed that the FcγR-mediated phagocytosis signaling pathway was involved in the therapeutic effects of IVIg on CIM mice. WB results demonstrated that key proteins downstream of this pathway, Syk, PI3K, and Akt, showed increased phosphorylation in CIM mice, whereas IVIg treatment significantly reduced the phosphorylation levels. Furthermore, the inhibitory effects of IVIg on Dox-induced activation of the Syk/PI3K/Akt axis and ferroptosis, as well as its protective effects on intestinal inflammation and intestinal barrier damage, were reversed by 740Y-P (an PI3K activator) or SC79 (an Akt activator). CONCLUSIONS Our findings highlight that IVIg ameliorates CIM by inhibiting ferroptosis via the Syk/PI3K/Akt axis. These results suggest that IVIg may represent a potential therapeutic approach for CIM.
Collapse
Affiliation(s)
- Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Ping Fu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China.
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China.
| |
Collapse
|
2
|
Verhasselt V, Tellier J, Carsetti R, Tepekule B. Antibodies in breast milk: Pro-bodies designed for healthy newborn development. Immunol Rev 2024; 328:192-204. [PMID: 39435770 PMCID: PMC11659933 DOI: 10.1111/imr.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This manuscript sheds light on the impact of maternal breast milk antibodies on infant health. Milk antibodies prepare and protect the newborn against environmental exposure, guide and regulate the offspring's immune system, and promote transgenerational adaptation of the immune system to its environment. While the transfer of IgG across the placenta ceases at birth, milk antibodies are continuously replenished by the maternal immune system. They reflect the mother's real-time adaptation to the environment to which the infant is exposed. They cover the infant's upper respiratory and digestive mucosa and are perfectly positioned to control responses to environmental antigens and might also reach their circulation. Maternal antibodies in breast milk play a key role in the immune defense of the developing child, with a major impact on infectious disease susceptibility in both HIC and LMIC. They also influence the development of another major health burden in children-allergies. Finally, emerging evidence shows that milk antibodies also actively shape immune development. Much of this is likely to be mediated by their effect on the seeding, composition and function of the microbiota, but not only. Further understanding of the bridge that maternal antibodies provide between the child and its environment should enable the best interventions to promote healthy development.
Collapse
Affiliation(s)
- Valerie Verhasselt
- Larsson‐Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine and of BioMedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Immunology and Breastfeeding teamThe Kids Research Institute AustraliaPerthWestern AustraliaAustralia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | | | - Burcu Tepekule
- Dept of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
3
|
Zhang X, Li Y, Liu W, Zhang H, Han Y, Liu Y, Wang X. Preliminary investigation on the effect of Vibrio splendidus stimulation on the intestinal flora of Strongylocentrotus intermedius. Biochem Biophys Res Commun 2024; 730:150389. [PMID: 39003864 DOI: 10.1016/j.bbrc.2024.150389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
To better understand the effect of Vibrio splendidus infection on Strongylocentrotus intermedius, 16S rRNA sequencing was carried out to investigate the intestinal flora of S. intermedius stimulated by 0 CFU/mL (Con), 1.5 × 107 CFU/mL (Vib1) and 1.5 × 108 CFU/mL (Vib2) concentrations of V. splendidus. The results showed that there was significant difference in intestinal flora diversity between Con group and Vib1 group, but no significant difference between Con group and Vib2 group. However, there were significant differences in the composition of intestinal flora among all groups. Bacteroidota, Proteobacteria and Firmicutes were the dominant phylum in the Con group. The abundance of Bacteroidota and Firmicutes decreased and Proteobacteria increased in Vib1 and Vib2 groups. The relative abundance of the potential probiotic bacteria Muribaculaceae and Alloprevotella was significantly lower in the Vib1 and Vib2 groups. In addition, the opportunistic pathogen Desulfovibrio was found in Vib1 and Vib2 groups. It is evident that V. splendidus infection not only alters the composition of the microbial community in the intestinal tract of S. intermedius, but may also lead to the production of opportunistic pathogens, which could be potentially harmful to the health of S. intermedius. The results of this study provide a foundation for exploring the diseases caused by V. splendidus stimulation leading to an imbalance in the intestinal flora of S. intermedius, and contribute to our further understanding of the role of Vibrio on the health of S. intermedius.
Collapse
Affiliation(s)
- Xiaochen Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Wan Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Haoyu Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
4
|
Blanchetière A, Dolladille C, Goyer I, Join-Lambert O, Fazilleau L. State of the Art of Probiotic Use in Neonatal Intensive Care Units in French-Speaking European Countries. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1889. [PMID: 38136091 PMCID: PMC10742297 DOI: 10.3390/children10121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The effectiveness of probiotics in reducing the incidence of necrotizing enterocolitis has been supported by a very large number of studies. However, the utilization of probiotics in preterm infants remains a topic of debate. This study aims to assess the rate of probiotic use in European neonatal intensive care units (NICUs), compare administration protocols, and identify barriers and concerns associated with probiotic use. An online questionnaire was distributed via email to European NICUs between October 2020 and June 2021. Different questions related to the frequency of probiotic use were proposed. Data on probiotic administration protocols and reasons for non-utilization were collected. The majority of responses were from France and Switzerland, with response rates of 85% and 89%, respectively. A total of 21% of French NICUs and 100% of Swiss NICUs reported routine probiotic use. There was significant heterogeneity in probiotic administration protocols, including variations in probiotic strains, administration, and treatment duration. The main obstacles to routine probiotic use were the absence of recommendations, lack of consensus on strain selection, insufficient scientific evidence, and concerns regarding potential adverse effects. The rate of routine probiotic administration remains low in European NICUs, with heterogeneity among protocols. Further trials are necessary to elucidate optimal treatment modalities and ensure safety of administration.
Collapse
Affiliation(s)
| | - Charles Dolladille
- Pharmaco-Epidemiology Unit, Department of Cardiology, University Hospital of Caen, 14000 Caen, France
| | - Isabelle Goyer
- Department of Pharmacy, University Hospital of Caen, 14000 Caen, France
| | | | - Laura Fazilleau
- Department of Neonatology, University Hospital of Caen, 14000 Caen, France
| |
Collapse
|
5
|
Mahdally SM, Izquierdo M, Viscardi RM, Magder LS, Crowley HM, Bafford AC, Drachenberg CB, Farfan MJ, Fasano A, Sztein MB, Salerno-Goncalves R. Secretory-IgA binding to intestinal microbiota attenuates inflammatory reactions as the intestinal barrier of preterm infants matures. Clin Exp Immunol 2023; 213:339-356. [PMID: 37070830 PMCID: PMC10570995 DOI: 10.1093/cei/uxad042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Previous work has shown that Secretory-IgA (SIgA) binding to the intestinal microbiota is variable and may regulate host inflammatory bowel responses. Nevertheless, the impact of the SIgA functional binding to the microbiota remains largely unknown in preterm infants whose immature epithelial barriers make them particularly susceptible to inflammation. Here, we investigated SIgA binding to intestinal microbiota isolated from stools of preterm infants <33 weeks gestation with various levels of intestinal permeability. We found that SIgA binding to intestinal microbiota attenuates inflammatory reactions in preterm infants. We also observed a significant correlation between SIgA affinity to the microbiota and the infant's intestinal barrier maturation. Still, SIgA affinity was not associated with developing host defenses, such as the production of mucus and inflammatory calprotectin protein, but it depended on the microbiota shifts as the intestinal barrier matures. In conclusion, we reported an association between the SIgA functional binding to the microbiota and the maturity of the preterm infant's intestinal barrier, indicating that the pattern of SIgA coating is altered as the intestinal barrier matures.
Collapse
Affiliation(s)
- Sarah M Mahdally
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mariana Izquierdo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rose M Viscardi
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helena M Crowley
- Division of Pediatric Surgery and Urology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea C Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mauricio J Farfan
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rosangela Salerno-Goncalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Lin H, Lin J, Pan T, Li T, Jiang H, Fang Y, Wang Y, Wu F, Huang J, Zhang H, Chen D, Chen Y. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis 2023; 14:68. [PMID: 36709322 PMCID: PMC9884241 DOI: 10.1038/s41419-023-05589-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease with unclear pathogenesis. The gut microbiota and intestinal barrier play an essential role in AIH. Polymeric immunoglobulin receptor (pIgR) is a central component of mucosal immunity. Herein, we aimed to test the hypothesis that pIgR plays a pivotal role in maintaining gut microbiota homeostasis and gut barrier integrity in an AIH mouse model. The expression of intestinal pIgR shows the variation tendency of falling after rising with the aggravation of experimental AIH (EAH). The deletion of Pigr exacerbates liver damage in EAH. Furthermore, we identified a distinct microbiota profile of Pigr-deficient EAH mice, with a significant increased aboundance in the Oscillospiraceae family, particularly the Anaeromassilibacillus genus. Such a situation occurs because the loss of Pigr inhibits MEK/ERK, a key signal pathway whereby pIgR transports immunoglobulin A (IgA), resulting in reduced IgA secretion, which leads to the destruction of intestinal epithelial tight junction proteins and intestinal flora disturbance. Increased intestinal leakage causes increased translocation of bacteria to the liver, thus aggravating liver inflammation in EAH. Treatment with the Lactobacillus rhamnosus GG supernatant reverses liver damage in EAH mice but loses its protective effect without pIgR. Our study identifies that intestinal pIgR is a critical regulator of the adaptive response to S100-induced alterations in gut flora and the gut barrier function, which closely correlates with liver injury. Intestinal upregulation of pIgR could be a novel approach for treating AIH.
Collapse
Affiliation(s)
- Hongwei Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jing Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Tongtong Pan
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Ting Li
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huimian Jiang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yan Fang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yuxin Wang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Faling Wu
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jia Huang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huadong Zhang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| | - Yongping Chen
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
8
|
Han D, Lu D, Huang S, Pang J, Wu Y, Hu J, Zhang X, Pi Y, Zhang G, Wang J. Small extracellular vesicles from Ptpn1-deficient macrophages alleviate intestinal inflammation by reprogramming macrophage polarization via lactadherin enrichment. Redox Biol 2022; 58:102558. [PMID: 36462232 PMCID: PMC9712762 DOI: 10.1016/j.redox.2022.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 1 (Ptpn1) is known to be involved in macrophage polarization. However, whether and how Ptpn1 regulates macrophage phenotype to affect intestinal epithelial barrier function remains largely unexplored. Herein, we investigated the impact of Ptpn1 and macrophage-derived small extracellular vesicles (sEVs) on macrophage-intestinal epithelial cell (IEC) interactions in the context of intestinal inflammation. We found that Ptpn1 knockdown shifts macrophages toward the anti-inflammatory M2 phenotype, thereby promoting intestinal barrier integrity and suppressing inflammatory response in the macrophage-IEC co-culture model. We further revealed that conditioned medium or sEVs isolated from Ptp1b knockdown macrophages are the primary factor driving the beneficial outcomes. Consistently, administration of the sEVs from Ptpn1-knockdown macrophages reduced disease severity and ameliorated intestinal inflammation in LPS-challenged mice. Furthermore, depletion of macrophages in mice abrogated the protective effect of Ptpn1-knockdown macrophage sEVs against Salmonella Typhimurium infection. Importantly, we found lactadherin to be highly enriched in the sEVs of Ptpn1-knockdown macrophages. Administration of recombinant lactadherin alleviated intestinal inflammation and barrier dysfunction by inducing macrophage M2 polarization. Interestingly, sEVs lactadherin was also internalized by macrophages and IECs, leading to macrophage M2 polarization and enhanced intestinal barrier integrity. Mechanistically, the anti-inflammatory and barrier-enhancing effect of lactadherin was achieved by reducing TNF-α and NF-κB activation. Thus, we demonstrated that sEVs from Ptpn1-knockdown macrophages mediate the communication between IECs and macrophages through enrichment of lactadherin. The outcome could potentially lead to the development of novel therapies for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
10
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
11
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
12
|
Zamora-Briseño JA, Cerqueda-García D, Hernández-Velázquez IM, Rivera-Bustamante R, Huchín-Mian JP, Briones-Fourzán P, Lozano-Álvarez E, Rodríguez-Canul R. Alterations in the gut-associated microbiota of juvenile Caribbean spiny lobsters Panulirus argus (Latreille, 1804) infected with PaV1. J Invertebr Pathol 2020; 176:107457. [PMID: 32882233 DOI: 10.1016/j.jip.2020.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Rafael Rivera-Bustamante
- Dirección, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Juan Pablo Huchín-Mian
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Patricia Briones-Fourzán
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Quintana Roo 77580, Mexico
| | - Enrique Lozano-Álvarez
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Quintana Roo 77580, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico.
| |
Collapse
|
13
|
Underwood MA, Umberger E, Patel RM. Safety and efficacy of probiotic administration to preterm infants: ten common questions. Pediatr Res 2020; 88:48-55. [PMID: 32855513 PMCID: PMC8210852 DOI: 10.1038/s41390-020-1080-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of a large number of randomized placebo-controlled clinical trials and observational cohort studies including >50,000 preterm infants from 29 countries that have demonstrated a decrease in the risk of necrotizing enterocolitis, death, and sepsis, routine prophylactic probiotic administration to preterm infants remains uncommon in much of the world. This manuscript reflects talks given at NEC Society Symposium in 2019 and is not intended to be a state-of-the-art review or systematic review, but a summary of the probiotic-specific aspects of the symposium with limited additions including a recent strain-specific network analysis and position statement from the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN). We address ten common questions related to the intestinal microbiome and probiotic administration to the preterm infant.
Collapse
Affiliation(s)
- Mark A Underwood
- Division of Neonatology, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - Erin Umberger
- Necrotizing Enterocolitis (NEC) Society, Davis, CA, USA
| | - Ravi M Patel
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
14
|
Abstract
The aim of the work presented in this Research Communication was to evaluate the effect of fermented whey (FW) with Lactobacillus rhamnosus RC007 in a mice model. BALB/c mice were divided into three groups: control group: animals received orally 0.1 ml of phosphate buffered saline (PBS); FW group: animals received orally 0.1 ml of FW; whey (W) group: animals received orally 0.1 ml of W without fermentation with probiotic bacterium. After 10 d mice were sacrificed. Small intestines were collected for determination of IL-10; IL-6, TNFα, goblet cells and intraepithelial lymphocytes. Increases of all the cytokines assayed were observed in mice that received FW compared to control and W group. The ratio between the anti and pro-inflammatory cytokines (IL-10/TNFα) increased in the group of mice that received FW. The number of goblet cells and intraepithelial lymphocytes were also increased in animals that received FW. The results showed that FW with L. rhamnosus RC007 was able to stimulate and to modulate mouse immune system. Whey fermented by this probiotic bacterium is an interesting alternative for development of a new food additive for pig production, taking advantage of the beneficial properties of probiotic bacterium and the nutritional properties of whey.
Collapse
|
15
|
Perše M, Večerić-Haler Ž. The Role of IgA in the Pathogenesis of IgA Nephropathy. Int J Mol Sci 2019; 20:6199. [PMID: 31818032 PMCID: PMC6940854 DOI: 10.3390/ijms20246199] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans, predominantly present in the mucosal areas where its main functions are the neutralization of toxins, prevention of microbial invasion across the mucosal epithelial barrier, and simultaneous maintenance of a physiologically indispensable symbiotic relationship with commensal bacteria. The process of IgA biosynthesis, interaction with receptors, and clearance can be disrupted in certain pathologies, like IgA nephropathy, which is the most common form of glomerulonephritis worldwide. This review summarizes the latest findings in the complex characteristics of the molecular structure and biological functions of IgA antibodies, offering an in-depth overview of recent advances in the understanding of biochemical, immunologic, and genetic factors important in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Sci Rep 2019; 9:14724. [PMID: 31604984 PMCID: PMC6789125 DOI: 10.1038/s41598-019-51194-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal microbiota is critical for maintaining homeostasis. Dysbiosis, an imbalance in the microbial community, contributes to the susceptibility of several diseases. Many factors are known to influence gut microbial composition, including diet. We have previously shown that fecal immunoglobulin (Ig) A levels are decreased in mice fed a diet free of aryl hydrocarbon receptor (AhR) ligands. Here, we hypothesize this IgA decrease is secondary to diet-induced dysbiosis. We assigned mice to a conventional diet, an AhR ligand-free diet, or an AhR ligand-free diet supplemented with the dietary AhR ligand indole-3-carbinol (I3C). We observed a global alteration of fecal microbiota upon dietary AhR ligand deprivation. Compared to mice on the conventional diet, family Erysipelotrichaceae was enriched in the feces of mice on the AhR ligand-free diet but returned to normal levels upon dietary supplementation with I3C. Faecalibaculum rodentium, an Erysipelotrichaceae species, depleted its growth media of AhR ligands. Cultured fecal bacteria from mice on the AhR ligand-free diet, but not the other two diets, were able to alter IgA levels in vitro, as was F. rodentium alone. Our data point to the critical role of AhR dietary ligands in shaping the composition and proper functioning of gut microbiota.
Collapse
|
17
|
Carvalho AL, Fonseca S, Miquel-Clopés A, Cross K, Kok KS, Wegmann U, Gil-Cordoso K, Bentley EG, Al Katy SH, Coombes JL, Kipar A, Stentz R, Stewart JP, Carding SR. Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract. J Extracell Vesicles 2019; 8:1632100. [PMID: 31275534 PMCID: PMC6598475 DOI: 10.1080/20013078.2019.1632100] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022] Open
Abstract
Gram-negative bacteria naturally produce and secrete nanosized outer membrane vesicles (OMVs). In the human gastrointestinal tract, OMVs produced by commensal Gram-negative bacteria can mediate interactions amongst host cells (including between epithelial cells and immune cells) and maintain microbial homeostasis. This OMV-mediated pathway for host-microbe interactions could be exploited to deliver biologically active proteins to the body. To test this we engineered the Gram-negative bacterium Bacteroides thetaiotaomicron (Bt), a prominent member of the intestinal microbiota of all animals, to incorporate bacteria-, virus- and human-derived proteins into its OMVs. We then used the engineered Bt OMVs to deliver these proteins to the respiratory and gastrointestinal (GI)-tract to protect against infection, tissue inflammation and injury. Our findings demonstrate the ability to express and package both Salmonella enterica ser. Typhimurium-derived vaccine antigens and influenza A virus (IAV)-derived vaccine antigens within or on the outer membrane of Bt OMVs. These antigens were in a form capable of eliciting antigen-specific immune and antibody responses in both mucosal tissues and systemically. Furthermore, immunisation with OMVs containing the core stalk region of the IAV H5 hemagglutinin from an H5N1 strain induced heterotypic protection in mice to a 10-fold lethal dose of an unrelated subtype (H1N1) of IAV. We also showed that OMVs could express the human therapeutic protein, keratinocyte growth factor-2 (KGF-2), in a stable form that, when delivered orally, reduced disease severity and promoted intestinal epithelial repair and recovery in animals administered colitis-inducing dextran sodium sulfate. Collectively, our data demonstrates the utility and effectiveness of using Bt OMVs as a mucosal biologics and drug delivery platform technology.
Collapse
Affiliation(s)
- Ana L. Carvalho
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Ariadna Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Kathryn Cross
- Core Science Resources, Quadram Institute Bioscience, Norwich, UK
| | - Khoon-S. Kok
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Udo Wegmann
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Katherine Gil-Cordoso
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | - Janine L. Coombes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Instiute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Abstract
The connection between a dysregulated gut-associated lymphoid tissue and IgA nephropathy (IgAN) was supposed decades ago after the observation of increased association of IgAN with celiac disease. Pivotal studies have shown a role for alimentary antigens, particularly gliadin in developing IgAN in BALB/c mice, and a reduction in IgA antigliadin antibodies and proteinuria was reported after gluten free-diet in patients with IgAN. Recently a genome-wide association study showed that most loci associated with IgAN also are associated with immune-mediated inflammatory bowel diseases, maintenance of the intestinal barrier, and response to gut pathogens. Transgenic mice that overexpress the B-cell activating factor develop hyper-IgA with IgAN modulated by alimentary components and intestinal microbiota. Mice expressing human IgA1 and a soluble form of the IgA receptor (sCD89) develop IgAN, which is regulated by dietary gluten. Recent observations have confirmed gut-associated lymphoid tissue hyper-reactivity in IgAN patients with IgA against alimentary components. Interesting results were provided by the NEFIGAN randomized controlled trial, which adopted an enteric controlled-release formulation of the corticosteroid budesonide targeted to Peyer's patches. After 9 months of treatment, a reduction in proteinuria was observed with stabilized renal function and limited adverse events. The gut-renal connection is an area of promising new treatment approaches for patients with IgAN.
Collapse
|
19
|
|
20
|
Concept of microbial gatekeepers: Positive guys? Appl Microbiol Biotechnol 2018; 103:633-641. [PMID: 30465305 DOI: 10.1007/s00253-018-9522-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms contribute diverse and fundamental roles in biogeochemical processes. In a given microbial community, individuals interact with one another to form complex regulatory networks in which gatekeepers contribute disproportional roles in sustaining stability, dynamics, and function. Owing to the ecological and functional importance of microbial gatekeeper, this review provides an overview on its history, identification, roles, application in biological sciences, and clinical diagnostics. The roles of microbial gatekeepers can be beneficial or detrimental, which depends on our purpose. As the field is rather new, some limitations are raised, and further efforts devoted to solving these concerns are proposed. Collectively, gatekeepers provide promising targets for sustaining and re-establishing a desired microbial community. However, substantial obstacles, such as factors governing gatekeepers, must be overcome to manipulate gatekeepers as positive guys.
Collapse
|
21
|
Bykov AS, Karaulov AV, Tsomartova DA, Kartashkina NL, Goriachkina VL, Kuznetsov SL, Stonogina DA, Chereshneva YV. M CELLS ARE THE IMPORTANT POST IN THE INITIATION OF IMMUNE RESPONSE IN INTESTINE. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2018-3-263-272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microfold cells (M cells) are specialized intestinal epithelial cells that initiate mucosal immune responses. These unique phagocytic epithelial cells are specialized for the transfer of a broad range of particulate antigens and microorganisms across the follicle-associated epithelium (FAE) into the gut-associated lymphoid tissue (GALT) by a process termed transcytosis. The molecular basis of antigen uptake by M cells has been gradually identified in the last decade. Active sampling of intestinal antigen initiates regulated immune responses that ensure intestinal homeostasis. The delivery of luminal substances across the intestinal epithelium to the immune system is a critical event in immune surveillance resulting in tolerance to dietary antigens and immunity to pathogens (e.g., bacteria, viruses, and parasites) and their toxins. Several specialized mechanisms transport luminal antigen across the gut epithelium. Discovery of M cell-specific receptors are of great interest, which could act as molecular tags for targeted delivery oral vaccine to M cells. Recent studies demonstrated that M cells utilize several receptors to recognize and transport specific luminal antigens. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity. How this process is regulated is largely unknown. This review aims to show a new understanding of the factors that influence the development and function of M cells; to show the molecules expressed on M cells which appear to be used as immunosurveillance receptors to sample pathogenic microorganisms in the gut; to note how certain pathogens appear to exploit M cells to inject the host; and, finally, how this knowledge is used to specifically "target" antigens to M cells to attempt to improve the efficacy of mucosal vaccines. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells.
Collapse
|
22
|
Garcia GR, Dogi CA, Poloni VL, Fochesato AS, De Moreno de Leblanc A, Cossalter AM, Payros D, Oswald IP, Cavaglieri LR. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets: in vivo and ex vivo analysis. Benef Microbes 2018; 10:33-42. [PMID: 30274522 DOI: 10.3920/bm2018.0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Probiotics represents an alternative to replace antibiotics as growth promoters in animal feed and are able to control enteric bacterial diseases and to improve gut immunity. Saccharomyces cerevisiae RC016 showed previously inhibition/coagregation of pathogens) and mycotoxins adsorbent ability (aflatoxin B1, ochratoxin A and zearalenone). The aim of this work was to evaluate beneficial properties of S. cerevisiae RC016 in a non-inflammatory in vivo model in weaned piglets and in an intestinal inflammation ex vivo model induced by the mycotoxin deoxynivalenol (DON). Secretory immunoglobulin A (s-IgA) levels, intestinal cytokines, goblet cells and production parameters were evaluated in a pig model. For the in vivo assays, twelve pigs were weaned at 21 days and assigned to two groups: Control (n=6) and Yeast (n=6). Animals received yeast strain for three weeks. After 22 days the small intestine was recovered for determination of goblet cells and s-IgA. For the ex vivo assay, jejunal explants were obtained from 5 weeks old crossbred piglets and treated as follow: (1) control; (2) treated for 3 h with 10 μM DON used as an inflammatory stressor; (3) incubated with 107 cfu/ml yeast strain; (4) pre-incubated 1 h with 107 cfu/ml yeast strain and then treated for 3 h with 10 μM DON. CCL20, interleukin (IL)-1β, IL-8 and IL-22 gene expression was determined by qPCR. Oral administration of S. cerevisiae RC016 increased s-IgA, the number of goblet cells in small intestine and all the growth parameters measured. In the ex vivo model, the cytokine profile studied showed a potential anti-inflammatory effect of the administration of the yeast. In conclusion, S. cerevisiae RC016 is a promising candidate for feed additives formulation to improve animal growth and gut immune system. This yeast strain could be able to improve the gut health through counteracting the weaning-associated intestinal inflammation in piglets.
Collapse
Affiliation(s)
- G R Garcia
- 1 Universidad Nacional de Río Cuarto, Ruta 36 km.601, 5800 Río Cuarto, Córdoba, Argentina.,2 Consejo Nacional de Investigaciones, Científicas y Tecnológicas (CONICET), Argentina
| | - C A Dogi
- 1 Universidad Nacional de Río Cuarto, Ruta 36 km.601, 5800 Río Cuarto, Córdoba, Argentina.,2 Consejo Nacional de Investigaciones, Científicas y Tecnológicas (CONICET), Argentina
| | - V L Poloni
- 1 Universidad Nacional de Río Cuarto, Ruta 36 km.601, 5800 Río Cuarto, Córdoba, Argentina.,2 Consejo Nacional de Investigaciones, Científicas y Tecnológicas (CONICET), Argentina
| | - A S Fochesato
- 1 Universidad Nacional de Río Cuarto, Ruta 36 km.601, 5800 Río Cuarto, Córdoba, Argentina.,2 Consejo Nacional de Investigaciones, Científicas y Tecnológicas (CONICET), Argentina
| | - A De Moreno de Leblanc
- 3 Centro de Referencia para Lactobacilos, CERELA-CONICET, Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| | - A M Cossalter
- 4 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS Toulouse, France
| | - D Payros
- 4 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS Toulouse, France
| | - I P Oswald
- 4 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS Toulouse, France
| | - L R Cavaglieri
- 1 Universidad Nacional de Río Cuarto, Ruta 36 km.601, 5800 Río Cuarto, Córdoba, Argentina.,2 Consejo Nacional de Investigaciones, Científicas y Tecnológicas (CONICET), Argentina
| |
Collapse
|
23
|
Lamacchia C, Musaico D, Henderson ME, Bergillos-Meca T, Roul M, Landriscina L, Decina I, Corona G, Costabile A. Temperature-treated gluten proteins in Gluten-Friendly™ bread increase mucus production and gut-barrier function in human intestinal goblet cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Desselberger U. The Mammalian Intestinal Microbiome: Composition, Interaction with the Immune System, Significance for Vaccine Efficacy, and Potential for Disease Therapy. Pathogens 2018; 7:E57. [PMID: 29933546 PMCID: PMC6161280 DOI: 10.3390/pathogens7030057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation).
Collapse
|
25
|
Zhou Y, Ni X, Wen B, Duan L, Sun H, Yang M, Zou F, Lin Y, Liu Q, Zeng Y, Fu X, Pan K, Jing B, Wang P, Zeng D. Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Benef Microbes 2018; 9:401-416. [DOI: 10.3920/bm2017.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined the effects on intestinal microbiota and diarrhoea of Lactobacillus buchneri supplementation to the diet of weaning Rex rabbits. To this end, rabbits were treated with L. buchneri at two different doses (LC: 104 cfu/g diet and HC: 105 cfu/g diet) for 4 weeks. PCR-DGGE was used to determine the diversity of the intestinal microbiota, while real-time PCR permitted the detection of individual bacterial species. ELISA and real-time PCR allowed the identification of numerous cytokines in the intestinal tissues. Zonula occludens-1, polymeric immunoglobulin receptor and immunoglobulin A genes were examined to evaluate intestinal barriers. Results showed that the biodiversity of the intestinal microbiota of weaning Rex rabbits improved in the whole tract of the treated groups. The abundance of most detected bacterial species was highly increased in the duodenum, jejunum and ileum after L. buchneri administration. The species abundance in the HC group was more increased than in the LC group when compared to the control. Although the abundance of Enterobacteriaceae exhibited a different pattern, Escherichia coli was inhibited in all treatment groups. Toll-like receptor (TLR)2 and TLR4 genes were down-regulated in all intestinal tissues as the microbiota changed. In the LC group, the secretion of the inflammatory cytokine tumour necrosis factor-α was reduced, the gene expression of the anti-inflammatory cytokine interleukin (IL)-4 was up-regulated and the expression of intestinal-barrier-related genes was enhanced. Conversely, IL-4 expression was increased and the expression of other tested genes did not change in the HC group. The beneficial effects of LC were greater than those of HC or the control in terms of improving the daily weight gain and survival rate of weaning Rex rabbits and reducing their diarrhoea rate. Therefore, 104 cfu/g L. buchneri treatment improved the microbiota of weaning Rex rabbits and prevented diarrhoea in these animals.
Collapse
Affiliation(s)
- Y. Zhou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Ni
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Wen
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - L. Duan
- Qu Country Extension Station for Husbandry Technology, Dazhou, Sichuan 635299, China P.R
| | - H. Sun
- Ya’an City Bureau of Agriculture, Ya’an, Sichuan 625099, China P.R
| | - M. Yang
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - F. Zou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Lin
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Q. Liu
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Fu
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - K. Pan
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Jing
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - P. Wang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - D. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| |
Collapse
|
26
|
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms 2018; 6:microorganisms6020035. [PMID: 29693607 PMCID: PMC6027349 DOI: 10.3390/microorganisms6020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
Collapse
|
27
|
Hałasa M, Maciejewska D, Baśkiewicz-Hałasa M, Machaliński B, Safranow K, Stachowska E. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes. Nutrients 2017; 9:E370. [PMID: 28397754 PMCID: PMC5409709 DOI: 10.3390/nu9040370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.
Collapse
Affiliation(s)
- Maciej Hałasa
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| | | | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin 70-111, Poland.
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| |
Collapse
|
28
|
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18:2. [PMID: 28061847 PMCID: PMC5219689 DOI: 10.1186/s12865-016-0187-3] [Citation(s) in RCA: 450] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. Methods This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). Results In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. Conclusions A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Bioengineering, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
29
|
Macher J, Gras Le Guen C, Chenouard A, Liet JM, Gaillard Le Roux B, Legrand A, Mahuet J, Launay E, Gournay V, Joram N. Preoperative Staphylococcus aureus Carriage and Risk of Surgical Site Infection After Cardiac Surgery in Children Younger than 1 year: A Pilot Cohort Study. Pediatr Cardiol 2017; 38:176-183. [PMID: 27844091 DOI: 10.1007/s00246-016-1499-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Surgical site infections (SSI) increase length of stay, morbidity, mortality and cost of hospitalization. Staphylococcus aureus (SA) carriage is a known risk factor of SSI in adults, but its role in pediatrics remains uncertain. The main objective of this pilot prospective monocentric cohort study was to describe the prevalence of SA colonization in children under 1 year old before cardiac surgery. The secondary objectives were to compare the incidence of SSI and other nosocomial infections (NI) between preoperative carriers and non-carriers. From May 2012 to November 2013, all children <1 year old undergoing cardiac surgery under cardiopulmonary bypass underwent preoperative methicillin-resistant (MRSA) and methicillin-sensitive SA (MSSA) screening using real-time PCR. The only exclusion criterion was invalid PCR. All patients were followed up to 1 year after the surgery regarding SSI and other nosocomial infections. Among the 68 studied patients, SA colonization prevalence was 26.5%, comprising 23.5% MSSA and 2.9% MRSA. There was no significant difference between colonized and non-colonized children regarding SSI rate (16.7 vs 20%; p = 0.53), but ventilator-associated pneumonia rate was significantly higher among the SA carriers (22.2 vs 2%; p < 0.05). The colonization rate was different depending on the age of the patients (p < 0.05). This pilot study highlights that colonization with MSSA is frequent whereas MRSA prevalence is low in our population. In this cohort, there was no association between SA colonization and SSI incidence but further studies are needed to analyze this association.
Collapse
Affiliation(s)
- J Macher
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France.
| | - C Gras Le Guen
- Department of Pediatrics, Nantes University Hospital, Nantes, France
| | - A Chenouard
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France
| | - J M Liet
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France
| | - B Gaillard Le Roux
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France
| | - A Legrand
- National Institute of Health and Medical Research CIC 004, Nantes University Hospital, Nantes, France
| | - J Mahuet
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France
| | - E Launay
- Department of Pediatrics, Nantes University Hospital, Nantes, France
| | - V Gournay
- Department of Pediatric Cardiology, Nantes University Hospital, Nantes, France
| | - N Joram
- Department of Pediatric Intensive Care, Hôpital Mère Enfant, Nantes University Hospital, Boulevard Jean Monnet, 44093, Nantes, France
| |
Collapse
|
30
|
Song W, Feng Z, Bai Y, Wang H, Ishag HZA, Yang R, Hua L, Chen C, Zhang Z, Shu C, Liu M, Xiong Q, Shao G. Monoclonal Antibodies Against Porcine sIgA and Their Use in Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2016; 34:386-9. [PMID: 26683177 DOI: 10.1089/mab.2015.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secretory IgA (sIgA) is known as the predominant immunoglobulin in the mucosal system. It prevents pathogens from invading an animal's body through mucosa, making homeostasis. However, few studies examining the secretion of sIgA in mucosal-associated tissues of porcines based on immunohistochemistry methods have been done. In this study, BALB/c mice were immunized with porcine sIgA and the splenocytes were then fused with myeloma cells. Finally, three hybridoma cell lines secreting monoclonal antibody (MAb) against porcine sIgA were obtained. All three MAbs had no cross-reaction with porcine IgG confirmed by Western blot analysis. Furthermore, lungs, tracheas, and intestines were collected from healthy porcines to prepare tissue slices, followed by incubation with the MAb produced in this study. The results showed that sIgA existing in respiratory and digestive systems could be detected by this newly produced MAb. These generated MAbs against porcine sIgA might have a potential use in mucosal research of porcines.
Collapse
Affiliation(s)
- Weixiang Song
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,2 Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Zhixin Feng
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Yun Bai
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Haiyan Wang
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Hassan Zackaria Ali Ishag
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,4 College of Veterinary Sciences, University of Nyala , Nyala, Sudan
| | - Ruosong Yang
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Lizhong Hua
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Cai Chen
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Zhengrong Zhang
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,2 Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Caisong Shu
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,2 Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Maojun Liu
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Qiyan Xiong
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China
| | - Guoqing Shao
- 1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products , Nanjing, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| |
Collapse
|
31
|
IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border? Histochem Cell Biol 2016; 147:399-411. [PMID: 27646280 DOI: 10.1007/s00418-016-1492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Immunoglobulin G (IgG) transfer in opposite directions across the small intestinal brush border serves different purposes in early life and in adulthood. In the neonate, maternal IgG is taken up from the gut lumen into the blood, conferring passive immunity to the offspring, whereas in the adult immunoglobulins, including IgG made by plasma cells in the lamina propria, are secreted via the brush border to the lumen as part of the mucosal defense. Here, IgG has been proposed to perform a luminal immune surveillance which eventually includes a reuptake through the brush border as pathogen-containing immune complexes. In the present work, we studied luminal uptake of FITC-conjugated and gold-conjugated IgG in cultured pig jejunal mucosal explants. After 1 h, binding to the brush border was seen in upper crypts and lower parts of the villi. However, no endocytotic uptake into EEA-1-positive compartments was detected, neither at neutral nor acidic pH, despite an ongoing constitutive endocytosis from the brush border, visualized by the polar tracer CF594. The 40-kDa neonatal Fc receptor, FcRn, was present in the microvillus fraction, but noteworthy, a 37 kDa band, most likely a proteolytic cleavage product, bound IgG in a pH-dependent manner more efficiently than did the full-length FcRn. In conclusion, our work does not support the theory that bidirectional transfer of IgG across the intestinal brush border is part of the luminal immune surveillance in the adult.
Collapse
|
32
|
Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M, Egorov AI, Griffin SM, Heaney CD. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Environ Health Rep 2016; 3:322-34. [PMID: 27352014 PMCID: PMC5424709 DOI: 10.1007/s40572-016-0096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). RECENT FINDINGS We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
Collapse
Affiliation(s)
- Natalie G Exum
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Acute and Chronic Care, School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shannon M Griffin
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Room W7033B, 615 North Wolfe Street, Baltimore, Maryland, 21205-2179, USA.
| |
Collapse
|
33
|
Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β. Cell Mol Immunol 2016; 14:546-556. [PMID: 26972771 DOI: 10.1038/cmi.2015.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022] Open
Abstract
The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer's patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer's patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer's patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis.
Collapse
|
34
|
Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:79-99. [DOI: 10.1007/978-3-319-20215-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Untersmayr E. The influence of gastric digestion on the development of food allergy. REVUE FRANCAISE D ALLERGOLOGIE 2015; 55:444-447. [PMID: 28616101 DOI: 10.1016/j.reval.2015.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food allergy represents an increasing health concern worldwide. To identify mechanisms and risk factors associated with food allergy development major research efforts are ongoing. For a long time only food allergens that are resistant to gastric enzymes were accepted to harbor sensitizing capacity via the oral route. However, over the past years several studies reported that even important food allergens can be readily degraded by digestive enzymes. Interestingly, a number of in vitro experiments confirmed that impairment of physiological gastric digestion by elevating gastric pH levels was associated with protein resistance. Additionally, pharmacological gastric acid suppression was found to be a risk factor for food allergy induction. In contrast, protein modifications resulting in increased susceptibility to digestive enzymes were reported to decrease the sensitization capacity via the oral route. The here reviewed data highlight the important gate keeping function of physiological gastric digestion in food allergy.
Collapse
Affiliation(s)
- Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Song WX, Feng ZX, Bai Y, Wang HY, Ishag HZA, Liu MJ, Xiong QY, Shao GQ, Jiang P. Preparation of the porcine secretory component and a monoclonal antibody against this protein. Protein Expr Purif 2015; 113:51-5. [PMID: 25962739 DOI: 10.1016/j.pep.2015.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Secretory component (SC) is a component of secretory IgA that is designated sIgA to distinguish it from IgA. The monoclonal antibody (MAb) against SC has been shown to be an excellent tool for the detection of the level of sIgA and for the evaluation of the efficacy of mucosal immunity. To prepare a monoclonal antibody against porcine SC, a recombinant porcine SC was expressed and purified. To develop this recombinant SC, the gene encoding the porcine SC was ligated into the pCold I vector. The recombinant vector was then transformed into Escherichia coli BL 21 (DE3), and gene expression was successfully induced by isopropyl-β-D-thiogalactoside (IPTG). After affinity purification with Ni-NTA resin and gel recovery, the recombinant SC protein was used to immunize BALB/c mice. Finally, three hybridoma cell lines showing specific recognitions of both recombinant SC and native SC were used as stable secretors of MAbs against porcine SC and were confirmed to have no reaction to porcine IgA or IgG. The successful preparations of recombinant SC protein and MAbs provide valuable materials that can be used in the mucosal infection diagnosis for porcine disease and mucosal immune evaluation for porcine vaccine, respectively.
Collapse
Affiliation(s)
- Wei-Xiang Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Zhi-Xin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yun Bai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Hai-Yan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Hassan Zackaria Ali Ishag
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Mao-Jun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Qi-Yan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Guo-Qing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Linton M, Nimmo JS, Norris JM, Churcher R, Haynes S, Zoltowska A, Hughes S, Lessels NS, Wright M, Malik R. Feline gastrointestinal eosinophilic sclerosing fibroplasia: 13 cases and review of an emerging clinical entity. J Feline Med Surg 2015; 17:392-404. [PMID: 25896239 PMCID: PMC10816242 DOI: 10.1177/1098612x14568170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
OBJECTIVE Feline gastrointestinal eosinophilic sclerosing fibroplasia (FGESF) is a recently described inflammatory disease of cats affecting stomach or intestines and draining regional lymph nodes. This study presents clinical and laboratory data on 13 newly described cases from Australia (11) and the UK (two). OBSERVATIONS The disease was most often observed in middle-aged cats (median 7 years of age; interquartile range 5-9 years). Ragdolls (7/13) and males (9/13) were overrepresented. Cats generally had a long history of vomiting and/or diarrhoea. Lesions were typically large, hard, non-painful, easily palpable and most commonly situated near the pylorus or ileocaecocolic junction. Lesions were heterogeneous ultrasonographically and on sectioning at celiotomy or necropsy. Masses were hard and 'gritty' on fine-needle aspiration due to internal trabeculae made up of mature collagen bundles. Bacteria were commonly detected within masses (9/13 cases) using either culture or conventional light microscopy and a panel of special stains, and/or fluorescence in situ hybridisation (FISH), although detection often required a diligent search of multiple tissue sections. A consistent bacterial morphology could not be appreciated among the different cases. OUTCOME Patients were treated with a variable combination of cytoreduction (debulking and biopsy, to complete surgical resection), immunosuppressive therapy and antimicrobial agents. Many cats had a poor outcome, which was attributable to late diagnosis combined with suboptimal management. It is hoped that suggestions outlined in the discussion may improve clinical outcomes and long-term survival in future cases.
Collapse
Affiliation(s)
- Michael Linton
- Eastside Veterinary Emergency and Specialists, 10 Newcastle Street, Rose Bay, NSW, 2029, Australia
| | - Judith S Nimmo
- ASAP Pathology Laboratory, 53 Glenvale Crescent, Mulgrave, VIC, 3170, Australia
| | - Jacqueline M Norris
- Faculty of Veterinary Science, The University of Sydney, NSW, 2006, Australia
| | - Richard Churcher
- North Shore Veterinary Specialist Centre, Crows Nest, NSW, 2065, Australia
| | - Sophia Haynes
- Centre for Animal Referral and Emergency, Collingwood, VIC 3066, Australia
| | | | - Sunishka Hughes
- Leslie Street Veterinary Clinic, Umina, NSW, 2259, Australia
| | - Naomi S Lessels
- Leslie Street Veterinary Clinic, Umina, NSW, 2259, Australia
| | | | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
38
|
Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald IP, Maresca M. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β. Mol Nutr Food Res 2015; 59:1076-87. [PMID: 25727397 DOI: 10.1002/mnfr.201500005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/15/2023]
Abstract
SCOPE The food-associated mycotoxin deoxynivalenol (DON) is known to affect intestinal functions. However, its effect on intestinal mucus is poorly characterized. METHODS AND RESULTS We analyzed the effects of DON on human goblet cells (HT29-16E cells) and porcine intestinal explants. Results showed that subtoxic doses of DON (as low as 1 μM) decreased mucin (MUC) production. qPCR analysis demonstrated that this inhibition was due to a specific decrease in the level of mRNA encoding for the intestinal membrane-associated (MUC1) and the secreted MUCs (MUC2, MUC3). Mechanistic studies demonstrated that DON effect relied on the activation of the protein kinase R and the mitogen-activated protein kinase p38 ultimately leading to the inhibition of the expression of resistin-like molecule beta, a known positive regulator of MUC expression. CONCLUSION Taken together, our results show that at low doses found in food and feed, DON is able to affect the expression and production of MUCs by human and animal goblet cells. Due to the important role of MUCs in the barrier function and in the interaction of commensal bacteria with the host, such effect could explain the observed modifications in the microbial diversity and the increased susceptibility to enteric infection following exposure to DON.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.,INP, Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Fabien Graziani
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| | - Ange Pujol
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| | | | - Océane Paris
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| | - Pauline Ernouf
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| | | | - Josette Perrier
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| | - Isabelle P Oswald
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.,INP, Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Marc Maresca
- Centrale Marseille, CNRS, Aix Marseille Université, Marseille, France
| |
Collapse
|
39
|
|
40
|
Maschmann J, Goelz R, Witzel S, Strittmatter U, Steinmassl M, Jahn G, Hamprecht K. Characterization of human breast milk leukocytes and their potential role in cytomegalovirus transmission to newborns. Neonatology 2015; 107:213-9. [PMID: 25675905 DOI: 10.1159/000371753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Breast milk is the primary source of cytomegalovirus (CMV) transmission to newborns and premature infants. The role of cell-free milk whey in virus transmission is well understood, yet the knowledge about the role of milk cells in this process is scarce. OBJECTIVE To preliminarily characterize different breast milk cell types during various stages of lactation to evaluate their potential role in the transmission of CMV. MATERIALS AND METHODS Breast milk cells of 18 lactating and 3 CMV-seropositive mothers of preterm infants were isolated and characterized for expression of myeloid markers by flow cytometry. In parallel, cytospin preparations were stained with α-naphthyl acetate esterase to identify milk macrophages and describe the dynamic changes of the macrophage-granulocyte population during lactation. The influence of different time points of lactation was analyzed by FACS analysis of double-stained (CD15/CD66b) milk cells. To characterize CMV target cells in breast milk, we enriched CD14+ cells by MACS (Miltenyi) and monitored cell fractions using CMV IEEx4 nested PCR and pp67 CMV RNA by NASBA. RESULTS Virolactia, viral DNAlactia, and viral pp67 late mRNA could be detected in breast milk cells only in defined time periods. Granulocytes and macrophages demonstrated an inverse dynamic with neutrophils predominating in the early stages (<30 days postpartum) and macrophages in later stages (>60 days postpartum) of lactation. Enrichment of CD14-positive cells resulted in viral DNA and pp67 late mRNA detection. CONCLUSIONS Granulocytes and monocytes/macrophages are the predominating cell populations in breast milk with changing frequencies during early lactation. These results demonstrate that CD14-positive breast milk cells seem to be one of the target cells for CMV in breast milk.
Collapse
Affiliation(s)
- Jens Maschmann
- Department of Neonatology, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Mathias A, Pais B, Favre L, Benyacoub J, Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 2014; 5:688-95. [PMID: 25536286 PMCID: PMC4615909 DOI: 10.4161/19490976.2014.983763] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While the gut epithelium represents the largest mucosal tissue, the mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple outcomes that remain poorly understood at the molecular level. Deciphering such events may provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the intestinal immune system include maturation processes prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. As commensal bacteria are naturally coated by natural and antigen-specific SIgA in the gut lumen, understanding the consequences of such an interaction may provide new clues on how the antibody contributes to homeostasis at mucosal surfaces. This review discusses several aspects of the role of SIgA in the essential communication existing between the host epithelium and members of its microbiota.
Collapse
Affiliation(s)
- Amandine Mathias
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland
| | - Bruno Pais
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland
| | - Laurent Favre
- Nutrition and Health; Nestlé Research Center; Lausanne, Switzerland
| | - Jalil Benyacoub
- Nutrition and Health; Nestlé Research Center; Lausanne, Switzerland
| | - Blaise Corthésy
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland,Correspondence to: Blaise Corthésy;
| |
Collapse
|
42
|
Torjusen H, Brantsæter AL, Haugen M, Alexander J, Bakketeig LS, Lieblein G, Stigum H, Næs T, Swartz J, Holmboe-Ottesen G, Roos G, Meltzer HM. Reduced risk of pre-eclampsia with organic vegetable consumption: results from the prospective Norwegian Mother and Child Cohort Study. BMJ Open 2014; 4:e006143. [PMID: 25208850 PMCID: PMC4160835 DOI: 10.1136/bmjopen-2014-006143] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Little is known about the potential health effects of eating organic food either in the general population or during pregnancy. The aim of this study was to examine associations between organic food consumption during pregnancy and the risk of pre-eclampsia among nulliparous Norwegian women. DESIGN Prospective cohort study. SETTING Norway, years 2002-2008. PARTICIPANTS 28 192 pregnant women (nulliparous, answered food frequency questionnaire and general health questionnaire in mid-pregnancy and no missing information on height, body weight or gestational weight gain). MAIN OUTCOME MEASURE Relative risk was estimated as ORs by performing binary logistic regression with pre-eclampsia as the outcome and organic food consumption as the exposure. RESULTS The prevalence of pre-eclampsia in the study sample was 5.3% (n=1491). Women who reported to have eaten organic vegetables 'often' or 'mostly' (n=2493, 8.8%) had lower risk of pre-eclampsia than those who reported 'never/rarely' or 'sometimes' (crude OR=0.76, 95% CI 0.61 to 0.96; adjusted OR=0.79, 95% CI 0.62 to 0.99). The lower risk associated with high organic vegetable consumption was evident also when adjusting for overall dietary quality, assessed as scores on a healthy food pattern derived by principal component analysis. No associations with pre-eclampsia were found for high intake of organic fruit, cereals, eggs or milk, or a combined index reflecting organic consumption. CONCLUSIONS These results show that choosing organically grown vegetables during pregnancy was associated with reduced risk of pre-eclampsia. Possible explanations for an association between pre-eclampsia and use of organic vegetables could be that organic vegetables may change the exposure to pesticides, secondary plant metabolites and/or influence the composition of the gut microbiota.
Collapse
Affiliation(s)
- Hanne Torjusen
- National Institute for Consumer Research (SIFO), Oslo, Norway
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Margaretha Haugen
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Alexander
- Office of the Director-General, Norwegian Institute of Public Health, Oslo, Norway
| | - Leiv S Bakketeig
- Division of Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Lieblein
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hein Stigum
- Division of Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway
| | - Tormod Næs
- Nofima, Ås, Norway
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jackie Swartz
- Uppsala University Hospital, Uppsala, Sweden
- Vidarkliniken, Järna, Sweden
| | - Gerd Holmboe-Ottesen
- Department of General Practice and Community Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Gun Roos
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
43
|
Abstract
Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis.
Collapse
|
44
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci U S A 2014; 111:3074-9. [PMID: 24569806 DOI: 10.1073/pnas.1315792111] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory IgA (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric Ig receptor (pIgR). Here, a breeding scheme with polymeric Ig receptor-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding.
Collapse
|
46
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
47
|
Brandtzaeg P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013; 4:222. [PMID: 23964273 PMCID: PMC3734371 DOI: 10.3389/fimmu.2013.00222] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 01/30/2023] Open
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
48
|
Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol 2013; 5:20401. [PMID: 23487566 PMCID: PMC3595421 DOI: 10.3402/jom.v5i0.20401] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 11/14/2022] Open
Abstract
The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Per Brandtzaeg, Department of Pathology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Oslo, NO-0424 Norway. Tel: +47-23072743, Fax: 47-23071511.
| |
Collapse
|
49
|
|