1
|
Abd El-Hack ME, Ashour EA, Baset SA, Kamal M, Swelum AA, Suliman GM, Ebrahim A, Bassiony SS. Effect of Dietary Supplementation of Organic Selenium Nanoparticles on Growth Performance and Carcass Traits of Broiler Chickens. Biol Trace Elem Res 2024; 202:3760-3766. [PMID: 37932618 DOI: 10.1007/s12011-023-03948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
This study examined how broilers up to 38 days of age fared regarding growth efficiency and carcass characteristics concerning selenium nanoparticle activities (SeNPs). A total of 180 one-week-old broiler (Cobb 500) chicks without sex were randomly allocated into three groups, each with six replications of 10 chicks. The trial took 38 days to complete. The three study dietary groups were fed ad libitum feed and water throughout their 38-day of age, along with corn-and-soybean meal-based diets supplemented with 0 (control), 1.5, and 2.0 ml SeNPs (concentration = 5%) /kg diet, respectively. According to the current findings, the SeNP supplementation groups had greater body weight, weight gain, and performance indicators than the control group after 38 days of the feeding experiment. The findings demonstrated that dietary interventions did not affect the amount of feed consumed (FC) per chick per day or the feed conversion ratio (FCR). The conclusion is that adding SeNPs to broiler diets at 1.5 or 2.0 ml/kg increased productivity. In contrast, lower levels of selenium (Se) (1.5 ml/kg diet) showed encouraging results and could be employed as a useful feed additive in broilers.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Shahira Abdel Baset
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Samar S Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Moustafa KEME, El-Hosseiny HM, Shaheen GF, El-Kotamy EM, Ghoniem AE, Younan GE, El-Nahrawy MM, Farag ME, Mohamed MS. Impact of different forms of selenium supplementation on growth and physiological performance of New Zealand white rabbits. Trop Anim Health Prod 2024; 56:131. [PMID: 38637421 PMCID: PMC11026195 DOI: 10.1007/s11250-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Forty-eight weaned male New Zealand White rabbits aged 6 weeks with an initial body weight of (709.67 ± 13 g) were randomly divided into six experimental groups (8 rabbits each) for 6-14 weeks of age experimental periods. The present study was planned to evaluate the effect of using different forms of Selenium element (inorganic, nanoparticles and organic) as dietary supplementation on productive performance of rabbits. Six experimental groups in completely randomized design were used. The first group (G1, control) was fed the basal diet to cover maintenance and production allowances. Rabbits in the other groups G2, G3, G4 and G5 were fed the basal diet supplemented with Nano- Se at 0.02, 0.03, 0.04 and 0.05 mg/kg diet, respectively. The 6th group (G6) was fed the basal diet supplemented with 0.1 mg/kg diet of salinized yeast (Se-yeast) as organic form. The results indicated that the highest values of nitrogen free extract (NFE) and crude fiber (CF) digestibility, live body weight, daily weight gain, hot carcass weight and dressing percentage were observed with those supplemented with Nano-Se at all levels compared with other treatments. However, feed conversion, net revenue and economic efficiency values were improved with Nano-Se groups followed by organic Se group in comparisons with the control group. Conclusively, the Nano-Se in rabbit's diet has a positive effect in improving rabbit's performance and economic efficiency compared to the inorganic Selenium.
Collapse
Affiliation(s)
- Kout-Elkloub M El Moustafa
- Department of Poultry Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hoda M El-Hosseiny
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - G F Shaheen
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt.
| | - E M El-Kotamy
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Abd Elghani Ghoniem
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - G E Younan
- Department of Rabbits, Turkey and Waterfowl Breeding Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - M M El-Nahrawy
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Mona E Farag
- Department of Animal Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Manal S Mohamed
- Department of Poultry Nutrition Research, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| |
Collapse
|
3
|
Eladl AH, Nabil NM, Awad A, Badr S, Ebrahem AF, Tawakol MM, Hammad E, Ali HS, El-Shafei RA. Effects of dietary nano-selenium supplementation on Riemerella anatipestifer vaccinated and challenged Pekin ducklings (Anas platyrhynchos). Vet Microbiol 2023; 284:109816. [PMID: 37348210 DOI: 10.1016/j.vetmic.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Riemerella anatipestifer (RA) is a common disease causing economic losses to duck farms worldwide. Novel supplements are crucially needed to control this bacterium, enhance poultry performance, and produce synergistic effects with vaccines in stimulating the immune system. This study investigated the effect of nano-selenium (Nano-Se) on the vaccinated (VAC) and challenged (Ch) Pekin ducklings (Anas platyrhynchos) with RA. Five experimental groups (G1-G5) were included in this study: G1 was the control group, G2 was the RA-challenged group, G3 was the Nano-Se+Ch group, G4 was the VAC+Ch group, and G5 was the Nano-Se+VAC+Ch group. The Nano-Se (0.3 mg/kg diet) was supplemented for 5 weeks post-vaccination (PV). The ducklings were vaccinated subcutaneously with the RA vaccine at 7 days of age and challenged with RA at the 3rd week PV. Blood, pharyngeal swabs and tissue samples were collected at the 3rd week PV and at different times post-challenge (PC). The growth performance (weight gain and feed conversion ratio), clinical signs, gross lesions, mortality, bacterial shedding, haematological, immunological, and biochemical parameters, cytokines production, and histopathological lesion scores showed significant differences (P < 0.05) between the challenged (G2) group and the supplemented (G3 & G5) groups. G5 showed the highest (P < 0.05) growth performance, phagocytic activity, IgM and IgG, splenic interleukin-2 (IL-2), IL-10, and interferon-gamma (IFN-γ) gene expressions, and the lowest mortality, bacterial shedding, hepatic and renal damage, heterophil/lymphocyte ratio and lesion scores compared to the other groups. In conclusion, the supplementation of nano-selenium for five weeks in the diet can improve the growth performance, immune status, and cytokines production in ducklings vaccinated and challenged with RA.
Collapse
Affiliation(s)
- Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Nehal M Nabil
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Egypt
| | - Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Animal Health Research Institute, Mansoura Branch, Agricultural Research Center (ARC), Egypt
| | - Amera F Ebrahem
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Egypt
| | - Maram M Tawakol
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Egypt
| | - Enas Hammad
- Department of Poultry Diseases, Animal Health Research Institute, Mansoura Branch, Agricultural Research Center (ARC), Egypt
| | - Hanaa S Ali
- Department of Pathology, Animal Health Research Institute, Mansoura Branch, Agriculture Research Center (ARC), Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci 2023; 9:2118-2131. [PMID: 37433046 PMCID: PMC10508580 DOI: 10.1002/vms3.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
Nanotechnology is an innovative, promising technology with a great scope of applications and socioeconomic potential in the poultry industry sector. Nanoparticles (NPs) show the advantages of high absorption and bioavailability with more effective delivery to the target tissue than their bulk particles. Various nanomaterials are available in different forms, sizes, shapes, applications, surface modifications, charges and natures. Nanoparticles can be utilised in the delivery of medicines, targeting them to their right effective site in the body and, at the same time, decreasing their toxicity and side effects. Furthermore, nanotechnology can be beneficial in the diagnosis of diseases and prevention of them and in enhancing the quality of animal products. There are different mechanisms through which NPs could exert their action. Despite the vast benefits of NPs in poultry production, some concerns about their safety and hazardous effects should be considered. Therefore, this review article focuses on NPs' types, manufacture, mechanism of action and applications regarding safety and hazard impact.
Collapse
Affiliation(s)
- Soheil Sadr
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Narges Lotfalizadeh
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Seyed Ali Ghafouri
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Matineh Delrobaei
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Nima Komeili
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Ashkan Hajjafari
- Faculty of Veterinary MedicineDepartment of Pathobiology, Islamic Azad University Olom TahghighatTehranIran
| |
Collapse
|
5
|
Debata NR, Sethy K, Swain RK, Mishra SK, Panda N, Maity S. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Trop Anim Health Prod 2023; 55:260. [PMID: 37402941 DOI: 10.1007/s11250-023-03678-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
The present experiment was aimed at finding the optimal supplemental dose of nano-selenium in broiler chicken during the summer season for better performance in terms of growth, blood metabolites, immune response, antioxidant status, and selenium concentration in vital organs. Three-hundred-day-old Vencobb broiler chicks were randomly distributed into five dietary treatment groups with six replicates of 10 chicks each. The dietary treatments were as follows: T1 (control group), basal diet; T2, basal diet with 0.0375 ppm of nano-Se; T3, basal diet with 0.075 ppm of nano-Se; T4, basal diet with 0.15 ppm of nano-Se; T5, basal diet with 0.3 ppm of nano-Se. The experiment was carried out for 35 days. The average gain and feed conversion ratio were best observed in T4 and T5. The antibody titres were significantly higher (P < 0.05) in the treated birds. At the 5th week, erythrocytic glutathione peroxidase, catalase, and superoxide dismutase activities were significantly (P < 0.05) higher and lipid peroxidation values were significantly (P < 0.05) lower in all the nano-Se-treated groups. The Se levels in the liver, breast muscle, kidney, brain, and gizzard were significantly (P < 0.05) increased with increased dietary nano-Se. Histological studies of the liver and kidney in the highest nano-Se-treated groups (T4 and T5) did not show any abnormal changes. It is concluded that supplementation of nano-selenium at 0.15 ppm over and above the basal level improved the performance and protect the birds from summer stress without any adverse effect on the vital organs of chicken.
Collapse
Affiliation(s)
- N R Debata
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - K Sethy
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India.
| | - R K Swain
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S K Mishra
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - N Panda
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S Maity
- Centre Coordinator, GIET University, Raygada, Gunupur, Odisha, India
| |
Collapse
|
6
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Abdel-Moneim AME, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS. Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res 2022; 200:768-779. [PMID: 33674946 DOI: 10.1007/s12011-021-02662-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
This study examined the effects of dietary Spirulina platensis (SP) at levels of 0, 5, and 10 g.kg-1 and selenium nanoparticles (SeNPs) at 0, 0.1, and 0.2 mg.kg-1, individually and in combination, on heat-stressed broiler chickens for 5 weeks. Four hundred fifty one-day-old Ross-308 chicks were allocated to 9 dietary groups with 5 replicates (10 chicks each). The control diet was consisted of corn-soybean-based basal diet. The obtained results displayed a significant increase in final body weight (p = 0.005) and weight gain during the periods from 22 to 35 days (p = 0.002) and 1 to 35 days (p = 0.005) in birds fed supplemented diets compared to those fed control diet, with the highest being in birds fed with both 10 g SP and 0.1 mg SeNPs. Feed conversion ratio was also improved in birds fed supplemented compared to control group. Dietary supplements significantly improved carcass dressing (p < 0.001), carcass yield (p = 0.001) percentages, and blood lipid profile. Blood triiodothyronine was higher (p = 0.005) with all treated diets except that contain 5 g SP compared to the control, with the highest being in birds fed diet contains 5 g SP + 0.2 mg SeNPs. Immunoglobulin subclasses IgG, IgM, and IgA were higher in birds fed supplemented diets compared to the control group. Antibody titers to Newcastle disease, avian influenza, and infectious bursal disease were numerically increased with dietary supplementation compared to the control group. Dietary treatments increased (p < 0.001) glutathione peroxidase and superoxide dismutase (SOD) levels, except diet contains 5 g SP for SOD level and decreased (p < 0.001) malondialdehyde level. It is concluded that dietary inclusion of SP and SeNPs, particularly their combination at levels 5 g SP plus 0.2 mg SeNPs kg-1 and 10 g SP plus 0.1 mg SeNPs kg-1, improved growth performance, carcass yield, immunity, and antioxidant capacity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Noureldeen G Mohamed
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | | | - Nashaat S Ibrahim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| |
Collapse
|
8
|
Rana T. Prospects and future perspectives of selenium nanoparticles: An insight of growth promoter, antioxidant and anti-bacterial potentials in productivity of poultry. J Trace Elem Med Biol 2021; 68:126862. [PMID: 34555772 DOI: 10.1016/j.jtemb.2021.126862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Nanoparticles have been attracted attention in poultry research due to their low toxicity, higher bio-availability, high surface area with sustained drug release. Dietary supplementation with selenium nanoparticles (Se-NPs) plays a regulatory role in maintaining growth performance, feed conversion ratio (FCR), antioxidant defense as well as microbial control. Se-NPs have emerging importance in modulating intestinal health through the maintenance of beneficial microbes (microflora) as well as the production of short-chain fatty acids (SCFA). Se-NPs regulate intrinsic redox status by scavenging free radicals. The antioxidant potentiality of Se-NPs is influenced by the activation of the seleno-enzymes such as thioredoxin reductase and glutathione peroxidase family (GPx) involved in scavenging of Reactive Oxygen Species (ROS). The emerging significance of Se-NPs on antimicrobial activity has been exploited due to their bio-accumulative effects and biocompatibility potentiality in the cellular systems against poultry pathogens. The present review highlights on growth performance, antioxidant defense, and anti-bacterial potentiality of Se-NPs in poultry and also provide insight into its significance in the poultry industry.
Collapse
Affiliation(s)
- Tanmoy Rana
- Department of Veterinary Clinical Complex (V.M.E.J.), West Bengal University of Animal & Fishery Sciences, Kolkata, India(1).
| |
Collapse
|
9
|
Alagawany M, Qattan SYA, Attia YA, El-Saadony MT, Elnesr SS, Mahmoud MA, Madkour M, Abd El-Hack ME, Reda FM. Use of Chemical Nano-Selenium as an Antibacterial and Antifungal Agent in Quail Diets and Its Effect on Growth, Carcasses, Antioxidant, Immunity and Caecal Microbes. Animals (Basel) 2021; 11:3027. [PMID: 34827760 PMCID: PMC8614390 DOI: 10.3390/ani11113027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Nano-minerals are used to enhance mineral bioavailability, which helps improve animal growth and health. The use of chemical nano-selenium (Che-SeNPs) has lately attracted great scientific interest, mainly due to its potential benefits for poultry. The current study was conducted to investigate the impact of the dietary supplementation of Che-SeNPs on the growth performance, carcass traits, blood constituents, antioxidant status, immunity, and gut microbiota of Japanese quails. A total of one week-old 180 Japanese quails were randomly distributed into four equal groups, and each group consisted of 45 unsexed birds with five replications (nine birds each). The first group was fed a basal diet without supplementation (0 g/kg Che-SeNPs), and the second, third, and fourth groups were fed diets containing 0.2, 0.4, and 0.6 g/kg Che-SeNPs, respectively. The results showed that the dietary supplementation of Che-SeNPs significantly (p < 0.0001) increased body weight, body weight gain, and feed conversion ratio, but decreased feed intake (p < 0.0001) compared to the control group. The highest values of growth performance were recorded in the group fed 0.4 g Che-SeNPs g/kg feed. Che-SeNPs levels did not affect the carcass traits, relative organs (except liver), or blood hematology (except platelet count and hemoglobin level) of quails. Plasma total protein, albumin, aspartate amino transferase (AST), and urea values were not affected by dietary Che-SeNPs, but alanine aminotransferase and lactate dehydrogenase values declined. Globulin and creatinine values were linearly increased with the inclusion of Che-SeNPs (0.4 and 0.6 g/kg) in quail diets compared to the control. The supplementation of Che-SeNPs in quail diets significantly improved (p < 0.05) the plasma lipid profile and activities of antioxidant enzymes compared to the control group. Immunoglobulin G values of Che-SeNPs (0.4 and 0.6 g/kg) were higher (p < 0.05) than those in the control group. The groups fed diets supplemented with Che-SeNPs showed lower (p < 0.0001) total bacterial count, total yeast and molds count, Coliform, Escherichia coli, Enterococcus spp., and Salmonella spp. colonization, and higher (p = 0.0003 and 0.0048) lactic acid bacteria counts than those in the control group. In conclusion, Che-SeNPs supplemented up to 0.4 g/kg can improve the performance, lipid profile, antioxidant indices, and immunity, as well as decrease intestinal pathogens in quails during the fattening period (1-5 weeks of age).
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.E.A.E.-H.); (F.M.R.)
| | - Shaza Y. A. Qattan
- Biological Sciences Department, Microbiology, Faculty of Science, King Abdulaziz University, Jeddah 80203, Saudi Arabia;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Mohamed A. Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed E. Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.E.A.E.-H.); (F.M.R.)
| | - Fayiz M. Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.E.A.E.-H.); (F.M.R.)
| |
Collapse
|
10
|
Soltani L, Darbemamieh M. Anti-proliferative, apoptotic potential of synthesized selenium nanoparticles against breast cancer cell line (MCF7). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:926-941. [PMID: 34396908 DOI: 10.1080/15257770.2021.1964526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nano-biotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. The aim of this survey was to evaluate the anticancer activity of synthesized selenium nanoparticles (Se-NPs) against breast cancer cells (MCF-7). The prepared Se-NPs were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). Antioxidant activity of Se-NPs property was studied by radical scavenging (DPPH) assay. The in-vitro cytotoxicity of Se-NPs was evaluated by MTT assay. In addition; the biological assessment (antioxidant and cytotoxicity) of synthesized Se-NPs was examined via molecular docking simulations. Synthesis of Se-NPs was characterized by several studies such as UV-absorbance, showing peak values in the range of 268 nm. Nanoparticle sizes of the nanoparticles are confirmed by dynamic light scattering analysis, indicating that average size is about 203 nm. The quantity of selenium in Se-NPs is 90.15% by weight, as confirmed by EDX. Synthesized Se-NPs have anti-proliferative effects on MCF-7 cell lines. Cytotoxicity and apoptotic potential assays exhibited a dose-dependent effect against MCF-7 cells using an MTT assay. Like anti-cancer activity, anti-oxidant activity of Se-NPs was dose-dependent. Findings showed that the Se-NPs complexes have the highest inhibitory effect against cytotoxic and antioxidant receptors. Results of this study demonstrated that Se-NPs had strong potential to scavenge free radicals and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Maryam Darbemamieh
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
11
|
Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. BIOLOGY 2020; 9:biology9110411. [PMID: 33238534 PMCID: PMC7700346 DOI: 10.3390/biology9110411] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Chickens are raised with the assistance of the regular use of antibiotics, not only for the prevention and treatment of diseases but, also, for body growth. Overuse and misuse of antibiotics in animals are contributing to the rising threat of antibiotic resistance. Therefore, antibiotic-free broiler meat production is becoming increasingly popular worldwide to meet consumer demand. However, numerous challenges need to be overcome in producing antibiotic-free broiler meat by adopting suitable strategies regarding food safety and chicken welfare issues. This review focuses on the current scenario of antibiotic use, prospects, and challenges in sustainable antibiotic-free broiler meat production. We also discuss the needs and challenges of antibiotic alternatives and provide a future perspective on antibiotic-free broiler meat production. Abstract Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production.
Collapse
|
12
|
Alian HA, Samy HM, Ibrahim MT, Mahmoud MMA. Nanoselenium effect on growth performance, carcass traits, antioxidant activity, and immune status of broilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38607-38616. [PMID: 32623680 DOI: 10.1007/s11356-020-09952-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 05/21/2023]
Abstract
A 42-day comparative study was conducted to assess the impact of nanoselenium to other selenium sources on performance, antioxidant activity, immunity, and carcass traits in broilers. Ross 308 (n = 156) 1-day-old broiler chicks, with average initial body weight of 45.80 ± 0.35, were randomly allocated to 4 groups. The first group (G1) fed the basal diet without selenium supplementation. The second group (G2), the third group (G3), and the fourth group (G4) were supplemented with dietary selenium at the level of 0.3 mg kg-1 diet in the form of sodium selenite, seleno-methionine, and nanoselenium, respectively. The results revealed significant improvement on most of the performance parameters of nanoselenium at the level of 0.3 mg kg-1 diet (P < 0.05). Nanoselenium and seleno-methionine achieved the best dressing %, spleen index %, and thymus index %. Concerning to internal organ indices, none of these indices was significantly affected by any selenium sources (P < 0.05). Glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) content were not significantly affected by different selenium sources among all experimental groups. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) showed significant (P < 0.05) decrease in nanoselenium supplemented group compared with other groups. In case of serum IL-10 level, a significant (P < 0.05) increase was reported in nanoselenium supplemented group followed by G3 then G2. There were no statistical differences in the serum alanine transaminase, aspartate transaminase, total protein, albumin concentration, serum creatinine level, and uric acid concentration levels among all experimental groups. It is concluded that nano selenium can be a useful and better source of selenium for broilers.
Collapse
Affiliation(s)
- Heba A Alian
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hayam M Samy
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammed T Ibrahim
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| | - Manal M A Mahmoud
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
13
|
Pardechi A, Tabeidian SA, Habibian M. Comparative assessment of sodium selenite, selenised yeast and nanosized elemental selenium on performance response, immunity and antioxidative function of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1819896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Amirarsalan Pardechi
- Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sayed Ali Tabeidian
- Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmood Habibian
- Young Researchers and Elite Club, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|
14
|
Soliman ES, Mahmoud FF, Fadel MA, Hamad RT. Prophylactic impact of nano-selenium on performance, carcasses quality, and tissues' selenium concentration using reversed-phase high-performance liquid chromatography during microbial challenge in broiler chickens. Vet World 2020; 13:1780-1797. [PMID: 33132589 PMCID: PMC7566255 DOI: 10.14202/vetworld.2020.1780-1797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Aim: Nano-selenium (NS) supplementation contributes in improving productivity, performance, and meat quality while reducing public health concern. Influence of NS and inorganic selenium (Se) water additive on performance, carcass quality, immunoglobulin concentration, intestinal microbiota, Se tissue concentrations, and tissue architecture was studied. Materials and Methods: Two-hundred and sixty 1-day-old Hubbard chicks were randomly grouped into five groups (5×52) and supplemented with 0.5 and 1.0 mL of NS and inorganic Se (100 mg.L−1). G1, G2, G3, and G4 were challenged with Escherichia coli O157: H7 2.6×108 on the 14th day. A total of 2250 samples, including 250 sera, 250 intestinal swabs, and 1500 organ and tissue samples as liver, spleen, heart, bursa, intestine, and breast muscles, and 250 eviscerated carcasses were collected. Results: The results revealed a highly significant increase (p<0.01) in live body weights, weight gains, performance indices, carcasses, and organs weights, whereas immunoglobulin G and M concentrations in broilers treated with 0.5 and 1.0 mL NS, respectively, synchronized reveal a highly significant decline (p<0.01) in total bacterial and Enterobacteriaceae counts of intestinal swabs and breast muscles, final pH24, and drip loss in broilers treated with 0.5 and 1.0 mL NS, respectively. Meanwhile, water holding capacity revealed no significant differences between all groups. Reversed-phase high-performance liquid chromatography examination revealed the earlier disappearance of NS residues than inorganic Se from the broiler’s liver and muscles. Histopathological photomicrographs of the liver, spleen, bursa of Fabricius, and intestine, as well as, the immunohistochemistry of intestinal sections revealed superior tissue architecture in broilers treated with NS contrary to inorganic Se. Conclusion: The study showed significant stimulation actions of NS on performance, immunity, carcass and meat quality, intestinal and muscles’ bacterial load as well as short withdrawal period and nearly normal cellular architecture compared to inorganic Se.
Collapse
Affiliation(s)
- Essam S Soliman
- Department of Animal Hygiene, Zoonosis and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Fadwa F Mahmoud
- Food Hygiene and Microbiology, Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Ismailia 41511, Egypt
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Chemistry and Food Deficiency Department, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Rania T Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Al Minufya 33511, Egypt
| |
Collapse
|
15
|
Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, Syed SF, Soomro J, Somroo F, Liu J. Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1789535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- F. Nabi
- College of Animal Science, Southwest University, Rongchang, Chongqing, China
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - M. A. Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - F. Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - M. Umar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - N. Rajput
- Department of Poultry Husbandry, Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University, Tandojam, Pakistan
| | - M. Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - S. F. Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - J. Soomro
- Department of Veterinary Physiology & Biochemistry, Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University, Tandojam, Pakistan
| | - F. Somroo
- Department of Veterinary Parasitology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - J. Liu
- College of Animal Science, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
16
|
Matuszewski A, Łukasiewicz M, Niemiec J. Calcium and phosphorus and their nanoparticle forms in poultry nutrition. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1746221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Arkadiusz Matuszewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Monika Łukasiewicz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Jan Niemiec
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| |
Collapse
|
17
|
Ibrahim N, Sabic E, Wakwak M, El-Wardany I, El-Homosany Y, El-Deen Mohammad N. In-ovo and dietary supplementation of selenium nano-particles influence physiological responses, immunological status and performance of broiler chicks. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/118209/2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Sci Rep 2020; 10:510. [PMID: 31949299 PMCID: PMC6965607 DOI: 10.1038/s41598-019-57333-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/28/2019] [Indexed: 02/01/2023] Open
Abstract
In the light of promising potency of selenium nanoparticles in biomedical applications, this is the first study to report the synergistic antibacterial activity of these nanoparticles and lysozyme. The nanohybrid system was prepared with various concentrations of each component. Resistance of Escherichia coli and Staphylococcus aureus was compared in the presence of individual Nano and Bio counterparts as well as the nanohybrid system. Upon interaction of SeNPs with Lysozyme, the nanohybrid system efficiently enhanced the antibacterial activity compared to the protein. Therefore, SeNPs play an important role in inhibition of bacterial growth at very low concentrations of protein; whereas very high amount of the protein is required to inhibit bacterial growth individually. On the other hand, lysozyme has also played a vital role in antibacterial property of SeNPs, inducing 100% inhibition at very low concentration of each component. Hence, presence of both nano and bio counterparts induced vital interplay in the Nanohybrid system. The aged samples also presented good stability of SeNPs both as the intact and complex form. Results of this effort highlight design of nanohybrid systems with synergistic antibacterial properties to overcome the emerging antibiotic resistance as well as to define fruitful applications in biomedicine and food safety.
Collapse
|
19
|
Aslam S, Shukat R, Khan MI, Shahid M. Effect of Dietary Supplementation of Bioactive Peptides on Antioxidant Potential of Broiler Breast Meat and Physicochemical Characteristics of Nuggets. Food Sci Anim Resour 2020; 40:55-73. [PMID: 31970331 PMCID: PMC6957447 DOI: 10.5851/kosfa.2019.e82] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023] Open
Abstract
Poultry meat is generally exposed to quality deterioration due to lipid oxidation during storage. Oxidative stability of meat can be increased by feed supplementation. Aim of the current study was to investigate the effect of dietary supplementation of fish waste derived bioactive peptides on antioxidant potential of broiler breast meat and physico-chemical characteristics and quality parameters of nuggets prepared from breast meat. 180 broiler birds (six groups of 30 birds) were purchased. Each group was given different concentrations of bioactive peptides i.e. 0, 50, 100, 150, 200, and 250 mg/kg feed. After completion of six weeks birds were slaughtered and breast meat was stored at -18°C for six months. Nuggets were prepared and stored at -18°C for 45 days. Meat samples were analyzed for antioxidant activity [total phenolic contents (TPC), DPPH• scavenging activity, and ferric reducing antioxidant power] and lipid oxidation assay at regular intervals of 1, 2, 3, 4, 5, and 6 months while nuggets were analyzed for quality (pH, color, texture and water holding capacity) parameters after regular interval of 15 days. A significant (p<0.05) effect of feed supplementation was observed on antioxidant status such as TPC, DPPH• scavenging activity, and FRAP of broiler breast meat. Dietary interventions of bioactive peptides significantly (p<0.05) delayed lipid oxidation of breast meat than control. All the quality parameters were also significantly affected due to dietary bioactive peptides and storage duration. Thus, dietary interventions of bioactive peptides can increase the antioxidant and shelf stability of broiler breast meat and nuggets.
Collapse
Affiliation(s)
- Sadia Aslam
- National Institute of Food Science and
Technology, Faculty of Food, Nutrition and Home Sciences, University of
Agriculture Faisalabad, Pakistan
| | - Rizwan Shukat
- National Institute of Food Science and
Technology, Faculty of Food, Nutrition and Home Sciences, University of
Agriculture Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and
Technology, Faculty of Food, Nutrition and Home Sciences, University of
Agriculture Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of
Sciences, University of Agriculture, Faisalabad
Pakistan
| |
Collapse
|
20
|
Effect of Dietary Modulation of Selenium Form and Level on Performance, Tissue Retention, Quality of Frozen Stored Meat and Gene Expression of Antioxidant Status in Ross Broiler Chickens. Animals (Basel) 2019; 9:ani9060342. [PMID: 31212705 PMCID: PMC6617058 DOI: 10.3390/ani9060342] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although the importance of usage of selenium as essential trace element in poultry production has been proven, the best source and level has not been fully addressed yet. Three different dietary selenium forms with three different levels were chosen to be added in broiler diet. Met-Se or nano-Se up to 0.6 mg/kg increased their performance and was more efficiently retained in the body than SeS. Frozen stored meat quality was improved in a dose-dependent manner especially with both Met-Se and nano-Se. Nano-Se was more potent than Met-Se, which in turn was more potent than inorganic Se against oxidative stress, which improved the quality of meat under frozen conditions. Abstract This study compares between different selenium forms (sodium selenite; SeS, selenomethionine; Met-Se or nano-Se) and levels on growth performance, Se retention, antioxidative potential of fresh and frozen meat, and genes related to oxidative stress in Ross broilers. Birds (n = 450) were randomly divided into nine experimental groups with five replicates in each and were fed diets supplemented with 0.3, 0.45, and 0.6 mg Se/kg as (SeS, Met-Se), or nano-Se. For overall growth performance, dietary inclusion of Met-Se or nano-Se significantly increased (p < 0.05) body weight gain and improved the feed conversion ratio of Ross broiler chicks at the level of 0.45 and 0.6 mg/kg when compared with the group fed the same level of SeS. Se sources and levels significantly affected (p < 0.05) its concentrations in breast muscle, liver, and serum. Moreover, Se retention in muscle was higher (p < 0.05) after feeding of broiler chicks on a diet supplemented with Met-Se or nano-Se compared to the SeS group, especially at 0.6 mg/kg. Additionally, higher dietary levels from Met-Se or nano-Se significantly reduced oxidative changes in breast and thigh meat in the fresh state and after a four-week storage period and increased muscular pH after 24 h of slaughter. Also, broiler’s meat in the Met-Se and nano-Se groups showed cooking loss and lower drip compared to the SeS group (p < 0.05). In the liver, the mRNA expression levels of glutathione peroxidase, superoxide dismutase, and catalase were elevated by increasing dietary Se levels from Met-Se and nano-Se groups up to 0.6 mg/kg when compared with SeS. Therefore, dietary supplementation with 0.6 mg/kg Met-Se and nano-Se improved growth performance and were more efficiently retained than with SeS. Both sources of selenium (Met-Se and nano-Se) downregulated the oxidation processes of meat during the first four weeks of frozen storage, especially in thigh meat, compared with an inorganic source. Finally, dietary supplementation of Met-Se and nano-Se produced acceptable Se levels in chicken meat offered for consumers.
Collapse
|
21
|
Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H. Nanoselenium Supplementation of Heat-Stressed Broilers: Effects on Performance, Carcass Characteristics, Blood Metabolites, Immune Response, Antioxidant Status, and Jejunal Morphology. Biol Trace Elem Res 2017; 178:105-116. [PMID: 27878513 DOI: 10.1007/s12011-016-0899-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
An experiment was conducted to investigate the effects of dietary nanoselenium supplementation at 0, 0.6 and 1.2 mg/kg of diet on growth performance, serum biochemical parameters, immune response, antioxidant capacity, and jejunal morphology of 29-d-old male broilers subjected to heat stress at 37 ± 1°C for 14 d. Broilers were fed for 42 d on the experimental diets. The results showed that nanoselenium supplementation had no effect on growth performance, but it supplementation at the rate of 1.2 mg/kg diet decreased the serum concentration of cholesterol prior to the heat exposure. Further, dietary nanoselenium supplementation linearly increased the high-density lipoprotein cholesterol concentration, while linearly decreased those of low-density lipoprotein cholesterol and aspartate aminotransferase in the serum before applying heat stress. Compared with thermoneutral temperature, heat stress reduced body mass gain, feed intake, percentages of carcass, breast, leg, abdominal fat, bursa of Fabricius, thymus, antibody response against sheep red blood cells, serum concentration of protein, erythrocyte activities of glutathione peroxidase and superoxide dismutase, jejunal villus height, and villus height to crypt depth ratio, while increased feed conversion ratio, percentages of liver, gizzard, pancreas, gallbladder, heart, and the concentrations of aspartate aminotransferase and malondialdehyde. Dietary supplementation of nanoselenium linearly reduced the abdominal fat and liver percentages, while linearly increased the activity of glutathione peroxidase and villus height in heat-stressed broilers. Furthermore, the lower level of nanoselenium decreased the percentages of gizzard and heart in broilers under heat stress. The diet supplemented with 1.2 mg/kg nanoselenium improved feed conversion ratio and increased antibody response against sheep red blood cells, activity of superoxide dismutase, and villus height to crypt depth ratio, but decreased the serum concentrations of cholesterol, low-density lipoprotein cholesterol, and malondialdehyde in heat-stressed broilers. The results suggest that supplemental nanoselenium improved growth performance, internal organs health, immune response, and jejunal morphology by alleviating the oxidative stress induced by heat stress.
Collapse
Affiliation(s)
- Morteza Safdari-Rostamabad
- Department of Animal Science, Faculty of Agriculture, University of Birjand, PO Box 91775-163, Birjand, Iran
| | | | - Ali Hossein Perai
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, PO Box 6715685418, Kermanshah, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, PO Box 91775-163, Birjand, Iran
| |
Collapse
|
22
|
Belluco S, Gallocchio F, Losasso C, Ricci A. State of art of nanotechnology applications in the meat chain: A qualitative synthesis. Crit Rev Food Sci Nutr 2017; 58:1084-1096. [PMID: 27736191 DOI: 10.1080/10408398.2016.1237468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanotechnology is a promising area in industry with a broad range of applications including in the agri-food sector. Several studies have investigated the potential benefits deriving from use of nanomaterials in the context of the whole food chain drawing scenarios of benefits but also potential for concerns. Among the agri-food sector, animal production has potential for nanomaterial application but also for safety concerns due to the possibility of nanomaterial accumulation along the farm-to-fork path. Scope and Approach: The aim of this work was to define the state of the art of nanomaterial applications in the animal production sector by assessing data belonging to recently publishes studies. To do this, a qualitative synthesis approach was applied to build a fit-for-purpose framework and to summarise relevant themes in the context of effectiveness, feasibility and health concerns. Key findings and conclusions: Nanomaterials have potential for use in a wide range of applications from feed production and farming to food packaging, including several detection tools designed for the benefit of consumer protection. The current high degree of variability in nanomaterials tested and in study designs impairs external validation of research results. Further research is required to clearly define which safe nanomaterial applications have the potential to reach the market.
Collapse
Affiliation(s)
- Simone Belluco
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy.,b Department of Animal Medicine, Production and Health , University of Padua , Legnaro (PD) , Italy
| | - Federica Gallocchio
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Carmen Losasso
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Antonia Ricci
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| |
Collapse
|
23
|
Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
|