1
|
Dagogo-Jack S, Asuzu P, Wan J, Grambergs R, Stentz F, Mandal N. Plasma Ceramides and Other Sphingolipids in Relation to Incident Prediabetes in a Longitudinal Biracial Cohort. J Clin Endocrinol Metab 2024; 109:2530-2540. [PMID: 38501230 PMCID: PMC11403313 DOI: 10.1210/clinem/dgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Sphingolipids are linked to the pathogenesis of type 2 diabetes. OBJECTIVE To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort study, a 5-year follow-up study. SETTING Academic health center. PARTICIPANTS Normoglycemic adults enrolled in the Pathobiology of Prediabetes in a Biracial Cohort study. Assessments included oral glucose tolerance test, insulin sensitivity, and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with nonprogressors. INTERVENTIONS We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using liquid chromatography/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 years, body mass index 30.1 ± 5.78 kg/m2, fasting plasma glucose 92.7 ± 5.84 mg/dL, and 2-hour plasma glucose 121 ± 23.3 mg/dL. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR, 2.73 [95% CI, 1.172-4.408], P = .015) and ceramide C18:0/C18:1 (OR, 1.236 [95% CI, 1.042-1.466], P = .015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, body mass index, fasting plasma glucose, 2-hour plasma glucose, insulin sensitivity, and insulin secretion. CONCLUSION We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard Grambergs
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
2
|
Yuan Y, Zhao J, Liu Q, Liu Y, Liu Y, Tian X, Qiao W, Zhao Y, Liu Y, Chen L. Human milk sphingomyelin: Function, metabolism, composition and mimicking. Food Chem 2024; 447:138991. [PMID: 38520905 DOI: 10.1016/j.foodchem.2024.138991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Human milk, which contains various nutrients, is the "gold standard" for infant nutrition. Healthy human milk meets all the nutritional needs of early infant development. Polar lipids mainly exist in the milk fat globule membrane, accounting for approximately 1-2% of human milk lipids; sphingomyelin (SM) accounts for approximately 21-24% of polar lipids. SM plays an important role in promoting the development of the brain and nervous system, regulating intestinal flora, and improving skin barriers. Though SM could be synthesized de novo, SM nutrition from dietary is also important for infants. The content and composition of SM in human milk has been reported, however, the molecular mechanisms of nutritional functions of SM for infants required further research. This review summarizes the functional mechanisms, metabolic pathways, and compositional, influencing factors, and mimicking of SM in human milk, and highlights the challenges of improving maternal and infant early/long-term nutrition.
Collapse
Affiliation(s)
- Yuying Yuan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaoyan Tian
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanyan Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
3
|
Dai H, Hariwitonang J, Fujiyama N, Moriguchi C, Hirano Y, Ebara F, Inaba S, Kondo F, Kitagaki H. A Decrease in the Hardness of Feces with Added Glucosylceramide Extracted from Koji In Vitro-A Working Hypothesis of Health Benefits of Dietary Glucosylceramide. Life (Basel) 2024; 14:739. [PMID: 38929722 PMCID: PMC11204706 DOI: 10.3390/life14060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Skin barrier function, prevent colon cancer, head and neck cancer, and decrease liver cholesterol. However, the mechanism of action has not yet been elucidated. In this study, we propose a new working hypothesis regarding the health benefits and functions of glucosylceramide: decreased fecal hardness. This hypothesis was verified using an in vitro hardness test. The hardness of feces supplemented with glucosylceramide was significantly lower than that of the control. Based on these results, a new working hypothesis of dietary glucosylceramide was conceived: glucosylceramide passes through the small intestine, interacts with intestinal bacteria, increases the tolerance of these bacteria toward secondary bile acids, and decreases the hardness of feces, and these factors synergistically result in in vivo effects. This hypothesis forms the basis for further studies on the health benefits and functions of dietary glucosylceramides.
Collapse
Affiliation(s)
- Huanghuang Dai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
| | - Johan Hariwitonang
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Nao Fujiyama
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Chihiro Moriguchi
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Yuto Hirano
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Fumio Ebara
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Shigeki Inaba
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Fumiyoshi Kondo
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Hiroshi Kitagaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| |
Collapse
|
4
|
Calzada C, Cheillan D, Ritsch N, Vors C, Durand A, Pesenti S, Pettazzoni M, Meugnier E, Michalski MC, Penhoat A. Intestinal absorption of sphingosine: new insights on generated ceramide species using stable isotope tracing in vitro. J Lipid Res 2024; 65:100557. [PMID: 38719152 PMCID: PMC11179623 DOI: 10.1016/j.jlr.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/06/2024] Open
Abstract
Dietary sphingomyelin (SM) has been reported to favorably modulate postprandial lipemia. Mechanisms underlying these beneficial effects on cardiovascular risk markers are not fully elucidated. Rodent studies showed that tritiated SM was hydrolyzed in the intestinal lumen into ceramides (Cer) and further to sphingosine (SPH) and fatty acids (FA) that were absorbed by the intestine. Our objective was to investigate the uptake and metabolism of SPH and/or tricosanoic acid (C23:0), the main FA of milk SM, as well as lipid secretion in Caco-2/TC7 cells cultured on semipermeable inserts. Mixed micelles (MM) consisting of different digested lipids and taurocholate were prepared without or with SPH, SPH and C23:0 (SPH+C23:0), or C23:0. Triglycerides (TG) were quantified in the basolateral medium, and sphingolipids were analyzed by tandem mass spectrometry. TG secretion increased 11-fold in all MM-incubated cells compared with lipid-free medium. Apical supply of SPH-enriched MM led to increased concentrations of total Cer in cells, and coaddition of C23:0 in SPH-enriched MM led to a preferential increase of C23:0 Cer and C23:0 SM. Complementary experiments using deuterated SPH demonstrated that SPH-d9 was partly converted to sphingosine-1-phosphate-d9, Cer-d9, and SM-d9 within cells incubated with SPH-enriched MM. A few Cer-d9 (2% of added SPH-d9) was recovered in the basolateral medium of (MM+SPH)-incubated cells, especially C23:0 Cer-d9 in (MM+SPH+C23:0)-enriched cells. In conclusion, present results indicate that MM enriched with (SPH+C23:0), such as found in postprandial micelles formed after milk SM ingestion, directly impacts sphingolipid endogenous metabolism in enterocytes, resulting in the secretion of TG-rich particles enriched with C23:0 Cer.
Collapse
Affiliation(s)
- Catherine Calzada
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - David Cheillan
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France; Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Nina Ritsch
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Cécile Vors
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Annie Durand
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Sandra Pesenti
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Magali Pettazzoni
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Marie-Caroline Michalski
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Armelle Penhoat
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France.
| |
Collapse
|
5
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
7
|
Ahn Y, Kim MG, Choi YJ, Lee SJ, Suh HJ, Jo K. Photoprotective effects of sphingomyelin-containing milk phospholipids in ultraviolet B-irradiated hairless mice by suppressing nuclear factor-κB expression. J Dairy Sci 2022; 105:1929-1939. [PMID: 34998560 DOI: 10.3168/jds.2021-21192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Ceramide-containing phospholipids improve skin hydration and barrier function and are ideal for use in skin care products. In this study, we evaluated the photoprotective effect of milk phospholipids on the skin condition of UVB-irradiated hairless mice. Skin parameters were assessed following oral administration of milk phospholipids. The UVB irradiation induced photoaging in mice. The animals were divided into 5 groups: a control group (oral administration of saline with no UBV irradiation), UVB group (oral administration of saline with UVB irradiation), and 3 UVB irradiation groups receiving the milk phospholipids at 3 different concentrations of oral administration, 50 mg/kg (ML group), 100 mg/kg (MM group), and 150 mg/kg (MH group), for 8 wk. An increase in skin hydration and transepidermal water loss were improved in the 150 mg/kg of milk phospholipid-administered group. Hematoxylin and eosin staining revealed a decrease in epidermal thickness in the milk phospholipid-administered groups (50, 100, and 150 mg/kg of body weight). In particular, the 100 and 150 mg/kg groups showed significant changes in the area, length, and depth of the wrinkles compared with the UVB group. Moreover, the gene expression of matrix metalloproteins was attenuated, and that of proinflammatory cytokines, especially tumor necrosis factor-α, was significantly reduced in the milk phospholipid-administered groups than in the UVB group. The reduced ceramide and increased sphingosine-1-phosphate levels in the skin tissue due to UVB exposure were restored to levels similar to those of the control group following milk phospholipid administration. These results were confirmed to be due to the downregulation of protein expression of nuclear factor kappa-B (NF-κB) and phosphorylated IκB-α (inhibitor of κB α). Collectively, oral administration of milk phospholipids improves skin health through a synergistic effect on photoprotective activity.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Min G Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong J Choi
- Solus Advanced Materials Co., Ltd., Yongin 16858, Republic of Korea
| | - Sang J Lee
- Holistic Bio Co., Ltd., Seongnam 13494, Republic of Korea
| | - Hyung J Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
9
|
Abstract
Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.
Collapse
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | | | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
10
|
Jiang C, Cheong LZ, Zhang X, Ali AH, Jin Q, Wei W, Wang X. Dietary Sphingomyelin Metabolism and Roles in Gut Health and Cognitive Development. Adv Nutr 2021; 13:S2161-8313(22)00073-4. [PMID: 34549256 PMCID: PMC8970835 DOI: 10.1093/advances/nmab117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources, and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However, there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood. Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term functions on infants and children are required.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdelmoneim H Ali
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- Address correspondence to WW (e-mail: )
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Folz JS, Shalon D, Fiehn O. Metabolomics analysis of time-series human small intestine lumen samples collected in vivo. Food Funct 2021; 12:9405-9415. [PMID: 34606553 DOI: 10.1039/d1fo01574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.
Collapse
Affiliation(s)
- Jacob S Folz
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | | | - Oliver Fiehn
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
14
|
Le Barz M, Vors C, Combe E, Joumard-Cubizolles L, Lecomte M, Joffre F, Trauchessec M, Pesenti S, Loizon E, Breyton AE, Meugnier E, Bertrand K, Drai J, Robert C, Durand A, Cuerq C, Gaborit P, Leconte N, Bernalier-Donadille A, Cotte E, Laville M, Lambert-Porcheron S, Ouchchane L, Vidal H, Malpuech-Brugère C, Cheillan D, Michalski MC. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 2021; 6:146161. [PMID: 33857018 PMCID: PMC8262315 DOI: 10.1172/jci.insight.146161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown. METHODS In a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake. RESULTS Milk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut. CONCLUSION Milk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL. TRIAL REGISTRATION ClinicalTrials.gov, NCT02099032, NCT02146339. FUNDING ANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Cécile Vors
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Florent Joffre
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Michèle Trauchessec
- Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Anne-Esther Breyton
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Karène Bertrand
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Chloé Robert
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Annie Durand
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Charlotte Cuerq
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, Avenue François Mitterrand, BP49, 17700, Surgères, France.,ENILIA ENSMIC, Avenue François Mitterrand, 17700, Surgères, France
| | - Nadine Leconte
- INRAE, Institut Agro, STLO (Science et Technologie du Lait et de l'Œuf), 35042, Rennes, France
| | | | - Eddy Cotte
- Hospices Civils de Lyon, 69000, Lyon, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de chirurgie digestive, 69310, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Martine Laville
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Stéphanie Lambert-Porcheron
- TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Hubert Vidal
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - David Cheillan
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| |
Collapse
|
15
|
Dei Cas M, Paroni R, Signorelli P, Mirarchi A, Cerquiglini L, Troiani S, Cataldi S, Codini M, Beccari T, Ghidoni R, Albi E. Human breast milk as source of sphingolipids for newborns: comparison with infant formulas and commercial cow's milk. J Transl Med 2020; 18:481. [PMID: 33317546 PMCID: PMC7734711 DOI: 10.1186/s12967-020-02641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past two decades, sphingolipids have become increasingly appreciated as bioactive molecules playing important roles in a wide array of pathophysiology mechanisms. Despite advances in the field, sphingolipids as nutrients remain little explored. Today the research is starting to move towards the study of the sphingomyelin content in human breast milk, recommended for feeding infants. Methods In the present study, we performed a lipidomic analysis in human breast milk in relation with maternal diet during pregnancy, in infant formulas, and in commercial whole and semi-skimmed milks for adults. Mediterranean, carnivorous and vegetarian diets were considered. Results The results showed that total sphingomyelin, ceramide and dihydroceramide species are independent on the diet. Interestingly, the milk sphingolipid composition is species-specific. In fact, infant formulas and commercial milks for adults have a lower level of total sphingomyelin and ceramide content than human breast milk with very different composition of each sphingolipid species. Conclusions We conclude that human breast milk is a better source of sphingolipids than infant formulas for baby nutrition with potential implications for the brain development and cognitive functions.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, Milan, 20142, Italy
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, Milan, 20142, Italy
| | - Paola Signorelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, 20142, Italy
| | - Alessandra Mirarchi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06126, Italy
| | - Laura Cerquiglini
- Struttura Complessa di Neonatologia e Terapia Intensiva Neonatale- Azienda Ospedaliera Santa Maria della Misericordia, Perugia, 06126, Italy
| | - Stefania Troiani
- Struttura Complessa di Neonatologia e Terapia Intensiva Neonatale- Azienda Ospedaliera Santa Maria della Misericordia, Perugia, 06126, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06126, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06126, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06126, Italy
| | - Riccardo Ghidoni
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, Università degli Studi di Milano, Milan, 20142, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06126, Italy.
| |
Collapse
|
16
|
Amirani E, Milajerdi A, Reiner Ž, Mirzaei H, Mansournia MA, Asemi Z. Effects of whey protein on glycemic control and serum lipoproteins in patients with metabolic syndrome and related conditions: a systematic review and meta-analysis of randomized controlled clinical trials. Lipids Health Dis 2020; 19:209. [PMID: 32958070 PMCID: PMC7504833 DOI: 10.1186/s12944-020-01384-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background This systematic review and meta-analysis aimed to assess the effects of whey protein on serum lipoproteins and glycemic status in patients with metabolic syndrome (MetS) and related disorders. Methods Online databases, such as Web of Science, Cochrane Library, PubMed and Scopus were systematically searched by two independent authors from inception until 30th April 2020 for English randomized clinical trials investigating the efficacy of whey protein administration in subjects with Mets or related conditions on the parameters of glycemic and lipid control compared to certain control. In order to evaluate the included studies’ methodological quality, Cochrane Collaboration risk of bias tool was applied. Using Cochrane’s Q test and I-square (I2) statistic, the included trials’ heterogeneity was also examined. Using a random-effects model, data were pooled, and weighted mean difference (WMD) was considered as the overall effect size. Results Twenty-two studies were selected to be included in this meta-analysis. Consumption of whey protein resulted in significant reduction of HbA1c (WMD: -0.15; 95% CI: − 0.29, − 0.01) insulin (WMD: -0.94; 95% CI: − 1.68, − 0.21) and homeostasis model assessment-estimated insulin resistance (HOMA-IR) (WMD: -0.20; 95% CI: − 0.36, − 0.05). A significant reduction in triglycerides levels (WMD: -17.12; 95% CI: − 26.52, − 7.72), total cholesterol (WMD: -10.88; 95% CI -18.60, − 3.17), LDL-cholesterol levels (WMD: -8.47 95% CI: − 16.59, − 0.36) and total cholesterol/HDL-cholesterol ratio (WMD: -0.26; 95% CI: − 0.41, − 0.10) was found as well. Conclusions This meta-analysis suggests that supplementation with whey protein had beneficial effect on several indicators of glycemic control and lipid parameters in patients with MetS and related conditions.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Effects of biscuit fortified with whey protein isolate and wheat bran on weight loss, energy intake, appetite score, and appetite regulating hormones among overweight or obese adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Lee K, Kim S, Kim A, Suh H, Hong K. Sphingolipid identification and skin barrier recovery capacity of a milk sphingolipid‐enriched fraction (MSEF) from buttermilk powder. Int J Cosmet Sci 2020; 42:270-276. [DOI: 10.1111/ics.12612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Affiliation(s)
- K. Lee
- Department of Product Development Doosan Corporation Solus Suwon 16229Republic of Korea
- Department of Integrated Biomedical and Life Sciences Graduate School Korea University Seoul 02841Republic of Korea
| | - S. Kim
- Department of Product Development Doosan Corporation Solus Suwon 16229Republic of Korea
| | - A. Kim
- Department of Product Development Doosan Corporation Solus Suwon 16229Republic of Korea
| | - H.J. Suh
- Department of Integrated Biomedical and Life Sciences Graduate School Korea University Seoul 02841Republic of Korea
- BK21 Plus College of Health Science Korea University Seoul 02841Republic of Korea
| | - K.‐B. Hong
- BK21 Plus College of Health Science Korea University Seoul 02841Republic of Korea
| |
Collapse
|
19
|
Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients 2020; 12:E1001. [PMID: 32260440 PMCID: PMC7230917 DOI: 10.3390/nu12041001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Milk fat is encased in a polar lipid-containing tri-layer milk fat globule membrane (MFGM), composed of phospholipids (PLs) and sphingolipids (SLs). Milk PLs and SLs comprise about 1% of total milk lipids. The surfactant properties of PLs are important for dairy products; however, dairy products vary considerably in their polar lipid to total lipid content due to the existence of dairy foods with different fat content. Recent basic science and clinical research examining food sources and health effects of milk polar lipids suggest they may beneficially influence dysfunctional lipid metabolism, gut dysbiosis, inflammation, cardiovascular disease, gut health, and neurodevelopment. However, more research is warranted in clinical studies to confirm these effects in humans. Overall, there are a number of potential effects of consuming milk polar lipids, and they should be considered as food matrix factors that may directly confer health benefits and/or impact effects of other dietary lipids, with implications for full-fat vs. reduced-fat dairy.
Collapse
Affiliation(s)
- Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | - Sarah Wen Warykas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| |
Collapse
|
20
|
Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, Raynal K, Joffre F, Meiller L, Le Barz M, Gaborit P, Caille A, Sothier M, Domingues-Faria C, Blot A, Wauquier A, Blond E, Sauvinet V, Gésan-Guiziou G, Bodin JP, Moulin P, Cheillan D, Vidal H, Morio B, Cotte E, Morel-Laporte F, Laville M, Bernalier-Donadille A, Lambert-Porcheron S, Malpuech-Brugère C, Michalski MC. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut 2020; 69:487-501. [PMID: 31189655 PMCID: PMC7034342 DOI: 10.1136/gutjnl-2018-318155] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER NCT02099032 and NCT02146339; Results.
Collapse
Affiliation(s)
- Cécile Vors
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Ketsia Raynal
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | | | - Laure Meiller
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | - Aurélie Caille
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Monique Sothier
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Carla Domingues-Faria
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Adeline Blot
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Aurélie Wauquier
- Université Clermont Auvergne, INRA, UMR 454, MEDIS, 63000, Clermont-Ferrand, France
| | - Emilie Blond
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Valérie Sauvinet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Geneviève Gésan-Guiziou
- STLO, Science et Technologie du Lait et de l’Œuf, INRA, AGROCAMPUS OUEST, 35000, Rennes, France
| | | | - Philippe Moulin
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Fédération d’Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, 69500, Bron, France
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500, Bron, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Béatrice Morio
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Eddy Cotte
- Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
- Centre Hospitalier Lyon Sud, Service de Chirurgie Digestive, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | | | - Martine Laville
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | | | - Stéphanie Lambert-Porcheron
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
- Hospices Civils de Lyon, 69000, Lyon, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| |
Collapse
|
21
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
22
|
Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 2019; 6:ENEURO.0421-18.2019. [PMID: 31324675 PMCID: PMC6709232 DOI: 10.1523/eneuro.0421-18.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023] Open
Abstract
Sphingomyelin (SM) supports brain myelination, a process closely associated with cognitive maturation. The presence of SM in breast milk suggests a role in infant nutrition; however, little is known about SM contribution to healthy cognitive development. We investigated the link between early life dietary SM, later cognitive development and myelination using an exploratory observational study of neurotypical children. SM levels were quantified in infant nutrition products fed in the first three months of life and associated with myelin content (brain MRI) as well as cognitive development (Mullen scales of early learning; MSEL). Higher levels of SM were significantly associated with higher rates of change in verbal development in the first two years of life (r = 0.65, p < 0.001), as well as, higher levels of myelin content at 12–24 months, delayed onset and/or more prolonged rates of myelination in different brain areas. Second, we explored mechanisms of action using in vitro models (Sprague Dawley rat pups). In vitro data showed SM treatment resulted in increased proliferation [p = 0.0133 and p = 0.0434 at 4 and 10 d in vitro (DIV)], maturation (p = 0.467 at 4 d DIV) and differentiation (p = 0.0123 and p = 0.0369 at 4 and 10 DIV) of oligodendrocyte precursor cells (OPCs), as well as increased axon myelination (p = 0.0005 at 32 DIV). These findings indicate an impact of dietary SM on cognitive development in healthy children, potentially modulated by oligodendrocytes and increased axon myelination. Future research should include randomized controlled trials to substantiate efficacy of SM for cognitive benefits together with preclinical studies examining SM bioavailability and brain uptake.
Collapse
|
23
|
Nilsson Å, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316:G425-G445. [PMID: 30576217 DOI: 10.1152/ajpgi.00320.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The digestion of choline phospholipids is important for choline homeostasis, lipid signaling, postprandial lipid and energy metabolism, and interaction with intestinal bacteria. The digestion is mediated by the combined action of pancreatic and mucosal enzymes. In the proximal small intestine, hydrolysis of phosphatidylcholine (PC) to 1-lyso-PC and free fatty acid (FFA) by the pancreatic phospholipase A2 IB coincides with the digestion of the dietary triacylglycerols by lipases, but part of the PC digestion is extended and must be mediated by other enzymes as the jejunoileal brush-border phospholipase B/lipase and mucosal secreted phospholipase A2 X. Absorbed 1-lyso-PC is partitioned in the mucosal cells between degradation and reacylation into chyle PC. Reutilization of choline for hepatic bile PC synthesis, and the reacylation of 1-lyso-PC into chylomicron PC by the lyso-PC-acyl-CoA-acyltransferase 3 are important features of choline recycling and postprandial lipid metabolism. The role of mucosal enzymes is emphasized by sphingomyelin (SM) being sequentially hydrolyzed by brush-border alkaline sphingomyelinase (alk-SMase) and neutral ceramidase to sphingosine and FFA, which are well absorbed. Ceramide and sphingosine-1-phosphate are generated and are both metabolic intermediates and important lipid messengers. Alk-SMase has anti-inflammatory effects that counteract gut inflammation and tumorigenesis. These may be mediated by multiple mechanisms including generation of sphingolipid metabolites and suppression of autotaxin induction and lyso-phosphatidic acid formation. Here we summarize current knowledge on the roles of pancreatic and mucosal enzymes in PC and SM digestion, and its implications in intestinal and liver diseases, bacterial choline metabolism in the gut, and cholesterol absorption.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clow-linical Sciences Lund, Division of Medicine, Gastroenterology, Lund University , Lund , Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
24
|
Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 2019; 65:128-138. [DOI: 10.1016/j.jnutbio.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
|
25
|
Hauser J, Sultan S, Rytz A, Steiner P, Schneider N. A blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin promotes myelination in an in vitro model. Nutr Neurosci 2019; 23:931-945. [PMID: 30806182 DOI: 10.1080/1028415x.2019.1580918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the development of the central nervous system, oligodendrocytes (OLs) are responsible for myelination, the formation of the myelin sheath around axons. This process enhances neuronal connectivity and supports the maturation of emerging cognitive functions. In humans, recent evidence suggests that early life nutrition may affect myelination. In the present study, we investigated the impact of a blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin, or each of these nutrients individually, on oligodendrocyte precursor cells (OPCs) proliferation and maturation into OLs as well as their myelinating properties. By using an in vitro model, developed to study each step of myelination, we found that the nutrient blend increased the number of OPCs and promoted their differentiation and maturation into OLs, as measured by quantifying A2B5 positive cells, myelin-associated glycoprotein (MAG) positive cells and area, myelin binding protein (MBP) positive cells and area, respectively. Moreover, measuring myelination by quantifying the overlapping signal between neurofilament and either MAG or MBP revealed a positive effect of the blend on OLs myelinating properties. In contrast, treatment with each individual nutrient resulted in differential effects on the various readouts. This work suggests that dietary intake of these nutrients during early life, might be beneficial for myelination.
Collapse
|
26
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Murthy AVR, Guyomarc'h F, Lopez C. Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:635-644. [DOI: 10.1016/j.bbamem.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
|
28
|
Duan RD. Alkaline sphingomyelinase (NPP7) in hepatobiliary diseases: A field that needs to be closely studied. World J Hepatol 2018; 10:246-253. [PMID: 29527260 PMCID: PMC5838443 DOI: 10.4254/wjh.v10.i2.246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidylcholine. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.
Collapse
Affiliation(s)
- Rui-Dong Duan
- Gastroenterology and Nutrition Lab, Department of Clinical Sciences, Lund University, Lund S-22184, Sweden
| |
Collapse
|
29
|
Carlsson ER, Grundtvig JLG, Madsbad S, Fenger M. Changes in Serum Sphingomyelin After Roux-en-Y Gastric Bypass Surgery Are Related to Diabetes Status. Front Endocrinol (Lausanne) 2018; 9:172. [PMID: 29922223 PMCID: PMC5996901 DOI: 10.3389/fendo.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery is superior to lifestyle intervention in reducing weight and lowering glycemia and recently suggested as treatment for type 2 diabetes mellitus. Especially Roux-en-Y gastric bypass (RYGB) has been focus for much research, but still the mechanisms of action are only partly elucidated. We suggest that several mechanisms might be mediated by sphingolipids like sphingomyelin. We measured serum sphingomyelin before and up to 2 years after RYGB surgery in 220 patients, divided before surgery in one non-diabetic subgroup and two diabetic subgroups, one of which contained patients obtaining remission of type 2 diabetes after RYGB, while patients in the other still had diabetes after RYGB. Pre- and postoperative sphingomyelin levels were compared within and between groups. Sphingomyelin levels were lower in diabetic patients than in non-diabetic patients before surgery. Following RYGB, mean sphingomyelin concentration fell significantly in the non-diabetic subgroup and the preoperative difference between patients with and without diabetes disappeared. Changes in diabetic subgroups were not significant. Relative to bodyweight, an increase in sphingomyelin was seen in all subgroups, irrespective of diabetes status. We conclude that RYGB has a strong influence on sphingomyelin metabolism, as seen reflected in changed serum levels. Most significantly, no differences between the two diabetic subgroups were detected after surgery, which might suggest that patients in both groups still are in a "diabetic state" using the non-diabetic subgroup as a reference.
Collapse
Affiliation(s)
- Elin Rebecka Carlsson
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
30
|
Norris GH, Blesso CN. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr Rev 2017; 75:274-285. [PMID: 28383715 DOI: 10.1093/nutrit/nux004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of therapeutic approaches aimed at reducing inflammation, improving lipid metabolism, and preventing nonalcoholic fatty liver disease holds significant potential in the management of obesity-associated disease. In this review, the recent basic science and clinical research examining dietary sphingolipid intake and the prevention of dyslipidemia and nonalcoholic fatty liver disease is summarized. Dietary sphingolipids have been shown to dose-dependently reduce the acute intestinal absorption of cholesterol, triglycerides, and fatty acids in rodents. Overall, studies feeding dietary sphingolipids to rodents typically show reductions in serum lipids. Furthermore, these hypolipidemic effects are also observed in most human studies, although the magnitude of such effects is typically smaller. Dietary sphingolipids also appear useful in preventing hepatic lipid uptake and accumulation and have shown benefits in preventing hepatic steatosis in rodent models. Dietary sphingolipids may affect the gut-liver axis by preventing the translocation of gut bacteria-derived lipopolysaccharide and/or inhibiting its proinflammatory effects. Current evidence from preclinical studies indicates that dietary sphingolipids have lipid-lowering and anti-inflammatory properties, although their potential to prevent human chronic disease has not been fully explored. It will be important to determine if such effects seen in cell and animal models translate to humans. More research is warranted to define how dietary sphingolipids influence lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Gregory H Norris
- G.H. Norris and C.N. Blesso are with the Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher N Blesso
- G.H. Norris and C.N. Blesso are with the Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
31
|
Lordan R, Tsoupras A, Zabetakis I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017; 22:E1964. [PMID: 29135918 PMCID: PMC6150200 DOI: 10.3390/molecules22111964] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022] Open
Abstract
In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
32
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
33
|
Milk Fermented by Lactic Acid Bacteria Enhances the Absorption of Dietary Sphingomyelin in Rats. Lipids 2017; 52:423-431. [PMID: 28357619 DOI: 10.1007/s11745-017-4247-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/19/2017] [Indexed: 01/18/2023]
Abstract
Supplementation with sphingomyelin has been reported to prevent disease and maintain good health. However, intact sphingomyelin and ceramides are poorly absorbed compared with glycerolipids. Therefore, if the bioavailability of dietary sphingomyelin can be increased, supplementation would be more effective at lower doses. The aim of this study in rats was to evaluate the effect of fermented milk on the bioavailability of dietary sphingomyelin in rats. After the rats had fasted for 15 h, test solutions were administrated orally. Blood samples were collected from the tail vein before and 90, 180, 270, and 360 min after administration. Compared with sphingomyelin/milk phospholipids concentrate (MPL) alone, co-ingestion of sphingomyelin/MPL with fermented milk caused an approximate twofold significant increase in serum ceramides containing d16:1 sphingosine with 16:0, 22:0, 23:0 and 24:0 fatty acids, which was derived from the ingested sphingomyelin. While nonfat milk also increased the serum levels of these ceramides, fermented milk was more effective. Co-ingestion of the upper layer of fermented milk or exopolysaccharide concentrate prepared from fermented milk significantly increased serum ceramide levels. X-ray diffraction analysis also showed addition of fermented milk or EPS concentrate to sphingomyelin eliminated the characteristic peak of sphingomyelin. This study demonstrated for the first time that co-ingestion of dietary sphingomyelin and fermented milk, compared with ingestion of dietary sphingomyelin alone, caused a significant increase in the absorption of sphingomyelin. Our results indicate exopolysaccharides in fermented milk may contribute to inhibition of sphingomyelin crystallization, resulting in enhanced absorption of dietary sphingomyelin in rats.
Collapse
|
34
|
Tyagi P, Kashyap M, Majima T, Kawamorita N, Yoshizawa T, Yoshimura N. Intravesical liposome therapy for interstitial cystitis. Int J Urol 2017; 24:262-271. [DOI: 10.1111/iju.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Pradeep Tyagi
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Mahendra Kashyap
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Tsuyoshi Majima
- Department of Urology; Nagoya University Graduate School of Medicine; Nagoya Aichi Japan
| | - Naoki Kawamorita
- Department of Urology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | | | - Naoki Yoshimura
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|
35
|
Lai MKP, Chew WS, Torta F, Rao A, Harris GL, Chun J, Herr DR. Biological Effects of Naturally Occurring Sphingolipids, Uncommon Variants, and Their Analogs. Neuromolecular Med 2016; 18:396-414. [DOI: 10.1007/s12017-016-8424-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
|
36
|
Abstract
Sphingomyelin (SM), glycosphingolipids, and gangliosides are important polar lipids in the milk fat globule membrane but are not found in standard milk replacement formulas. Because digestion and absorption of SM and glycosphingolipids generate the bioactive metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P), and because intact gangliosides may have beneficial effects in the gut, this may be important for gut integrity and immune maturation in the neonate. The brush border enzymes that hydrolyze milk SM, alkaline sphingomyelinase (nucleotide phosphodiesterase pyrophosphatase 7), and neutral ceramidase are expressed at birth in both term and preterm infants. Released sphingosine is absorbed, phosphorylated to S1P, and converted to palmitic acid via S1P-lyase in the gut mucosa. Hypothetically, S1P also may be released from absorptive cells and exert important paracrine actions favoring epithelial integrity and renewal, as well as immune function, including secretory IgA production and migration of T lymphocyte subpopulations. Gluco-, galacto-, and lactosylceramide are hydrolyzed to ceramide by lactase-phlorizin hydrolase, which also hydrolyzes lactose. Gangliosides may adhere to the brush border and is internalized, modified, and possibly transported into blood, and may exert protective functions by their interactions with bacteria, bacterial toxins, and the brush border.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clinical Sciences, Medicine (Gastroenterology), Lund University, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
37
|
Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J Nutr Biochem 2016; 30:93-101. [DOI: 10.1016/j.jnutbio.2015.12.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
|
38
|
Zhang JW, Tong X, Wan Z, Wang Y, Qin LQ, Szeto IMY. Effect of whey protein on blood lipid profiles: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2016; 70:879-85. [PMID: 27026427 DOI: 10.1038/ejcn.2016.39] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 01/10/2023]
Abstract
Previous studies have suggested that whey supplementation may have beneficial effects on lipid profiles, although results were inconsistent. A literature search was performed in March 2015 for randomized controlled trials observing the effects of whey protein and its derivatives on circulating levels of triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). A meta-analysis was subsequently conducted. The meta-analysis results of 13 trials showed that whey supplementation significantly reduced the circulating TG level by 0.11 mmol/l (95% CI: -0.21, 0 mmol/l), whereas the whey protein had no effects on circulating TC (-0.11 mmol/l, 95% CI: -0.27, 0.05 mmol/l), LDL-C (-0.08 mmol/l, 95% CI: -0.23, 0.07 mmol/l) and HDL-C (0.01 mmol/l, 95% CI: -0.04, 0.05 mmol/l). Subgroup analysis showed that significant TG reduction disappeared in participants with low body mass index, low supplemental whey dose or under exercise training/energy restriction during the trial. No evidence of heterogeneity across studies and publication bias was observed. In conclusion, our findings demonstrated that the effects of whey protein supplementation were modest, with an overall lowering effect on TG but no effect on TC, LDL-C and HDL-C.
Collapse
Affiliation(s)
- J-W Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - X Tong
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Z Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Y Wang
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - L-Q Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - I M Y Szeto
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| |
Collapse
|
39
|
Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces. Mediators Inflamm 2016; 2016:3827684. [PMID: 26880864 PMCID: PMC4736332 DOI: 10.1155/2016/3827684] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022] Open
Abstract
Complex sphingolipids are essential structural components of intestinal membranes, providing protection and integrity to the intestinal mucosa and regulating intestinal absorption processes. The role of sphingolipid signaling has been established in numerous cellular events, including intestinal cell survival, growth, differentiation, and apoptosis. A significant body of knowledge demonstrates that intestinal sphingolipids play a crucial role, as such and through their signaling pathways, in immunity and inflammatory disorders. In this review, we report on and discuss the current knowledge on the metabolism, signaling, and functional implications of sphingolipids in inflammatory bowel disease (IBD), focusing on the different aspects of sphingolipid actions on inflammatory responses and on the potential of sphingolipid-targeted molecules as anti-IBD therapeutic agents.
Collapse
|
40
|
Higurashi S, Haruta-Ono Y, Urazono H, Kobayashi T, Kadooka Y. Improvement of skin condition by oral supplementation with sphingomyelin-containing milk phospholipids in a double-blind, placebo-controlled, randomized trial. J Dairy Sci 2015; 98:6706-12. [DOI: 10.3168/jds.2015-9529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
|
41
|
Bourlieu C, Bouzerzour K, Ferret-Bernard S, Bourgot CL, Chever S, Ménard O, Deglaire A, Cuinet I, Ruyet PL, Bonhomme C, Dupont D, Huërou-Luron IL. Infant formula interface and fat source impact on neonatal digestion and gut microbiota. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Claire Bourlieu
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
| | - Karima Bouzerzour
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
- INRA; UR 1341 ADNC; Saint-Gilles France
| | | | | | - Sophie Chever
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
| | - Olivia Ménard
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
| | - Amélie Deglaire
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
| | | | | | | | - Didier Dupont
- INRA; UMR 1253 STLO; Rennes France
- Agrocampus Ouest; UMR 1253 STLO; Rennes France
| | | |
Collapse
|
42
|
Egg phospholipids and cardiovascular health. Nutrients 2015; 7:2731-47. [PMID: 25871489 PMCID: PMC4425170 DOI: 10.3390/nu7042731] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 01/20/2023] Open
Abstract
Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The complex biochemical composition and physical structure of the milk fat globule (MFG) are presented as a basis for its paradoxical metabolic fate: MFG is a rapid conveyor of energy through its triacylglycerol (TAG) core but contains some low-digestible bioactive complex lipids and proteins, which influence lipid metabolism and contribute to intestinal and systemic health. RECENT FINDINGS MFG structure modulates gastrointestinal lipolysis, postprandial lipemia and even the postprandial fate of ingested fatty acids. Proof-of-concept of the nutritional programming induced by early consumption of an emulsion biomimetic of MFG compared with a typical infant formula was published in an animal model (mice). The metabolic response to a high-fat diet during adulthood was improved following neonatal exposure to the biomimetic emulsion. SUMMARY MFG TAG are tailored with a unique regiodistribution delivering in priority short to medium-chain fatty acids in gastric phase, an important amount of quickly metabolizable oleic acid and protecting palmitic acid in sn-2 position. MFG digestion may not only trigger rapid TAG and chylomicron plasma peaks with fast clearance but also the luminal release of nonhydrolysable bioactive compounds (glycosylated compounds and sphingomyelin), which contribute to intestinal and systemic health by shaping the microbiota and modulating the immune system. These bioactive compounds form self-assembled structures, protect specific micronutrients and lower cholesterol absorption. The health benefits of MFG consumption or of some of its fractions (MFGM) under specific structures are steadily being demonstrated with still much unsolved questions especially for populations with high nutritional needs (e.g. elderly, infants).
Collapse
Affiliation(s)
- Claire Bourlieu
- aINRA, UMR1253, STLO, Rennes bINRA, UMR1397, INSERM U1060, CarMeN laboratory, Villeurbanne, France
| | | |
Collapse
|
44
|
Duan RD, Hindorf U, Cheng Y, Bergenzaun P, Hall M, Hertervig E, Nilsson Å. Changes of activity and isoforms of alkaline sphingomyelinase (nucleotide pyrophosphatase phosphodiesterase 7) in bile from patients undergoing endoscopic retrograde cholangiopancreatography. BMC Gastroenterol 2014; 14:138. [PMID: 25100243 PMCID: PMC4141583 DOI: 10.1186/1471-230x-14-138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background Alkaline sphingomyelinase (NPP7) is an ecto-enzyme expressed in intestinal mucosa, which hydrolyses sphingomyelin (SM) to ceramide and inactivates platelet activating factor. It is also expressed in human liver and released in the bile. The enzyme may have anti-tumour and anti-inflammatory effects in colon and its levels are decreased in patients with colon cancer and ulcerative colitis. Active NPP7 is translated from a transcript of 1.4 kb, whereas an inactive form from a 1.2 kb mRNA was found in colon and liver cancer cell lines. While the roles of NPP7 in colon cancer have been intensively studied, less is known about the function and implications of NPP7 in the bile. The present study examines the changes of NPP7 in bile of patients with various hepatobiliary diseases. Methods Bile samples were obtained at endoscopic retrograde cholangiopancreatography (ERCP) in 59 patients with gallstone, other benign disease, tumour, and primary sclerosing cholangitis (PSC). The NPP7 activity was determined. The appearance of the 1.4 and 1.2 kb products in the bile was examined by Western blot. The results were correlated to the diseases and also plasma bilirubin and alkaline phosphatase. Results NPP7 activity in the tumour group was significantly lower than in the gallstone group (p < 0.05). The activity in the tumour plus PSC group was also lower than in gallstone plus other benign disease group (p < 0.05). Within the tumour group NPP7 activity was lowest in cholangiocarcinoma patients, being only 19% of that in gallstone patients. Bilirubin correlated inversely to NPP7 and was higher in the tumour than in the gallstone group. Western blot identified both the 1.4 kb and the 1.2 kb products in most bile samples. The density ratio for the 1.4/1.2 kb products correlated to NPP7 activity significantly. Two patients (one PSC and one cholangiocarcinoma) lacking NPP7 activity had only the 1.2 kb form in bile. Conclusion NPP7 activity and the ratio of 1.4/1.2 kb products in bile are significantly decreased in malignancy, particularly in cholangiocarcinoma. The implications of the finding in diagnosis of cholangiocarcinoma and 1.2 kb product in hepatobiliary diseases require further investigation.
Collapse
Affiliation(s)
- Rui-Dong Duan
- Gastroenterology & Nutrition Laboratory, BMC, B11, Department of Clinical Sciences in Lund, University of Lund, S-22184 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang P, Chen Y, Cheng Y, Hertervig E, Ohlsson L, Nilsson A, Duan RD. Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G903-8. [PMID: 24650549 DOI: 10.1152/ajpgi.00319.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously showed that dietary sphingomyelin (SM) inhibited cholesterol absorption in animals. The key enzyme hydrolyzing SM in the gut is alkaline sphingomyelinase (alk-SMase, nucleotide pyrophosphatase/phosphodiesterase 7). Here using the fecal dual-isotope ratio method we compared cholesterol absorption in the wild-type (WT) and alk-SMase knockout (KO) mice. The animals were fed an emulsion containing [(14)C]cholesterol and [(3)H]sitosterol. The radioactivities in the lipids of the fecal samples collected 4, 8, and 24 h thereafter were determined, and the ratio of (14)C/(3)H was calculated. We found that the fecal [(14)C]cholesterol recovery in the KO mice was significantly higher than in the WT mice. A maximal 92% increase occurred 8 h after feeding. Recovery of [(3)H]sitosterol did not differ between the two groups. Accordingly, the (14)C-to-(3)H ratio of fecal lipids was 133% higher at 8 h and 75% higher at 24 h in the KO than in the WT mice. Decreased [(14)C]cholesterol was also found in the serum of the KO mice 4 h after feeding. Supplement of SM in the emulsion reduced the differences in fecal [(14)C]cholesterol recovery between the WT and KO mice because of a greater increase of [(14)C]cholesterol recovery in the WT mice. Without treatment, the KO mice had significantly higher SM levels in the intestinal content and feces, but not in the intestinal mucosa or serum. The expression of Niemann-Pick C1 like 1 protein in the small intestine was not changed. In conclusion, alk-SMase is a physiological factor promoting cholesterol absorption by reducing SM levels in the intestinal lumen.
Collapse
Affiliation(s)
- Ping Zhang
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden; Daqing Campus, Harbin Medical University, Daqing, China
| | - Ying Chen
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden; Gastroenterology, Tongji Hospital, Tongji University, Shanghai, China; and
| | - Yajun Cheng
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden
| | - Erik Hertervig
- Gastroenterology Clinic, Skåne University Hospital, Lund, Sweden
| | - Lena Ohlsson
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden
| | - Ake Nilsson
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden; Gastroenterology Clinic, Skåne University Hospital, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Lab, Institution of Clinical Sciences, University of Lund, Lund, Sweden;
| |
Collapse
|
46
|
Metabolism, physiological role, and clinical implications of sphingolipids in gastrointestinal tract. BIOMED RESEARCH INTERNATIONAL 2013; 2013:908907. [PMID: 24083248 PMCID: PMC3780527 DOI: 10.1155/2013/908907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/30/2013] [Accepted: 08/02/2013] [Indexed: 01/21/2023]
Abstract
Sphingolipids in digestive system are responsible for numerous important physiological and pathological processes. In the membrane of gut epithelial cells, sphingolipids provide structural integrity, regulate absorption of some nutrients, and act as receptors for many microbial antigens and their toxins. Moreover, bioactive sphingolipids such as ceramide or sphingosine-1-phosphate regulate cellular growth, differentiation, and programmed cell death-apoptosis. Although it is well established that sphingolipids have clinical implications in gastrointestinal tumorigenesis or inflammation, further studies are needed to fully explore the role of sphingolipids in neoplastic and inflammatory diseases in gastrointestinal tract. Pharmacological agents which regulate metabolism of sphingolipids can be potentially used in the management of colorectal cancer or inflammatory bowel diseases. The aim of this work is to critically the review physiological and pathological roles of sphingolipids in the gastrointestinal tract.
Collapse
|
47
|
Ramprasath VR, Jones PJ, Buckley DD, Woollett LA, Heubi JE. Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids Health Dis 2013; 12:125. [PMID: 23958473 PMCID: PMC3765565 DOI: 10.1186/1476-511x-12-125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/30/2022] Open
Abstract
Background Diets enriched with sphingolipids may improve blood lipid profiles. Studies in animals have shown reductions in cholesterol absorption and alterations in blood lipids after treatment with sphingomyelin (SM). However, minimal information exists on effect of SM on cholesterol absorption and metabolism in humans. The objective was to assess the effect of SM consumption on serum lipid concentrations and cholesterol metabolism in healthy humans. Methods Ten healthy adult males and females completed a randomized crossover study. Subjects consumed controlled diets with or without 1 g/day SM for 14 days separated by at least 4 week washout period. Serum lipid profile and markers of cholesterol metabolism including cholesterol absorption and synthesis were analyzed. Results Serum triglycerides, total, LDL- and VLDL- cholesterol were not affected while HDL cholesterol concentrations were increased (p = 0.043) by SM diet consumption. No change in cholesterol absorption and cholesterol fractional synthesis rate was observed with supplementation of SM compared to control. Intraluminal cholesterol solubilization was also not affected by consumption of SM enriched diet. Conclusions In humans, 1 g/day of dietary SM does not alter the blood lipid profile except for an increased HDL-cholesterol concentration and has no effect on cholesterol absorption, synthesis and intraluminal solubilization compared to control. Trial registration Clinicaltrials.gov # NCT00328211
Collapse
|
48
|
Regulation of cytoskeleton organization by sphingosine in a mouse cell model of progressive ovarian cancer. Biomolecules 2013; 3:386-407. [PMID: 24970173 PMCID: PMC4030958 DOI: 10.3390/biom3030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer is a multigenic disease and molecular events driving ovarian cancer progression are not well established. We have previously reported the dysregulation of the cytoskeleton during ovarian cancer progression in a syngeneic mouse cell model for progressive ovarian cancer. In the present studies, we investigated if the cytoskeleton organization is a potential target for chemopreventive treatment with the bioactive sphingolipid metabolite sphingosine. Long-term treatment with non-toxic concentrations of sphingosine but not other sphingolipid metabolites led to a partial reversal of a cytoskeleton architecture commonly associated with aggressive cancer phenotypes towards an organization reminiscent of non-malignant cell phenotypes. This was evident by increased F-actin polymerization and organization, a reduced focal adhesion kinase expression, increased α-actinin and vinculin levels which together led to the assembly of more mature focal adhesions. Downstream focal adhesion signaling, the suppression of myosin light chain kinase expression and hypophosphorylation of its targets were observed after treatment with sphingosine. These results suggest that sphingosine modulate the assembly of actin stress fibers via regulation of focal adhesions and myosin light chain kinase. The impact of these events on suppression of ovarian cancer by exogenous sphingosine and their potential as molecular markers for treatment efficacy warrants further investigation.
Collapse
|
49
|
Rozema E, Popescu R, Sonderegger H, Huck CW, Winkler J, Krupitza G, Urban E, Kopp B. Characterization of glucocerebrosides and the active metabolite 4,8-sphingadienine from Arisaema amurense and Pinellia ternata by NMR and CD spectroscopy and ESI-MS/CID-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7204-7210. [PMID: 22769731 DOI: 10.1021/jf302085u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sphingolipid metabolites regulate cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, glucocerebrosides (GluCer) from rhizomes of Arisaema amurense and Pinellia ternata were fully characterized using 1- and 2-dimensional nuclear magnetic spin resonance (NMR) and circular dichroism (CD) spectroscopy and tandem collision-induced dissociation mass spectrometry (ESI-MS/CID-MS). Three new acylated and seven known GluCer were elucidated with 4,8-sphingadienine (4,8-SD, d18:2) as backbone. 4,8-SD is a metabolite after enzymatical hydrolysis of GluCer in the gut lumen. In this study, 4,8-SD was hydrolyzed from GluCer and chromatographically purified on silica gel. In contrast to the GluCer, 4,8-SD showed cytotoxic effects in the WST-1 assay. GluCer with 4,8-SD as sphingoid backbone are present in plants consumed as food, such as spinach, soy, and eggplant.
Collapse
Affiliation(s)
- Evelien Rozema
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lopez C. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|